

11th International Methane Hydrate Research and Development Workshop

Organizers

- Dr. Richard Coffin, TAMU-CC
- Dr. Bjørn Kvamme, University of Bergen
- Dr. Stephen Masutani, University of Hawaii
- Dr. Norio Tenma, AIST-Tokyo
- Dr. Tsutomu Uchida, Hokkaido University

DISCLAIMER

This DRAFT document is an overview of presentations and discussions during the 11th International Methane Hydrate Research and Development Workshop in Corpus Christi, Texas during December 6-8, 2017. This provides information presented and an overview of discussion topics. We do not provide our interpretations of the presentations.

Table of Contents

TITLE PAGE	1
TABLE OF CONTENTS	2
OVERVIEW	4
WORKSHOP AGENDA	6
PRESENTATIONS	12
INTRODUCTIONS AND REVIEWS	13
Dr. Richard Coffin PENS, TAMU-CC Meeting Introduction and Overview	13
Dr. Stephen Masutani, HNEI University of Hawaii 10 th IMHRD Overview	14
KEYNOTE SPEAKER	
Energy Research and Development: View from the National Laboratories, Marianne C Walck, PhD, Vice President Emeritus, Sandia National Laboratories Energy and Climate Programs	15
NATIONAL PRESENTATIONS	
Mr. Jared Ciferno, US Department of Energy – National Energy Technology Laboratory, "An Overview of US DOE Gas Hydrate Research and Development"	21
Dr. Zhou Shouwei and Dr. Li Qingping – China National Offshore Oil Corporation – "Achievement Report of solid-state fluidization production test of Deep-sea Natural Gas Hydrate in China"	27
Prof. Wang Guorong and Prof. Liu Qingyou, Southwest Petroleum University – "Research on Crushing Experiment and Experimental Device of Natural Gas Hydrate Solid-state Fluidization Exploitation"	35
Dr. Norio Tenma, AIST, Tokyo, Japan, "Recent Status of Methane Hydrate R&D Program in Japan"	39
Dr. Joo Yong Lee KIGAM, South Korea "The National Report on Gas Hydrate R&D Program in Korea"	44

INDIVIDUAL PRESENTATION

Prof. Bjørn Kvamme, University of Bergen – "Modeling CH4/CO2 exchange on reservoir scale"	49
Dr. Kelly Rose, NETL Albany, DOE – "A Methodology for Evaluating Offshore Carbon Storage Potential"	53
Assoc. Prof. Geir Ersland, University of Bergen – "Pore-to-Core Imaging of Hydrate Formation and Dissociation Patterns"	57
Prof. Yoshihiro Konno, University of Tokyo – "Enhancement of Gas Hydrate Reservoir Performance by Deep Depressurization below the Quadruple Point"	74
Mr. Zhenyuan Yin, National University of Singapore – "Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium"	75
Prof. Jurgen Mienert, University of Tromsø – "4D Seismics and Ocean Observatories in Arctic Gas Hydrate Research"	79
Dr. Xin Lu, China National Offshore Oil Corporation – "Experimental study on the effective thermal conductivity of pressure-tight sampling corer natural gas hydrate samples of South China Sea"	84
Prof. Na Wei, Southwest Petroleum University – "The first solid fluidization Exploitation experimental system of marine natural gas hydrate in the world"	86
Prof. Bjørn Kvamme, University of Bergen – "Natural gas hydrates - a substantial non-equilibrium challenge"	97
Prof. Subbarao Yelisetti – Texas A&M University Kingsville – "Gas hydrate role in coastal slope failure"	103
Prof. Lin Zhong, Southwest Petroleum University "Technology Status of Mining Guide Device of Natural Gas Hydrate in Seabed Shallow Layer"	107
Prof. Yang Tang, Southwest Petroleum University "Feasibility Research on a Purification Technology of Natural Gas-hydrate Slurry by Sand Removal based on Hydrocyclone Separation"	110
Prof. Richard Coffin, Texas A&M University – Corpus Christi – "Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand"	113
Prof. Brandi Reese, Texas A&M University – Corpus Christi – "Organic matter mineralization pathways in Baltic Sea Basin sediments revealed through DNA and RNA sequencing"	118
Prof. Joseph Smith, US Naval Academy – "Factors Influencing Spatial Variability in Late Summer Methane Fluxes from the North Slope of Alaska"	122
Prof. Lin Zhang, Texas A&M University – Corpus Christi – "Examining the relationship between trophic status and methane production pathways in Alaskan peatlands using stable isotopes and molecular techniques"	126

Prof. Hussain Abdulla, Texas A&M University – Corpus Christi – "Accumulation of deaminated peptides in anoxic sediment of Santa Barbara Basin"	130
BREAKOUT SESSION REVIEWS	
Overview	135
Session 1: Laboratory Experimentation: 1) Limitations on experimentation relative to the environment. 2) Mineral/hydrate/ Fluid interactions focus on porous non steady stat conditions	136
Session 2: Gas Hydrate Related Modelling: Load Predictions, Coastal - Platform Stability, Environmental safety	138
Session 3: Gas Hydrate Deep Drilling: Technology, Recent Data	139
Session 4: Carbon Sequestration Related to Gas Hydrate Mining: Platform Stability, Environmental Safety vs. Impact, CO2 Residence Time	140
Session 5: Initial Site Assessment: Seismic and Geochemical Evaluation, Recent Data (Positive and Negative), Additional Approaches.	141
Session 6: Biogeochemical Assessments of Gas Hydrate Loading and Monitoring Environmental Health	144
ATTENDEES LIST	146

Overview

Texas A&M University - Corpus Christi held the 11th International Workshop on Methane Hydrate Research and Development, in Corpus Christi TX during December 6-8, 2017. The 1st International Workshop on Methane Hydrate R&D was held in March 2001 in Honolulu, Hawaii. Subsequent workshops have been held, on average, every 1.5 years in different countries including the U.S., Chile, Canada, U.K., Norway, New Zealand, Japan, and India. This workshop was created so hydrate researchers and stakeholders could freely exchange information and identify research priorities in an effort to promote collaboration field and laboratory international collaborations.

The main focuses of this workshop were:

1) Gas Hydrate Energy: exploration, production, and economics;

2) Methane and Climate Change: Arctic, Antarctic and regions in between;

3) Natural and anthropogenic warming contributions to coastal and industrial platform stability;

4) Carbon dioxide injection for methane acquisition and sequestration.

Plenary lectures, oral presentations and posters, and breakout sessions were held during the workshop.

The past ten workshops have been co-organized by Professors Bjørn Kvamme (University of Bergen), Tsutomu Uchida (Hokkaido University), Stephen Masutani (University of Hawaii), Dr. Norio Tenma, (AIST) and Richard Coffin (TAMU-CC). Participant countries at the conference, in addition to the U.S., typically includes Canada, the United Kingdom, Norway, New Zealand, Japan, India and Chile, among twenty others. Previous workshops have been held in the US, Japan, India, Canada, Chile, New Zealand, Scotland, and Norway. With this strong international focus topics addressed include new energy, climate change, and coastal and industrial platform stability. With this workshop held in Texas there is special interest because of the deposits of frozen methane under the Gulf of Mexico that have potential to increase the world's energy supply and contribute to long-term energy security. It is estimated that there are 7,000 trillion cubic feet of methane in the Gulf of Mexico in reservoirs near the seafloor.

Workshop Agenda

Τι	Tuesday, 5 December Registration and Mix and Mingle OMNI 2 nd Floor 4:00PM-8:00PM		
	Wednesday, 6 December		
TIME			
7:30AM-8:15AM Nueces B		Breakfast	
	SESSION	SPEAKERS	
8:15AM-10:00AM Nueces A	Introductions & Key Note Speakers Chair: Prof. Bjørn Kvamme	 8:15 – 8:30, Overview: Prof. Richard Coffin, TAMU-CC 8:30 – 8:40, Welcome to TAMU-CC: President Kelly M. Quintanilla, TAMU-CC 8:40 – 8:50, College of Science and Engineering: Dean Frank Pezold, CSE TAMU-CC 8:50 – 9:00, 10th IMHRD Overview: Prof. Stephen Masutani University of Hawaii, HNEI 9:00 – 10:00, Key Note Speaker: Dr. Marianne Walck VP Emeritus Sandia National Laboratory "Energy Research and Development: View from the DOE National Laboratories" 	
10:00AM-10:20AM Foyer		Coffee Break	
10:20PM-12:20PM Nueces A	National Reviews Chair: Prof. Tsutomu Uchida	 10:20 – 11:05, United States: Mr. Jared Ciferno, US Department of Energy – National Energy Technology Laboratory, "An Overview of US DOE Gas Hydrate Research and Development" 11:05 – 12:20, China: Dr. Zhou Shouwei and Dr. Li Qingping – China National Offshore Oil Corporation – "Achievement Report of solid-state fluidization production test of Deep-sea Natural Gas Hydrate in China" Prof. Wang Guorong, Southwest Petroleum University – "Non Diagenesis Nature Gas Hydrate Production by Solid Fluidization" 	

1:20PM – 3:10PM Nueces A	Research Presentations Chair: Prof. Richard Coffin	 1:20 – 1:50 Prof. Bjørn Kvamme, University of Bergen – "Modeling CH4/CO2 exchange on reservoir scale" 1:50 – 2:10 Dr. Kelly Rose, NETL Albany, DOE – "A Methodology for Evaluating Offshore Carbon Storage Potential" 2:10 – 2:30 Assoc. Prof. Geir Ersland, University of Bergen – "Poreto-Core Imaging of Hydrate Formation and Dissociation Patterns" 2:30 – 2:50
		 Prof. Yoshihiro Konno, University of Tokyo – "Enhancement of Gas Hydrate Reservoir Performance by Deep Depressurization below the Quadruple Point" 2:50 – 3:10 Mr. Zhenyuan Yin, National University of Singapore – "Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium"
3:10PM-4:10PM		
Foyer		Poster Session and Coffee Break
		Poster Session and Coffee Break OUT SESSIONS
		OUT SESSIONS Laboratory Experimentation: 1) Limitations on experimentation relative to the environment. 2) Mineral/hydrate/ Fluid interactions focus on porous non steady stat
Foyer 4:10PM-5:40PM	BREAK Chair: Prof. Bjørn Kvamme Rapporteur:	OUT SESSIONS Laboratory Experimentation: 1) Limitations on experimentation relative to the environment. 2) Mineral/hydrate/
Foyer 4:10PM-5:40PM Nueces A 4:10PM-5:40PM	BREAK Chair: Prof. Bjørn Kvamme Rapporteur: Prof. Na Wei Chair: Prof. Joo Yong Lee Rapporteur:	OUT SESSIONS Laboratory Experimentation: 1) Limitations on experimentation relative to the environment. 2) Mineral/hydrate/ Fluid interactions focus on porous non steady stat conditions Gas Hydrate Related Modelling: Load Predictions,

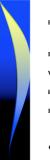
	Thursda	y, 7 December
TIME		SESSION CHAIR
7:30AM-8:15AM Nueces B		Breakfast
8:15AM-9:45AM Nueces A	National Reviews	 8:15 – 9:00, Japan: Dr. Norio Tenma AIST, Tokyo, Japan "Recent Status of Methane Hydrate R&D Program in Japan" 9:00 – 9:45, Korea: Dr. Joo Yong Lee KIGAM, South Korea "The National Report on Gas Hydrate R&D Program in Korea"
	Research Presentations	 9:45 – 10:15 Prof. Jurgen Mienert, University of Tromsø – "4D Seismics and Ocean Observatories in Arctic Gas Hydrate Research" 10:15 – 10:35
9:45AM-10:55AM Nueces A	Chair: Dr. Norio Tenma	 Dr. Xin Lu, China National Offshore Oil Corporation – "Experimental study on the effective thermal conductivity of pressure-tight sampling corer natural gas hydrate samples of South China Sea" CANCELLED 10:35 – 10:55 Prof. Na Wei, Southwest Petroleum University – "The first solid fluidization exploitation experimental system of marine natural gas hydrate in the world"
10:55AM-11:10AM Foyer		Coffee

Prof. Bjørn Kvamme, University of Bergen " Natural gas hydrates - a substantial non-equilibrium challenge"11:10AM-12:30PM Nueces AChair: Prof. Stephen Masutani• 11:30 - 11:50 Prof. Subbrato Yelisetti - Texas A&M University (Kingsville "Gas hydrates of Natural Gas Hydrate in Seabed Shallow Layer"12:30PM - 1:30 PM Nueces B• 11:30 - 11:50 Prof. Stephen Masutani• 11:30 - 12:10 Prof. Lin Zhong, Southwest Petroleum University "Technology Status of Mining Guide Device of Natural Gas Hydrate in Seabed Shallow Layer"12:30PM - 1:30 PM Nueces B• 11:30 - 11:50 Prof. Yang, Southwest Petroleum University "Feasibility Research on a Purification Technology of Natural Gas-hydrate Slury by Sand Removal based on Hydrocyclone Separation"12:30PM - 1:30 PM Nueces A• 11:30 - 1:50 Prof. Richard Coffin, Texas A&M University - Corpus Christi "Organic matter mineralization pathways in Balatic Sea Basin sediments revealed through DNA and RNA sequencing"1:30PM-3:10PM Nueces AChair: Prof. Stephen Masutani1:30PM-3:10PM Nueces A• 1:50 - 2:10 Prof. Stephen Masutani1:30PM-3:10PM Nueces A• 1:30 - 1:50 Prof. Stephen Masutani1:30PM-3:10PM Nueces A• 1:30 - 1:50 Prof. Stephen Masutani1:30PM-3:10PM Nueces A• 1:30 - 1:50 Prof. Stephen Masutani1:30PM-3:10PM Nu			• 11:10 – 11:30
• 11:30 • 11:30 Prof. Stephen Masutani Prof. Subbarao Yelisetti – Texas A&M University Kingsville – "Gas hydrate role in coastal slope failure" • 11:50 – 12:10 Prof. Lin Zhong, Southwest Petroleum University "Technology Status of Mining Guide Device of Natural Gas Hydrate in Seabed Shallow Layer" • 12:10 – 12:30 Prof. Yang Tang, Southwest Petroleum University "Technology Status of Mining Guide Device of Natural Gas Hydrate in Seabed Shallow Layer" • 12:30PM – 1:30 PM Nucces B • 12:10 – 12:30 Prof. Stephen Masutani • 11:30 – 1:50 Prof. Richard Coffin, Texas A&M University – Corpus Christi – "Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand" 1:30PM-3:10PM Nucces A • 1:50 – 2:10 Prof. Stephen Masutani • 2:10 – 2:30 Prof. Stephen Masutani • 2:10 – 2:30 Prof. Joseph Smith, US Naval Academy – "Factors Influencing	11:10AM-12:30PM	Research Presentations	gas hydrates - a substantial non-equilibrium
• 12:10 – 12:30 Prof. Yang Tang, Southwest Petroleum University "Feasibility Research on a Purification Technology of Natural Gas-hydrate Slurry by Sand Removal based on Hydrocyclone Separation"12:30PM – 1:30 PM Nueces B• 1:30 – 1:50 Prof. Richard Coffin, Texas A&M University – Corpus Christi – "Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand"1:30PM-3:10PM Nueces A• 1:50 – 2:10 Prof. Brandi Reese, Texas A&M University – Corpus Christi – "Organic matter mineralization pathways in Baltic Sea Basin sediments revealed through DNA and RNA sequencing"Chair: Prof. Stephen Masutani• 2:10 – 2:30 Prof. Joseph Smith, US Naval Academy – "Factors Influencing Spatial Variability in Late Summer Methane Fluxes from the North Slope of Alaska" • 2:30 – 2:50 Prof. Lin Zhang, Texas A&M University – Corpus Christi – "Examining the relationship between trophic	Nueces A		 Prof. Subbarao Yelisetti – Texas A&M University Kingsville – "Gas hydrate role in coastal slope failure" 11:50 – 12:10 Prof. Lin Zhong, Southwest Petroleum University "Technology Status of Mining Guide Device of Natural
Nueces BI:30PM-3:10PM Nueces AResearch Presentations• 1:30 – 1:50 Prof. Richard Coffin, Texas A&M University – Corpus Christi – "Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand"1:30PM-3:10PM Nueces A• 1:50 – 2:10 Prof. Brandi Reese, Texas A&M University – Corpus 			• 12:10 – 12:30 Prof. Yang Tang, Southwest Petroleum University "Feasibility Research on a Purification Technology of Natural Gas-hydrate Slurry by Sand Removal based on Hydrocyclone Separation"
Research Presentations• 1:30 – 1:50 Prof. Richard Coffin, Texas A&M University – Corpus Christi – "Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand"1:30PM-3:10PM Nueces A• 1:50 – 2:10 Prof. Brandi Reese, Texas A&M University – Corpus Christi – "Organic matter mineralization pathways in Baltic Sea Basin sediments revealed through DNA and RNA sequencing"• 2:10 – 2:30 Prof. Stephen Masutani• 2:10 – 2:30 Prof. Joseph Smith, US Naval Academy – "Factors Influencing Spatial Variability in Late Summer Methane Fluxes from the North Slope of Alaska" 			Lunch
Prof. Stephen MasutaniProf. Joseph Smith, US Naval Academy – "Factors Influencing Spatial Variability in Late Summer Methane Fluxes from the North Slope of Alaska"• 2:30 – 2:50 Prof. Lin Zhang, Texas A&M University – Corpus Christi – "Examining the relationship between trophic		Research Presentations	 Prof. Richard Coffin, Texas A&M University – Corpus Christi – "Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand" 1:50 – 2:10 Prof. Brandi Reese, Texas A&M University – Corpus Christi – "Organic matter mineralization pathways in Baltic Sea Basin sediments revealed through DNA and
 status and methane production pathways in Alaskan peatlands using stable isotopes and molecular techniques" 2:50 – 3:10 Prof. Hussain Abdulla, Texas A&M University – Corpus Christi – "Accumulation of deaminated peptides in anoxic sediment of Santa Barbara Basin" 			 Prof. Joseph Smith, US Naval Academy – "Factors Influencing Spatial Variability in Late Summer Methane Fluxes from the North Slope of Alaska" 2:30 – 2:50 Prof. Lin Zhang, Texas A&M University – Corpus Christi – "Examining the relationship between trophic status and methane production pathways in Alaskan peatlands using stable isotopes and molecular techniques" 2:50 – 3:10 Prof. Hussain Abdulla, Texas A&M University – Corpus Christi – "Accumulation of deaminated peptides in
3:10PM-4:10PM Poster Session and Coffee	3:10PM-4:10PM Foyer		Poster Session and Coffee
Fover	TOyer	BREAK	OUT SESSIONS

4:10PM-5:40PM Nueces A	Chair: Prof. Subbarao Yelisetti Rapporteur: Ms. Hao Yu	Gas Hydrate Deep Drilling: Technology, Recent Data
4:10PM-5:40PM Laguna Madre	Chair: Dr. Kelly Rose Rapporteur: Dr. Xin Lu	Carbon Sequestration Related to Gas Hydrate Mining: Platform Stability, Environmental Safety vs. Impact, CO2 Residence Time
6:40PM		Bus to TAMU-CC
7:00PM	Т	AMU-CC Cocktails and Dinner

Friday, 8 December		
TIME		
7:30AM-8:30AM Nueces B		Breakfast
		BREAKOUT SESSIONS
8:30AM-10:00AM Nueces A	Chair: Prof. Richard Coffin Rapporteur: Mr. Sajjad Abdullajintakam	Initial Site Assessment: Seismic and Geochemical Evaluation, Recent Data (Positive and Negative), Additional Approaches.
8:30AM-10:00AM Laguna Madre	Chair: Prof. Brandi Reese Rapporteur: Prof. Joseph Smith	Biogeochemical Assessments of Gas Hydrate Loading and Monitoring Environmental Health
10:00AM–11:00AM Foyer		Coffee Break
11:00AM-12:00PM Nueces A	Chair: Prof. Tsutomu Uchida Rapporteur: Ms. Jenna Cooper	Summary of Sessions
12:00PM-1:00PM Nueces A	Chair: Prof. Richard Coffin Rapporteur: Prof. Bjørn Kvamme	Closing Remarks

Abstracts and Presentations


INTRODUCTIONS AND REVIEWS

Dr. Richard Coffin PENS, TAMU-CC Meeting Introduction and Overview

Acknowledgements

- Financial Support Support University of Hawaii – Hawaii Natural Energy Institute Financial Corpus Christi Convention and Visitors Bureau Corpus Christi Regional Economic Development Corporation

Local Workshop Lead Alessandra Garcia – TAMU-CC, PENS

Web Sife Kayleigh Movalli – TAMU-CC, College of Science and Engineering

Crystal Seehorn – TAMU-CC

- Planning and Outreach
 Barbara Szczetbinska TAMU-CC, PENS
 Russell Franges TAMU-CC, Coastal Bend Innovation Ce
 Sebastian Garzon TAMU-CC, Coastal Bend Innovation Cen
 Sonny Martinez TAMU-CC, Coastal Bend Innovation Cen

General Support

 Sabrina Flower – TAMU-CC, PENS

Organizers

Dr. Richard Coffin, TAMU-CC Dr. Bjørn Kvamme, University of Bergen Dr. Stephen Masutani, University of Hawaii Dr. Norio Tenma, AIST-Tokyo Dr. Tsutomu Uchida, Hokkaido University

Local Development: Mrs. Alessandra Garcia

Topics this Year

1) Gas Hydrate Energy: exploration, production, and economics:

2) Methane and Climate Change: Arctic, Antarctic and regions in between;

3) Natural and Anthropogenic Warming Contributions to Coastal and Industrial Platform Stability;

4) Carbon dioxide injection for methane acquisition and sequestration.

Dr. Stephen Masutani, HNEI University of Hawaii 10th IMHRD Overview

Summary

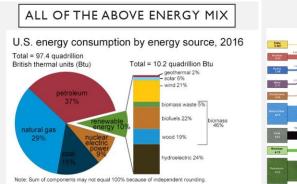
- Workshop theme was "15 Years of Progress and Future Directions"
- Highlighted accomplishments and changes in hydrate science and engineering since the first workshop in 2001, and identified directions for the future
- 60 participants from the U.S., Japan, China, Germany, India, New Zealand, Norway, and the Republic of Korea
- 7 national reports, 5 breakout sessions, and 20 oral and
 25 poster presentations

Summary (continued)

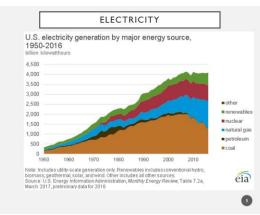
- National reports described the present status of gas hydrate research in the U.S., China, Korea, Japan, Norway, New Zealand, and Germany
- Five breakout session topics were: 1) Fundamental laboratory and modeling studies, 2) Exploration and resource assessment, 3) Reservoir and production modeling, 4) The path forward: key areas for future R&D, and 5) The impact of cheap fossil fuels on methane hydrate R&D

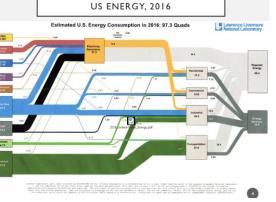
12 peer-reviewed papers published in special issue of Energies

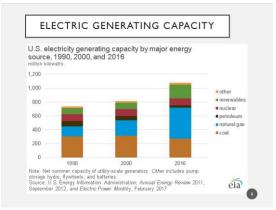
KEYNOTE SPEAKER

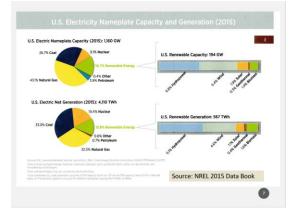

Energy Research and Development: View from the National Laboratories

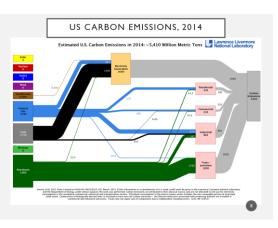
Marianne C Walck, PhD Vice President Emeritus Sandia National Laboratories Energy and Climate Programs

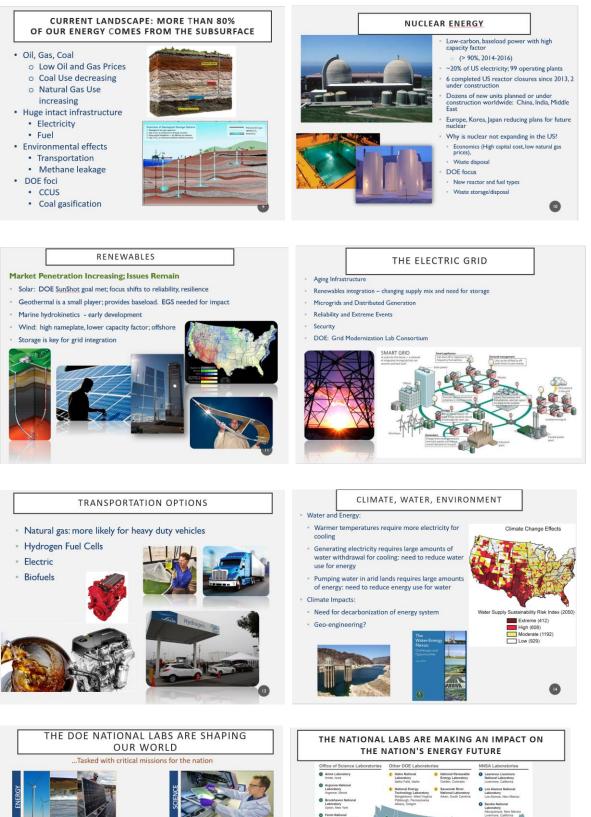

The United States consistently delivers a reliable supply of abundant, inexpensive energy to consumers, and while carbon-intensity has declined over time, many challenges remain. More than 80% of US energy is still derived from carbon-based subsurface sources: oil, gas, and coal. Recent advances in producing hydrocarbons directly from shale have dramatically reduced natural gas prices, resulting in a marked increase of natural gas usage in electricity production, and a corresponding decrease in coal use. Renewable energy sources for electricity generation and transportation are increasing, but remain a small part of the overall energy equation. Low-carbon electricity from nuclear power faces an uncertain future due to low natural gas prices, high capital costs, and the need for a clear path for nuclear waste storage and disposal. The changing climate and challenges in water supply and quality provide additional complexity for the future energy system.


The presentation discusses numerous challenges that face the future of electric power and transportation in the nation, and how collaborative research and development conducted in the US Department of Energy national laboratory system provides technologies for efficient and effective energy generation, use, and storage. Specific examples include carbon sequestration, nanotechnologies, batteries, combustion modeling, earth system simulation, biomass deconstruction, wave energy conversion, and solar receivers.

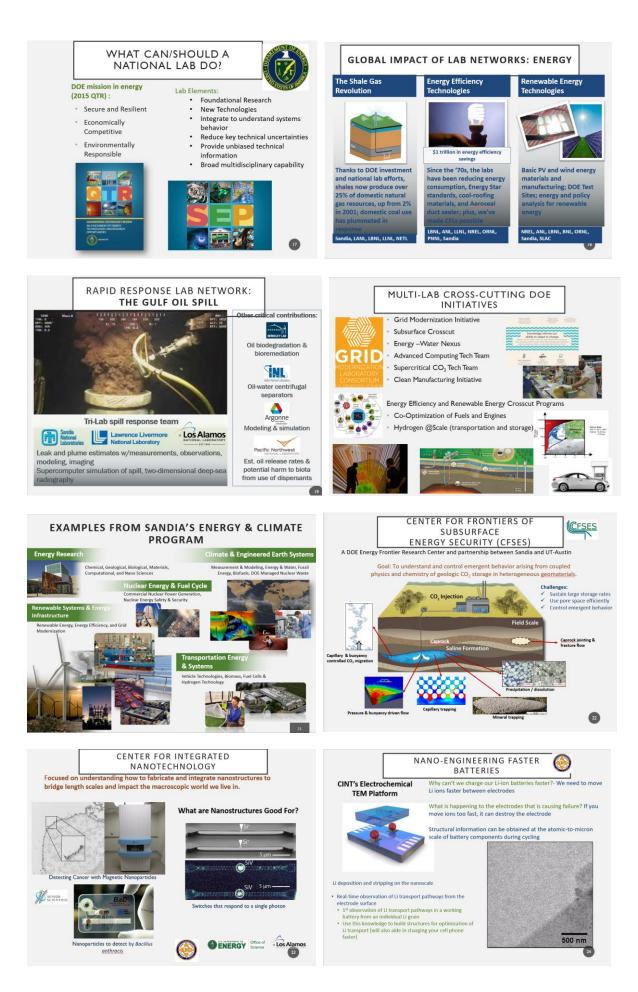


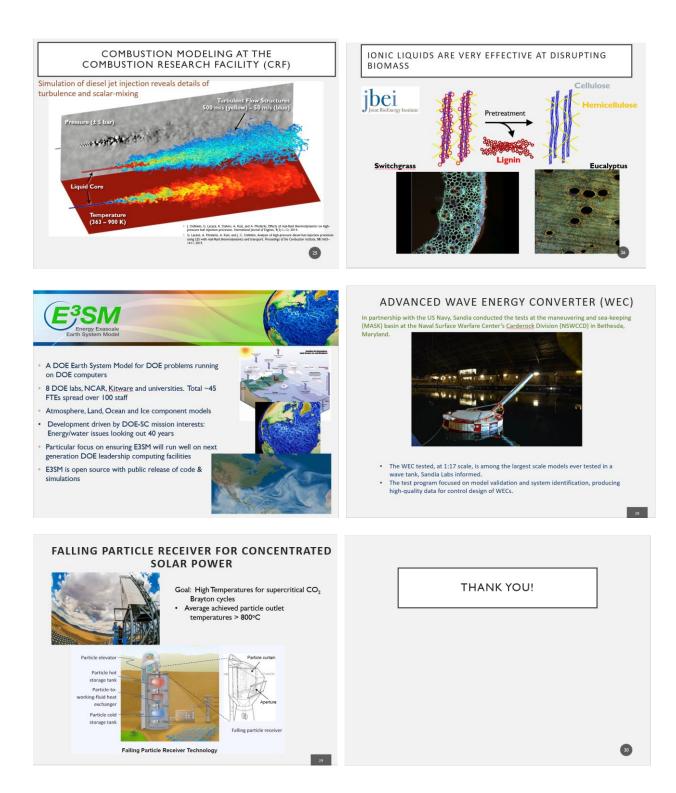



Source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1, April 2017, preliminary data



Enable breakthroughs to make an "all-of -the-above" energy strategy work for the nation, the world, and global climate




S&T solutions to shorten multi-decade mental management and remediation programs

Provide scientific and technical foundations for our national nuclear and global security

ledge and understanding erpin our future society...

NATIONAL REVIEWS

Methane Hydrates as a Potential Natural Gas Energy Resource: DOE's Research and Development Strategy for Success

Jared Ciferno (National Energy Technology Laboratory; jared.ciferno@netl.doe.gov)

Summary/Conclusions

A portfolio of research projects is delivering new findings focused on developing a better understanding of the nature and occurrence of gas hydrates within the United States, the technologies that can achieve production of natural gas from gas hydrates and the role of gas hydrates in environmental and safety-related dynamics. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Gas Hydrates R&D Program includes recently completed and ongoing research projects. These projects are building on a history of important research efforts that have helped to more accurately quantify the global gas hydrate resource, test practical methods for identifying hydrate in the subsurface, understand the physical processes at work during hydrate formation and dissociation, and model gas production from gas hydrate accumulations in arctic and deepwater marine shelf environments.

Background

Methane hydrate represents a potentially vast natural gas resource for the United States and the world. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain more organic carbon than all of the world's oil, gas, and coal combined.

In 1982, the United States launched a national R&D program dedicated to the study of naturally occurring methane hydrate. During the first phase of this program, from 1982-1992, the United States carried out research on the physical and chemical properties of methane hydrate, and the United States Geological Survey (USGS) focused on characterizing sub-permafrost hydrate trends on the North Slope of Alaska.

Renewed interest in methane hydrate as a potential energy source resulted in the DOE Methane Hydrates R&D Program, a reinvigorated national program in the U.S. that was launched in 1998 and continues to the present day. Since 2009, more than 50 different projects under have received funding under this program of roughly \$160 million, including both government and non-government costs. The bulk of the funding supports field and laboratory programs conducted through partnerships with industry and academia and supported by work conducted with DOE's national laboratories and collaborating federal agencies.

Aims

The mission of the NETL-managed DOE Methane Hydrates R&D Program is to collaborate nationally and internationally to advance the scientific understanding of naturally occurring gas hydrates. This discussion will review the technical, economic, and environmental challenges associated with natural gas production via methane hydrates and DOE's role in addressing these challenges.

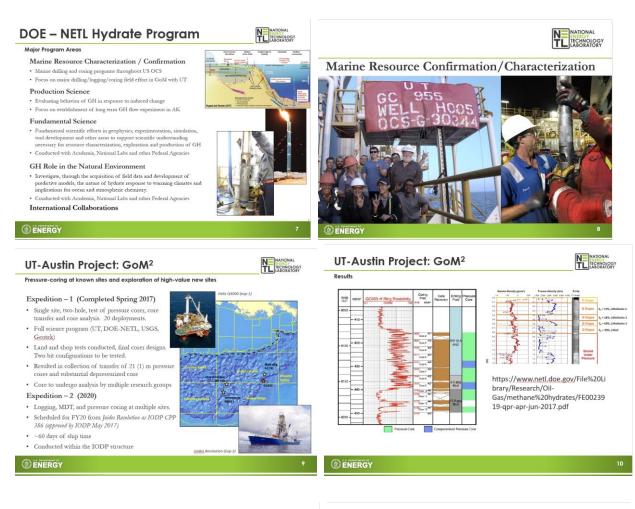
Methods

DOE's research program relies on partnerships among national labs, federal agencies such as the USGS, academic research universities, technology providers, and natural gas producers to implement cost shared projects to address research needs identified by consensus. Primary R&D needs in recent years have been (1) to provide an accurate assessment of the nature and occurrence of gas hydrates within the United States; (2) to identify, refine, and demonstrate technologies that can achieve production of natural gas from gas hydrates in an economically-viable and environmentally-responsible manner; and (3) to determine and effectively communicate the role of gas hydrates in environmental and safety-related dynamics, chiefly in the natural sequestration and

cycling of carbon over a range of time scales, including potential short-term responses to global climate change, and in natural and operational geohazards.

Over the past fifteen or so years, the DOE Methane Hydrates R&D Program has been based on near-term (2020) and longer-term (2025–2030) goals for these three focus areas. Near-term goals representing intermediate steps toward the long-term goals are discussed in the following sections. Specific efforts currently underway to answer the identified science and technology questions include (1) development of tools for reliable marine gas hydrate sampling and analysis; (2) integrated geologic/geophysical characterization methodologies to enable pre-drill assessments of natural gas hydrate systems; (3) development of exploration technologies; (4) development of production technologies; (5) determination of gas hydrate's implications for long-term global carbon cycling and potential near-term feedbacks to ongoing climate change; and (6) development and demonstration of effective numerical simulation tools to enable the effective design and interpretation of field data related to both production and environmental implications.

Selected Results (to date, research is ongoing)


Key accomplishments of the research program to date include:

- Characterization of potential testing sites on the Alaska North Slope, including drilling and evaluation at the Ignik Sikumi test site in 2011, and a three-month production trial of CO₂– CH₄ exchange technology in early 2012.
- Confirmation of the ability to reliably detect and characterize gas hydrate accumulations prior to drilling.
- Confirmation of the occurrence of resource-quality gas hydrate accumulations in the Gulf of Mexico.
- Acquisition of data in Alaska that enabled the first quantification of technically-recoverable resource volumes from gas hydrates.
- Development of new tools for measuring physical properties of gas hydrate-bearing sediment samples in the field.
- Expansion of numerical modeling capability to enable the first simulations of field-scale production, geomechanical stability of hydrate-bearing sediment, and gas hydrate-climate interaction.

During fiscal year (FY) 2016, six new R&D projects were awarded. University partners in these 6 projects are currently working with DOE to:

- Advance understanding of the environmental implications that methane leaking from dissociating gas hydrates could have on the ocean-atmosphere system.
- Conducting a laboratory investigation of the dynamic petrophysical attributes of gas hydrate-bearing sands in response to pressure reduction at the macro- and micro-scale.
- Conducting a laboratory evaluation of the migration of fine-grained particles during gas production from hydrate-bearing sediments.
- Studying the fate of methane in water columns where hydrate shells form around methane bubbles in a process called hydrate bubble armoring, helping to clarify hydrate's role in the global natural environment.
- Assessing controlled source electromagnetic (CSEM) technologies for locating marine hydrate deposits.
- Advancing the capabilities of a leading integrated model for hydrate system behavior, improving simulation capabilities useful in assessing and predicting production-related performance of hydrate deposits.

<section-header><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Fundamental Science: Production

Texas A&M / Korea Institute of Geosciences and Mineral Resources (KIGAM) /LBNL

- · Investigate geomechanical responses induced by depressurization experimentally and numerically
- Enhance the current numerical simulation technology in order to simulate complex physically coupled processes by depressurization
- Perform in-depth numerical analyses of two selected potential production test sites (<u>Ulleung</u> basin Korea, Prudhoe Bay Alaska)

Synthetic samples (TAMU) and model validation

- (LBNL) Focused on production: Geomechanical changes from *effective stress* during dissociation
- Geomechanical changes due to sand production during
- dissociation Capillary pressure during hydrate formation, dissociation, and combined formation/dissociation
- Relative permeability—describing sediment response and multiphase flow.

ENERGY

Fundamental Science: Production

- University of California San Diego / USGS / LLNL · Characterizing Baselines and Change in Gas Hydrate Systems using
- Electromagnetic (EM) Methods · Advancing understanding of GH electrical conductivity; quantifying the conductivity changes associated with GH dissociation; Combined with appropriate models obtained from laboratory studies, CSEM measurements can help quantify the saturation and total volume of hydrate within a known or suspected deposit.
- National Energy Technology Laboratory (RIC)
- Numerical simulations of GH accumulation and production at potential reservoirs (India, Alaska)
- Laboratory hydrologic and geomechanical characterization and analysis of GH-bearing sediments...identify critical simulation parameters. (Synthetic) · Pore-scale visualization and characterization of GH-bearing sediments (under
- essure Participation and support for International and domestic GH field activities (India, S. Korea, US-GoM)
- M Controlled Source El

Shallow Arctic Shelf

c 90.

METHANE POPULA young microbial ga

GH Role in the Natural Environment

ther Edge of Stability

ENERGY

Ruppel and Kessler (2017) **ENERGY**

TL LABORATORY

What are the absolute and relative permeabilities of coarse-grained hydrate reservoirs? How do pressures, flow, and composition of hydrate reservoir fluids evolve during production at the core and the pore scale? Is the hydrate reservoir at local equilibrium during hydrate depressurization and what are the time scales necessary to achieve local equilibrium? During dissociation, how do gas and water relative permeabilities vary with the evolution of hydrate pore-scale-habits? 623 2020 High Prosure Springs Pump 623 2020 High Prosure Springs Pump 923 2020 High Prosure Springs insuite pore-sourcements? What is the habit of hydrate formation at the pore scale at a range of saturations and with several different preparation approaches? What are the effective diffusion rates for methane and dissolved ions at the pore scale during discontions?

ENERGY

Fundamental Science: Production

Fundamental Science: Production

Phase I: Synthetic Hydrate Assessment (2016-2018)

Phase II: Natural Hydrate Assessment (2018 - 2019)

Analyze 2017 Gulf of Mexico recovered pressure cores

A Multi-Scale (micro- to meter) experimental investigation of Flow Properties in Coarse-

Grained Hydrate Reservoirs During Production using synthetic and natural hydrates

University of Texas at Austin

Active Modeling Project PNNL (Field Work Proposal Jointly funded by DOE and KIGAM)

imulation based effort focused on advancement, application, and verificat unnerical simulation capabilities for natural gas hydrate bearing geologi westigate conventional, unconventional, and novel production technologie Gas Mature 90% N, & 10% CO, investigate conventional, unconventional, and novel production technologies. DOE focus on geomechanical capabilities of STOMP-HYDT-KE and leading the n iteration of the International Gas Hydrate Code Comparison study to include simula geomechanical capabilities and involving GH modeling groups from around the wor

LBNL (Numerical Modeling Field Work Proposal)

- Conduct numerically-based studies to characterize and analyze recoverable gas hydrate deposits, evaluate production strategies, and analyze the geome behavior of hydrate-bearing sediments
- Improved model accounts for heat and up to four mass components, i.e., wate CHL, hydrates, and water-soluble inhibitors such as safts or alcohols portioned among four possible phases (gas phase, liquid phase, i.e. phase, and hydrate phase) and up to five components (heat, hydrate, water, CH₄, and water-solub inhibitors). LBNL (KIGAM collaboration Field Work Proposal)

LBNL-KIGAM Collaboration in the Investigation of the Gas Pro Hydrate Deposits in the Korean East Sea

GH Role in Natural Environment

Active Projects University of Rochester / USGS

- Characterize Ocean Acidification and Atmospheric Emission Caused by Methane Released from Gas Hydrate Systems along the US Atlantic Margin (USAM)
- Could's Determine how CH4 seepage from USAM upper continental slope near the up dip limit of GH stability affects ocean chemistry and sea-to-air greenhouse gas flux and how this seepage interacts with oceanographic phenomena (e.g., southward) flowing currents) to create hypothesized hotspots of elevated pH (i.e., acidification potential).
- Research cruise August 2017, Analyses 2018

Oregon State University

- Assessing the Response of Methane Hydrates to Environmental Change at the Svalbard Continental Margin
- Field based study the biogeochemical response of gas hydrates to environmental change at the Svalbard Continental Margin.

TL LABORATORY

TL RECENCIONAL

ENERGY

25

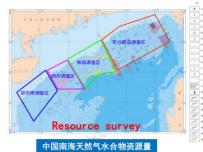
ATIONAL

ethane

TL LABORATORY

Seafloo mound/s

CHINA 2017 Fiery Ice


主要内容 Outlines

- 一、中国天然气水合物固态流化试采概况 General situation well testing and production
- 二、水合物试采视频播放 Video (4mins)
- Technical principle of solid fluidization
- **Operation implementation of solid fluidization**

中国初勘成果:初步圈定南海11个潜在水合物赋存区域,

Delineation 11 potential hydrate deposite areas in the South China

sea, about 80 billion tons of Resources

西沙海槽: 6个有利的天然 气水合物资源远景区,资 源量约45.5亿吨油当量。 东沙海域:7个有利的天然 气水合物资源远景区,资 源量约47.5亿吨油当量。

袖狐海域: 4个有利的天然 气水合物资源远景区,资 源量约33.28亿吨油当量。 琼东南海域: 5个有利的天 然气水合物资源远景区, 资源量约为58.3亿吨油当

₩.

中国地质调查局宣布用"深水 半潜式钻井平台+降压法"试采

天然气水合物成功。2017.5.18

China geological survey announced:

Deepwater Semi-submersible

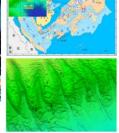
drilling platform

Depressurization

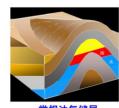
2017.5.18

2017年5月一中国海上天然气水合物试采进入爆发期

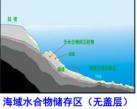
May, 2017 - Well testing and production for NGH in China sea was put into eruption


• Reservoir depth 203m 277m

Water depth 1266m


海洋水合物开发的挑战

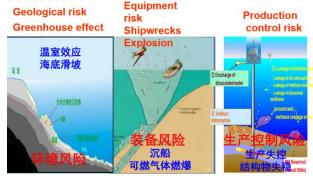
无盖层 No closure cap

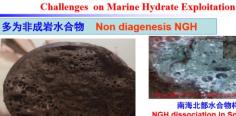


Challenges on Marine Hydrate Exploitation

储层本质差别Essential distinction: 水合物储层区别于 常规油气藏,大多没有完整的圈闭构造和致密盖层

常规油气储层 **Conventional oil field**




No closure cap (NGH)

海洋水合物开发的挑战

Challenges on Marine Hydrate Exploitation

大多数水合物没有封闭盖层,存在潜在地质风险和环境温室效应及生产控制和装备安全风险

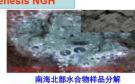
深水半潜式钻井平台

Deepwater Semi-submersible

drilling platform

Chi

日本试采 Japan


中国地质调查局试采

with Deepwater engineering and survey ship

全球首次用深水勘查船试采水合物成功

海洋水合物开发的挑战

东沙海域天然气水合物样品分解 后的蜂窝状泥沙 Honeycomb sediment samples after decomposition

深水工程勘查船

Deepwater engineering and

survey ships

中国海油试采 CNOOC

ion in

东沙海域正在喷发的冷泉 Cold spring in Dongsha area

28

海洋水合物开发的挑战 Challenges on Marine Hydrate Exploitation

成岩水合物试采工艺面临的挑战

Challenge for diagenetic hydrate exploitation

海上试采,亟需突破试采工艺、防砂、井眼稳定等技术瓶颈

深海天然气水合物绿色钻采技术策略的提出 The proposal of technical strategy

进一步介绍中国深海天然气水合物勘探开发技术的进展,受到世界同行的高度关注。 (2016.6.10 第十届世界水合物开发大会 美国.夏威夷) The progress of exploration and development of deep-sea gas hydrate in China is introduced,

The progress of exploration and development of deep-sea gas hydrate in China is introduced, receiving significant attention from the international academia. (2016.6.10 10th International Methane Hydrates R&D Workshop Hawaii, USA)

在国家自然基金委、中国工程院大力支持下于2014年建立了世界上首个"海洋非成岩天然气水合物固态流化开采实验室",位于西南石油大学(中国.成都)。

The NGH lab in Chengdu has been built (The first "Solid fluidization exploitation" lab in the world).

海洋天然气水合物开发研究计划 Research program for Marine NGH

▶ 2016年,	固态流化开采实验室建设完成(OK)
	Solid fluidization lab
> 2017年,	大尺度三维模拟器建设完成 (Under construction)
	Large scale simulation facility
> 2018年,	海洋天然气水合物试采实施 (1 year early)
	Marine NGH pilot production
> 2025年,	海洋天然气水合物与深海油气联合开发实验
	Marine NGH exploitation tests with oil and gas
▶ 2030年,	海洋天然气水合物商业性开发
	Marine NGH commercial development

深海天然气水合物绿色钻采技术策略的提出 The proposal of technical strategy

首次向世界提出深海非成岩水合物固态流化开采新理念和方法,受到世界同行的 高度关注。 (2014.11.10 第九届水合物开发大会印度.海得拉巴市)

Introduced a new method of fluidified exploration of deep-water non-diagenetic hydrates solid to the world for the first time, receiving significant attention from the international academia. (2014.11.10 9th International Methane Hydrates R&D Workshop Hyderabad, India)

Technical principle of solid fluidization

The lab was officially launched in early 2017, the experimental study supported the success of testing. 固态流化实验室已于2017年初正式投入实验,实验支持了水合物试采成功。

Welcome to "Solid fluidization exploitation" lab

Welcome to CHENGDU for "12th INTERNATIONAL WORKSHOP ON METHANE HYDRATE RESEARCH AND DEVELOPMENT "

欢迎各国专家莅临成都参加"第12届水合物开发国际论坛"

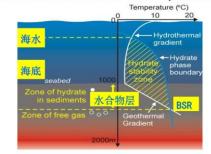
Outlines

- 1. General situation well testing and production for NGH in China
- 2. Video (4mins)
- 3. Technical Principle of Solid Fluidization for non- diagenetic NGH in Deepwater Areas
- 4. Implementation of Solid Fluidization Engineering
- 5. The Significance of Success

3. Principle of SFE for non- diagenetic NGH

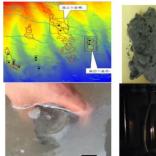
Each kind of NGH maybe has its own way to development method ?

二、水合物试采视频播放


General situation of Chinese well testing and production for NGH

播放固态流化试采视频

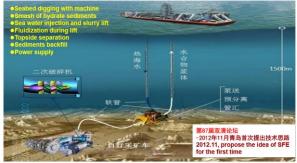
Video (4mins)


3. Principle of SFE for non- diagenetic NGH

Where is hydrate? 90% NGH stored in continental slope areas

3. Principle of SFE for non- diagenetic NGH

What kinds of hydrate obtained in China Offshore?



Slit? Siltpelite?

3. Principle of SFE for non- diagenetic NGH

NGH ON SEABED: Principle of solid fluidization exploitation(SFE) Just like solid mineral resource

3. Principle of SFE for non- diagenetic NGH

固态流化试采技术原理室内验证 Laboratory verification of SFE method

fluidization results fluidization experiments of cement mod

The experiments verify the feasibility of SFE method

zation results of ice m

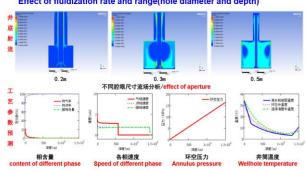
zation result

of sand soil model

3. Principle of SFE for non-diagenetic NGH

Laboratory verification of SFE method 射流流化工具研发和验证

Tool developed and



室内实验验证 Experimental verificatior

现场施工 Field experiment

3. Principle of SFE for non- diagenetic NGH

Design and analysis : Effect of fluidization rate and range(hole diameter and depth)

3. Principle of SFE for non- diagenetic NGH

固态流化试采方案设计和参数优化 **Development scheme and** parameter optimization of SFE

WD	1315m
NGH LAYER	1430m~1490m
Depth of Well	1490m
Surface T	26°C
Drilling fluid flow rate	500l/min
Density of Drilling fluid	1.03g/cm ³
Fluidization fluid	26°C
Sediment density	2.2g/cm ³

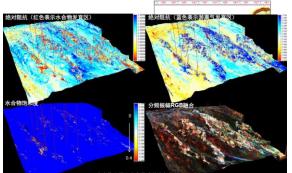
Outlines

- 1. General situation well testing and production for NGH in China
- 2. Video (4mins)
- 3. Technical Principle of Solid Fluidization for non- diagenetic NGH in Deepwater Areas
- 4. Implementation of Solid Fluidization Engineering
- 5. The Significance of Success

4、Implement of hydrate SFE

工程一体化方案设计:

Integrated engineering plan of hydrate SFE


工作任务:海上目标取钻探取样+固态流化试采 作业船:海洋石油708深水勘察船 工程量:先导测并孔、取样孔、海洋水合物试采

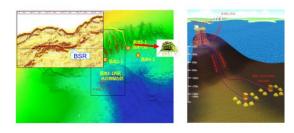
Task : sample drilling + hydrate SFE Work ship : HYSY708 Engineering quantity : Logging hole, Sampling hole, Production test

保温保压取样

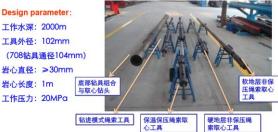
取样孔. 试采井: 点火 先导孔:随钻测井 电阻率 测井 取样 压入活塞取样 超前伸缩活塞取样 射流揽簧式取样 声波 自然伽吗 井径、温度等 方 层位 深水勘察船固态流化试采 层 液压捶击式 位

4、Implement of hydrate SFE

4、Implement of hydrate SFE


Independently developed deepwater survey ship, hydrate sampling drilling tools, online analysis system and pressuriced sampling transfer technology .

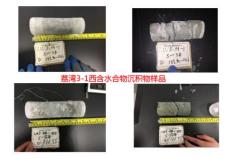
泥浆泵组型号 及台数	F-500,2台	2x Wirth TPK 5x5
名义井深	3200 米	钻杆存储能力: 2x1,600m钻杆
动力定位系统	DP-2	DP-2
额定载员	90个床位	75个床位
自持力	~70天	28天
最大航速	14.5节	10节
排水量	11968.21	5.300 t
设计吃水	7.4m	6m
型深	9.8m	8.4m
型宽	23.4m	16.8m
总长	105m	85.8m
类别	目标船	Bavenit


4. Implement of hydrate SFE

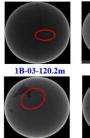
(1)Target: CNOOC obtained the offshore hydrate sample in deep water areas near the LW3-1 gas field by national developed technology and equipment

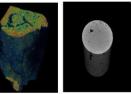
4、 Implement of hydrate SFE

(3)Research and Manufacture the gas hydrate temperaturehold and pressure-tight Sampling corer


4. Implement of hydrate SFE

4, Implement of hydrate SFE


Complete hydrate sample analysis


4. Implement of hydrate SFE

Pore structure analysis of hydrate sample

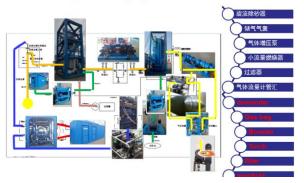
1C-03-120m

1C-04-121m 1C-06-123m

Most hydrates are scattered Somewhere there are small hydrate bulk

4. Implement of hydrate SFE

properties of sediments


LW3 :

- ✓ water depth : 1310m
- ✓ buried depth : underground 117-196m
- ✓ characteristic : slit (40µm : 83.25% , 10µm : 40%)
- ✓ methane : 99.2-99.7%
- ✓ saturation : 40%
- ✓ type : diffusive
- ✓ characteristic : Weakly cemented and non diagenetic hydrate

降压法开采/depressurization: 控制水合物层内分解难度大,防砂极难/hard 固态流化试采/SFE:可以将分解转移到输送管道内,实现分解可控/easy

4、Implement of hydrate SFE

Process design and equipment selection of test

4. Implement of hydrate SFE

甲板、月池等:基本可满作业期间需求 Meet the requirements

4. Implement of hydrate SFE

本次固态流化试采主要参数

- ●孔隙度/porosity: 0.43
- ●饱和度/saturation: 0.40
- ●预测产气量:101m³
- ●采出气量/total gas production: 81m³

4、Implement of hydrate SFE

4. Implement of hydrate SFE

Outlines

- 1. General situation well testing and production for NGH in China
- 2. Video (4mins)
- 3. Technical Principle of Solid Fluidization for non- diagenetic NGH in Deepwater Areas
- 4. Implementation of Solid Fluidization Engineering
- 5. The Significance of Success

5、Significance of SFE method

- (3) Gas hydrate well test by of Solid Fluidization method was performed in Liwan 3 area, it was significant for the development of this kind of natural gas hydrate resources in the world.
- (4) A set of technology including hydrate resources exploration, target evaluation, reservoir identification and hydrate detection has been developed by CNOOC. Based on the HYSY708 ship, gas hydrate samples were successfully obtained.

5、Significance of SFE method

- (1) According to the Characteristic of shallow areas non diagenetic NGH, Stored in silt, weak cementation, CNOOC proposed gas hydrate solid fluidization exploitation technology for the first time.
- (2) Developed a set of marine gas hydrate solid fluidization exploitation process and equipment, including drilling, fluidized, lift and gas liquid solid separation system, emergency relief, equipment and tools, can also use in other method.

5、Significance of SFE method

Development of Natural gas hydrate safely is the leading area in the world , means more challenge , high technology and investment. We will continue to cooperate with researchers all over the world , try to find safety, cost-effective ways to development various kinds of NGH in future.

THANK YOU!

Non Diagenesis Nature Gas Hydrate Production by Solid

Fluidization

Wang Guorong¹ Wang Leizhen¹ Zhou Shouwei^{3,5} Liu Qingyou^{2,5}

Zhong Lin¹ Fu Qiang⁴ Li Qingping⁴ Hu Gang¹

1College of Mechanical and Electrical Engineering, Southwest Petroleum University; 2. Key Laboratory

for Fluid Machinery and Power Machinery of the Education Ministry of China, Xi Hua University,

610039; 3. China National Offshore Oil Corporation (CNOOC), Beijing, 100010; 4. CNOOC Research Institute, Beijing, 100027; 5. State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, 610500

Abstract: For the characteristics of shallow deposit and weak cementing of China Marine non-diagenetic natural gas hydrate (NGH) storage, a new mining technology is proposed based on the ideas of solid-state fluidization exploitation of NGH, which includes continuous coiled tubing horizontal drilling in the hydrate deposits formation, pullback mining crushing NGH, fluidization collection of NGH solid particles, in-situ separation and backfill of downhole sediment. In order to carry out the experimental study of hydrate solid flow mining technology, a hydrate solid fluidized mining laboratory was established. The experimental system contains modules such as large samples preparation system, crushing and migrating system, multiphase piping system, monitor and control system, etc. The functions such as rapid preparation of large sample, evaluation the crushing efficient, safety transportation of methane hydrate, evaluation of the decomposition of methane hydrate, dynamic state change rule of slurry, simulation of safety law of well control can be realized. According to the requirements of the production testing, the water jet mining tool is designed. The nozzle structure is determined by simulation analysis method. The experimental study of water jet breaking hydrate is carried out by using this mining tool. It is determined that the critical velocity of hydrates breaking with water jet is 24 m/s. The parameters of the jet process under the different nozzle aperture are optimized. Engineering chart of jet crushing for the production test was eventually obtained. In May 2017, for non diagenetic nature gas hydrate reservoir, the solid fluidization Production test was success in Shenhu area of South China sea for the first time.For the new process of marine non-diagenetic ngh exploitation, the minimum requirements of ngh commercial exploitation is that gas production reach 1.2×10^5 m³/d. The construction process parameters which meet the commercial exploitation of ngh are obtained, such as pore diameter is 0.8m, jet displacement is 2.39m³/min, drag-back velocity is 5m/min, coiled tubing sizes is 2-3/8 inch, nozzle hole diameter is 4mm, and number of nozzle holes is 31.

Keywords: Marine non-diagenetic NGH; New technology of jet flow breaking; Water jet flow crushing efficiency; Construction parameters of commercial production of NGH; TEXAS AGM UNIVERSITY CORPUS CHRISTI

Contents

Non Diagenetic Nature Gas Hydrate Production by **Solid Fluidization**

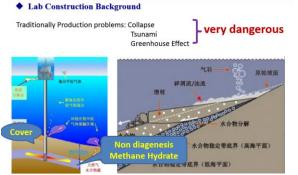
-----Experimental System and Jet Crushing Experimental Research

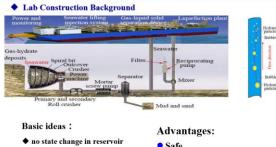
Reporter: Guorong Wang Qingyou Liu

Email: swpi2002@163.com Southwest Petroleum University

December 6, 2017

- 1. Lab Overview of Non diagenetic Methane Hydrate Production
- by Solid Fluidization
- 2. Parametric Design and Experimental Study on Crushing Tools
 - for Production Test by Solid Fluidization
- 3. Proposal of Commercial Production Test Parameters by Solid
 - Fluidization




Welcome to the 12th International Workshop on Methane Hydrate R&D

1. Lab Overview of Solid Fluidization Production

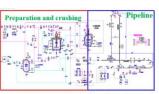
1. Lab Overview of Solid Fluidization Production

- Iifting as fluid/slurry
- ♦ controllable phase change
- Safe
- Environmentally Friendly

1. Lab Overview of Solid Fluidization Production

- December, 2014, the Sichuan Hydrate Production Collaborative Innovation Center
- > April, 2015, the world's first Solid Fluidization exploitation Lab of Non Diagenetic Nature Gas Hydrate has been built.

1. Lab Overview of Solid Fluidization Production


The System Constitution

Function modules:

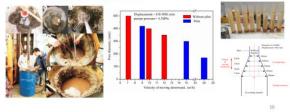
- Large samples preparation system
- Crushing and migrating system.
- . Multiphase slurry piping system. Monitor and control system

Indicators:

- Pressure : 10MPa temperature : -5 ~ 40°C.
- Pipeline diameter : 3 inch
- Length of Vertical pipeline :30m
- Length of Horizontal pipeline : 65m Visual monitoring and automatic dat
- acquisition

1. Lab Overview of Solid-state Fluidization Production

- ◆ The Function of Simulation Experimental System
- Rapid preparation of large sample
- Evaluation the crushing efficient
 Safety transportation of methane
- hydrate
 Evaluation of the decomposition of methane hydrate
- Dynamic state change rule of slurry

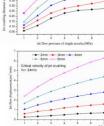

control.

Simulation of safety law of well

- Water depth of 1200 m : preparation+ crushing+ pipeline transportation+ phase state+ separation+ test

2. Parametric Design and Experimental Study of Crushing Tools

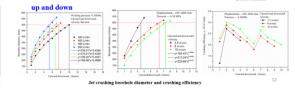
- Particles Flow-back Effect, Borehole Regularity and Diameter of Nozzle Jet Crushing
- The optimization of nozzles structure
- Conical transition section between pilot hole and borehole
- Parameter optimization of velocity and times of upward and downward for coiled tubing , pump pressure and displacement



2. Parametric Design and Experimental Study of Crushing Tools

Novel Tools of Jet Crushing

- The critical velocity of jet: 24m/s
- The diameter of the pore: 0.5m, jet pressure 4.3MPa, nozzle diameter 2mm.
- Parameters, such as pressure, displacement, move speed, times of jet crushing are optimized for different nozzle hole diameter.



- 2mm - 3mm - 4r

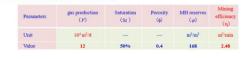
2. Parametric Design and Experimental Study of Crushing Tools

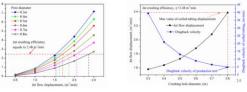
- Engineering Chart of Jet Crushing for the Production test
 - The different crushing diameters and crushing efficiency required special range of construction process parameters
 - Nozzle running velocity, 8 m/min, displacement, 500L/min, borehole diameter, 500mm, need 5 times

2. Parametric Design and Experimental Study of Crushing Tools

The First Successful of Solid Fluidization Production for Marine non diagenetic Nature Gas Hydrate

• In May 2017, for non diagenetic nature gas hydrate reservoir, the solid fluidization Production test was success in Shenhu area of South China sea for the first time.


 The newly designed crushing tools and its parameters is well contributed significantly in the whole process.



3. Proposal of Parameters for Commercial Production test by Solid Fluidization

Predication of Jet Crushing Tool Parameters for Solid Fluidization

Commercial Jet Mining Efficiency

Thank you!

Guorong Wang Email: <u>swpi2002@163.com</u> Southwest Petroleum University

Recent Status of Methane Hydrate R&D Program in Japan

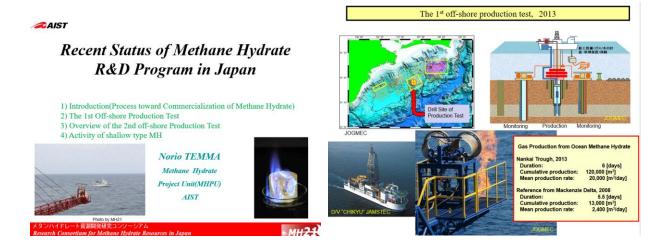
Dr. Norio Tenma – AIST, Tokyo, Japan

Methane Hydrate (MH) exists as a solid in permafrost or marine sediment in the condition of high pressure and low temperatures. As MH dissociates a gas and water by depressurization or heating, new natural gas resources are expected. As MH exists around offshore Japan, "Research Consortium for Methane Hydrate Resources in Japan" (also known as MH21) was established in FY2001, "Japan's Methane Hydrate R&D Program" have been conducted from FY2001⁽¹⁾.

The 2nd off-shore production test (Gas production test) was conducted in Daini-Atsumi Knoll, the eastern Nankai Trough from April to July, 2017 ⁽²⁾.

The purpose of this test were 1) aiming to solve a problem caused by sand production and gas/water separation at the first off-shore production test, and 2) to confirm the increase in gas production rates during the production test. In the test, two production wells were used to apply two type of sand management device. And, total amount of gas production from first well was about 40,850 m³ in 12 days, and second production well was 222,587 m³ in 24 days ⁽³⁾. Data analysis and evaluation are in progress by MH21 Research Consortium.

Also, MH21 started an assessment of the Shallow type MH in 2010. Especially for 3 years during 2013 through 2015, we conducted an intensive exploration of Shallow type MH in Japan Sea. Based on the data from these surveys, amount of shallow methane hydrate resources at one specific mound in Joetsu was estimated ⁽⁴⁾.


Acknowledgement

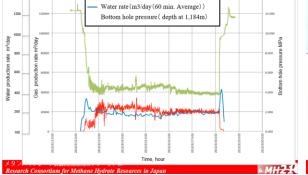
This study is a part of the program of the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium).

References

- 1) MH21 Research Consortium, http://www.mh21japan.gr.jp/english
- 2) METI (2017), <u>http://www.meti.go.jp/english/press/2017/0629_001.html</u>
- 3) K. Yamamoto (2017), MH Forum 2017, <u>http://www.mh21japan.gr.jp/mh21wp/wp-content/uploads/mh21form2017_doc02.pdf</u>

METI (2016), http://www.meti.go.jp/english/press/2016/0916_03.html

AIST


 CAIST First Off-shore Production Test [2013.3.12-3.18, (6days)]

 (1) Gas production: about 119,000m³ (6 days), about 20,000 m³/day

 (2) Water production : about 1,245m³

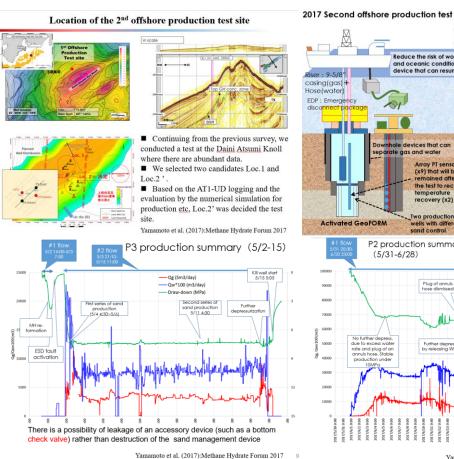
 immode

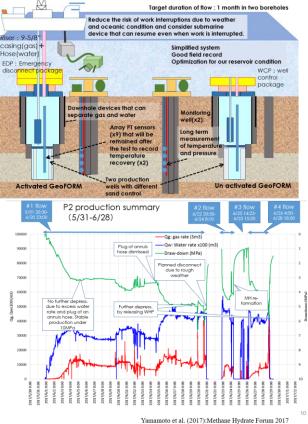
 immode

Overview of the First Off-shore Production Test

- 1st Off-shore production test was conducted using "depressurization method" proposed by AIST at March, 2013.
- When the bottom hole pressure was smaller than equilibrium pressure (7 MPa), gas production started.
- In about 5.5 MPa (bottom hole pressure), gas rate was about 20,000 m³/day and water rate was about 200 m³/day.
- Sand production occurred, and test stopped for 6 days.

Schedule


2016/May - 2016/June : Pre drilling


- · Drilling for Monitoring well and logging to grasp the reservoir information
- · Establish the measurement device of temperature and pressure
- Drilling for production well until the top of methane hydrate concentration zone

2017/April - 2017/July : Gas production test

- · Drilling for methane hydrate concentration zone of production well
- Establish the sand management device / downhole devices
- · Gas production test

DPS Drill ship was used as 1st off shore production

Second Offshore Methane Hydrate Production Test Finishes Summary of 2nd offshore production test AT1-P3 AT1-P2 2017/May/02 16:00 - 2017/May/15 11:00 2017/May/31 20:30 - 2017/June/28 18:50 duration #1 flow #1 flov May/02 16:00 – May/03 7:30 (0d15h30m) (Stopping for the wrong operation of ESP pump) May/31 20:30 - June/20 23:00(20d2h30m) (planned disconnect due to rough weather) #2 flow #2 flow June/22 20:30 - June/24 8:10 (1d11h40m) May/03 21:10 - May/15 11:00 (11d13h50m) (MH dissociation for flow assurance) 2. Test results Total :12day 5hour 20min #3 flow #3 flow June/25 14:25 - June/25 15:20 (0d0h55m) (MH dissociation for flow assurance) #4 flow June/26 4:50 - June/28 18:50 (2d14h0m) Total : 24day 4hour 5min Instantaneous value :6.73MPa 7.85MPa (13.0MPa - 5.15MPa) 3. Future actions (13.0MPa – 6.27MPa) Stability term: about 5 MPa (13.0MPa – 8MPa) Gas: 40,849.9Sm³ Water: 922.5m³ Gas : 222,587.1 Sm³ Water : 8246.9m³ Period of sand production #1 May/04 4:30 - May/06 6:00 #2 May/11 5:00 - May/15 5:00 No sand production Planned disconnect June/21 6:15 -June/22 11:30 vent Division in Ch http://www.meti.go.jp/english/press/2017/0629_001.html * The period is based on the ESP pump operation time, and the actual gas production period is slightly around.
11 2017

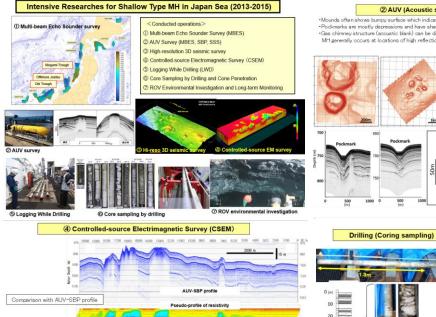
41

Second Offshore Methane Hydrate Production Test Finishes

In April 2017, the Agency for Natural Resources and Energy (ANRE) launched an offshore production test, commissioned to the Japan Oil, Gas and Metals National Corporation (JOGMEC), to dissolve methane hydrate and extract natural gas in the offshore sea area between Atsumi Peninsula to Shima Peninsula (Daini Atsumi Knoll) using the Deep Sea Drilling Vessel Chikyu. On June 28, 2017, it finished the test in a timely manner ANRE will collect equipment in the sea areas around the testing point.

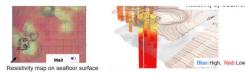
1. Background

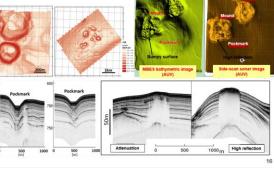
Methane hydrate is a compound that consists of methane and water that is crystallized in a low-temperature, high-pressure state. A considerable amount of methane hydrate is estimated to be present in the undersea areas surrounding Japan, and is expected to be a source of domestic natural gas in the future.

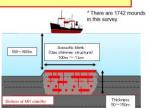

2. Test results

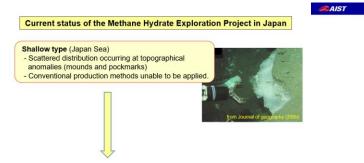
The second offshore methane hydrate production test was conducted, aiming to solve a problem caused by sand intrusion into a well during the first test and to confirm the increase in gas production rates during a three- to four-week production test. As a result of this test, while one of the two production wells suffered the sand production

problem, ANRE achieved a certain level of success from the second well, in which no problems occurred. However, ANRE could not clearly confirm an increase in the production rates at either of the wells, leaving challenges in establishing gas production technologies unsolved.


> http://www.meti.go.jp/english/press/2017/0629_001.html IAL SCIENCE AND TEC


High resistivity anomalies were observed at the mounds which correspond to the acoustic blank on SBP profiles by AUV survey.


The result of 3D inversion found that the high resistivity anomalies occur at shallow depth generally less than 100 m which just corresponds to the zone of MH stability.


Three ways of estimation methods were examined · LWD method · Sedimentary core method · CSEM method Volume estimation of Gas from MH at one specific mound* in Joetsu Approx. 0.02 TCF (It is considered that this estimate value includes an error) 20 massive 30 40 14 50 IM flake-type 60 500~1000m structure) 70 board-type 80 90 100 110

2 AUV (Acoustic surveys with MBES, SBP, SSS) nds often shows bumpy surface which indicates high intensity and marks are mostly depressions and have sharp topographic margin chimney structure (acoustic blank) can be divided into two types, generally occurs at locations of high reflection type. es on SSS imag ich mfle

A model of shallow MH accumulation at a mound

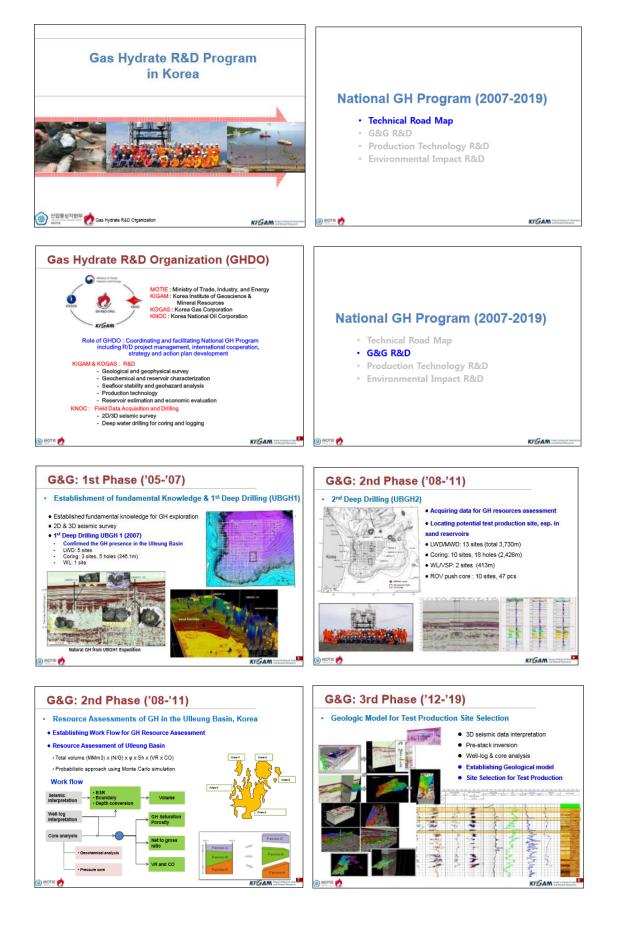
ACKNOWLEDGEMENTS:

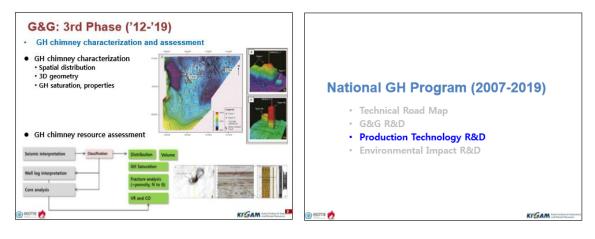
This study was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) in the Japan's Methane Hydrate R&D Program by the Ministry of Economy, Trade and Industry (METI).

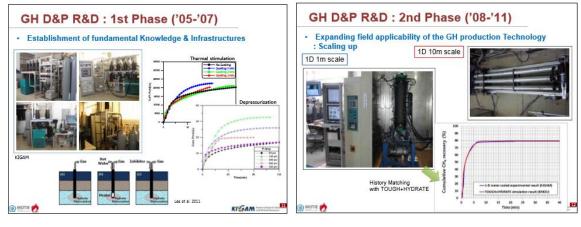
NUTLER ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Feasibility study on the technological concepts for recovery of shallow type MH was started from November, 2016.

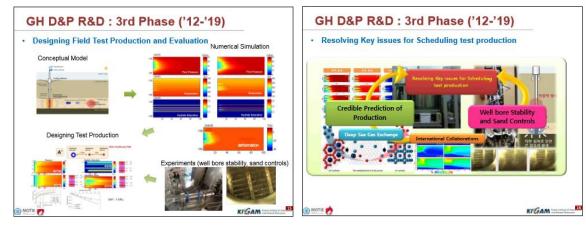
The National Report on Gas Hydrate R&D Program in Korea

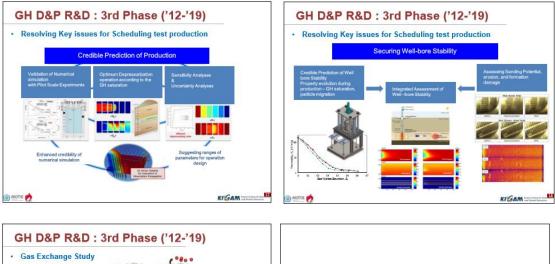

Joo Yong Lee¹

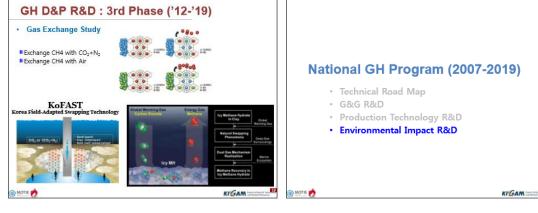

¹Korea Institute of Geoscience and Mineral Resources, Korea e-mail: jyl@kigam.re.kr

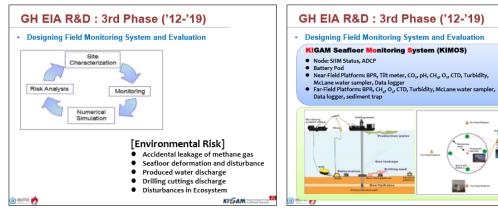

Abstract

The research on gas hydrates in Korea mainly focuses the hydrates as new energy resources. The Korean government has launched Gas Hydrate Development program in 2005, and studies on gas hydrates in various research areas have been performed ever since. The Korean National Gas Hydrate R&D Program is managed by the Korea Gas Hydrate R&D Organization and funded by the Ministry of Trade, Industry, and Energy. The program is conducted by a consortium of Korea Institute of Geoscience and Mineral Resources, the Korea National Oil Corporation, and the Korea Gas Corporation.

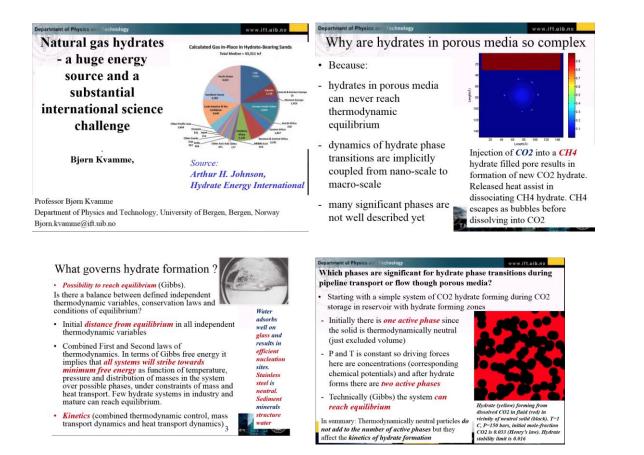

The research includes assessing the distribution of hydrates in the Ulleung Basin, developing resource assessment technique for both pore-filling hydrate-bearing sand deposits and grain-displacing hydrate-bearing mud deposits, establishing geologic models for hydrate reservoirs, characterizing physical properties of hydrate-bearing sediments, developing production technology, and designing production system. During the phase 1 (2005~2007), detailed 2D and 3D seismic survey are continued and identified specific target area for comprehensive explorations including drilling expeditions, focusing on BSR, seismic chimney structures, acoustic blanking zones, enhanced reflection, and gas seepage area. The first deep drilling expedition was performed in 2007. During the phase 2(2008~2011), The second deep drilling expedition was performed in 2010, aiming locating potential field test sites in the Ulleung Basin. In the phase 3 (2012~2019), the main goal is establishing optimal design of test production by expanding filed applicability of gas hydrate production technique. Also, studies on grain-displacing hydrate-bearing deposits have been initiated, including classification and mapping of chimney structures in the Ulleung Basin.







KI GAM

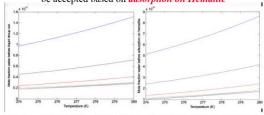

RESEARCH PRESENTATIONS


Dr. Bjørn Kvamme Department of Physics and Technology, University of Bergen, Norway Bjorn.kvamme@uib.no

ABSTRACT

The amount of natural gas trapped in the form of hydrate is huge and might exceed all known conventional sources of fossil fuels by a factor of two. Most of these hydrate structure were formed from biogenic hydrocarbon sources and as such almost pure methane hydrate. There are several possible ways to produce these hydrates. Pressure reduction and various ways of thermal stimulation has dominated the research focus. A fundamental challenge related to any strategy for hydrate utilization is that these hydrates in porous media can never reach thermodynamic equilibrium. This is a consequence of the number of active phases compared to the number of active components that contribute to hydrate phase transitions. Even in the simplest case of only methane and water it is well known that only one independent thermodynamic property can be defined for the system to reach equilibrium. Adding more hydrocarbons, or other hydrate formers, to the system does not make it easier to reach equilibrium since a variation of hydrates can be formed. The combined first and second laws of thermodynamics will control the system so that the most stable hydrate will form first, under constraints of mass and heat transport. Subsequently a theoretically infinite number of hydrate phases of varying composition will form. Since both temperature and pressure always is locally defined in a sediment structure containing hydrate the system is over determined in mathematical language. Practically this implies that various phase transitions that leads to hydrate dissociation will compete with other phase transitions that leads to hydrate formation. This is a multi-scale problem that ranges from quantum mechanics related to mineral/fluid interactions, and corresponding structures and associate thermodynamic properties, all the way up to reservoir scale. Average atom partial charges on mineral surface are complex Quantum mechanics problem which depends on the surrounding fluids. There are two reasons that these mineral/fluid interactions are important for hydrate. Water structure towards most mineral surfaces shows extreme density features. As example there is theoretical and experimental evidence that density of the first water layer may be as much as three times liquid water density. The corresponding low water chemical potential makes it impossible for hydrate to directly attach to the mineral surfaces. But the water structures might trap molecules like methane and such lead to favorable hydrate nucleation. Hydrate phase transitions are nano-scale phenomena happening across a thin interface of roughly 1 - 1.5 nm. The mass transport process is diffusion. As such these phase transitions are within the volumetric scale that can be reached by molecular dynamics (MD) simulations although time scales are challenging. Speeding up the simulations by doing Monte Carlo (MC) potentially steps overrides the natural entropy development of the system. Another challenge is that the mass transport of the phase transition is related to a large reservoir outside which is controlled by hydrodynamics. And finally the whole fluid flow in sediment is described by Darcy's law. Similar applies to associate heat transport on all levels. A multi-scale modeling strategy is described and various examples on different are used to illustrate various aspects of the non-equilibrium nature of hydrates in porous medium. Hydrate in porous media is a truly multi-disciplinary challenge that needs international collaboration across scientific disciplines.

What now if the solid surface has distribution of negative and positive atoms?


For the tetrahedral cutting direct adsorption of CO2 is feasible (see free energy change for CO2 on right figure) before first maximum for water while secondary adsorption in water density minimums might occur in both cases. Figures from Leirvik, Kvamme & Kuznetsova [1]. From thermodynamics these adsorbed phases are unique phases because density and

compositions are unique. Are they significant for hydrate phase transitions?

yes because the lowest chemical potential of water is far lower than hydrate water chemical potential so the *solid surfaces are hydrate inhibitors*

Yes because they serve as hydrate nucleation sites

A practical consequence - the maximum water content that will be accepted based on water drop-out as liquid (conventional criteria) may be 20 times higher than what will be accepted based on adsorption on Hematite

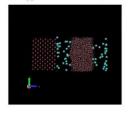
Maxim um water content before liquid drop-out (left) and adsorption on hematite (right) respectively. Mole fractions 0.01 CO2, 0.001 H2S, and remaining gas being CH4.Curves from top to bottom correspond to pressures of 50, 90, 130, 170, 210, and 250 bar

-52,8 kJ/ms

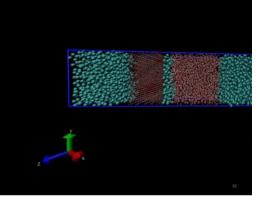
10 waters in 2038 methane is a very high water concentration compare to water saturated methane at 100 bar. Water diluted in the gas struggl to totally outcompete methane in adsorption. Buy still manages after 2 i

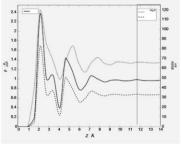
Will the same be the case for transport of methane in a rusty pipeline?

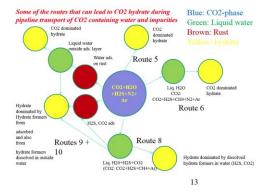
ical po ential in the


adsorbed layer will vary proportional to the density and structure so the averag chemical potential of four adsobed water layers is what is

Water restructurin

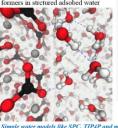


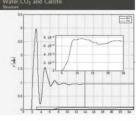

9


P. Geissbühler, P. Fenter, E. DiMasi, G. Srajer, L.B. Sorensen, and N.C. Sturchio. Three-dimensional structure of the calcite-water interface by surface X-ray scattering. Surface Science, 573(2):191–203, 2004

Experimental results on adsorbed water gives details on each atom

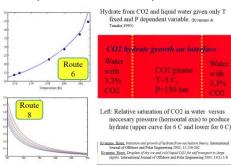
The cusp in the oxygen density between first and second maximum is due to indirect correlations which involves hydrogen. Locations of main peaks and minima is in striking agreement. Also integrals over density profiles are in striking agreements.




But CH4 hydrate will still dissociate towards N2 which is undersaturated on CH4 · But the kinetic rates are low ! · Hydrate will also dissociate towards water undersaturated with methane so during flow and fluid exchange in the pores many different 270 272 274 Temperature (K) scenarios are possible

Secondary and primary adsorption of guest molecules

Primary adsorption is adsorption directly on solid surface. Secondary adsorption is trapping of hydrate formers in stretured adsobed water



Simple water models like SPC, TIP4P and other have no short range interaction on action on H atoms so density profile based on ozygen locations

Note the extreme density of the first adsobed water layer but also the subsequent water density minimum which gives space for trapping CO2. Simulated structure is in accordance with experimenel data (IR)

Most hydrate evaluation software only focus on route 5

Investigating competing phase transitions in porous media (read: solid material surfaces) requires multiscale modeling approach

Studies of

mechanisms,

properties and

parametrisation

thermodyn,

interface

from quantum (characterisation of charge distribution in model molecules, from below nano in scale)

to nano (Molecular Dynamics simulations, MD)

and micro (Phase Field Theory)

Simulation of hydrate growth dynamics on interface of a CO2 plume using PFT

51

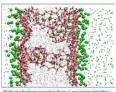
Conclusions

- Number of active phases involved in hydrate phase transitions in porous media are too many to secure thermodynamic equilibrium
- · It does not help if the number of components increase - rather the opposite since the most stable hydrates (minimum free energy) will form first, and selective adsorption followed by liquid side water interface concentrations will dictate dynamically available masses for hydrate formation

 $\mu_i^{\text{gas}} = \frac{1}{\beta} \ln(\beta \Lambda_i^3) + \frac{1}{\beta} \ln(x_i N) - \frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial N_i} \right)_{-}$ $= \frac{1}{\beta} \ln(\beta \Lambda_i^3) + \frac{1}{\beta} \ln(x_i N) - \frac{1}{\beta} \left(\frac{\partial \ln Q^2}{\partial N_i} \right)$ $-\frac{1}{a} \ln Q_i^{1D}$

 $= \frac{1}{6} \ln(\beta \Lambda_{i}^{3}) + \frac{1}{6} \ln(x_{i}N) - \frac{1}{6} (\beta \mu_{i}^{2D}) - \frac{1}{6} \ln Q_{i}^{1D}$

A simple illustration using a 2D adsorption model (Kvamme, Thermodynamic limitations of the CO2/N2 mixture injected into CH4 hydrate in the Ignik Sikumi field trial, J. Chem. Eng. Data, 2016, 61 (3), pp 1280-1295). If we consider 10 mole % CO2 in a

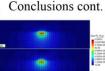

CO2/N2 gas mixture this result in estimated 32% CO2 adsorbed on liquid water surface at 30 bar and 273 K.

Conclusions cont.

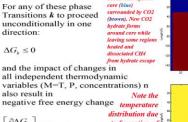
- And no natural gas mixture have a perfect *relative ratio* of gas molecules, as compared *to available cavities* in structures I and II. So when the most stable hydrates have consumed the «best» hydrate formers a variety of structure I and II hydrates will form.
- These hydrates will have varying composition and unique free energies, depending on what molecules that are available to extract from the hydrate former phase
- Often it ends up with methane as the final excess gas molecule, which will the typically form a structure I hydrate
- Solid surfaces are significant phases for hydrate phase transitions because:
- they give rice to confinements (non-thermodynamic effect) for efficient nucleation
- they serve as regions of hydrate former enrichment through primary or secondary adsorption.
- they serve as efficient (2D masstransport) nucleation sites.

- the first layers of water adsorbed are efficient hydrate inhibitors so no real "hydrate cementing" of grains.

- · Hydrates in real sediments are in a situation of stationary flow ranging from diffusion (very close reservoir) to various levels of hydrodynamics
- depending on fracture systems that brings in ground water from above and/or hydrocarbons from below. • There is a need for a *multi-stage*
- modeling strategy to build up realistic non-equilibrium description of hydrates in sediments
- · And in the macro-end there is a need for a reservoir simulator that can adopt this new physical description (read: dyna non-equilibrium with competing phase transitions)
- Implicit geomechanics is a must since hydrate phase transitions can be very fast


<mark>ite limit</mark> an infinite In the ulti number of hydrate phases can form with infinitely small changes in free energies. from lowest free energy and up to (typically) free energy of thane hydrate structure I

Conclusions cont.


Excluded regions (minerals) have kinetic effects and physical interaction characteristics have thermodynamic effects

Simulated production of gas from Biornoya hydrate using pressure reduction. Results not readable here but papers available !

to formation of

intion and disso of CH4 hydrate

new CO2 hydrate

In a non-equilibrium situation it is very rare to find unconditional phase transitions in one direction. Competition between formation

and dissociation phase transitions under constraints of mass- and

CH4 hy

heat transport is the more typical situation

For any of these phase

unconditionally in one

 $\left[\frac{\partial \Delta G_k}{\partial M_n}\right] dM_n \le 0$

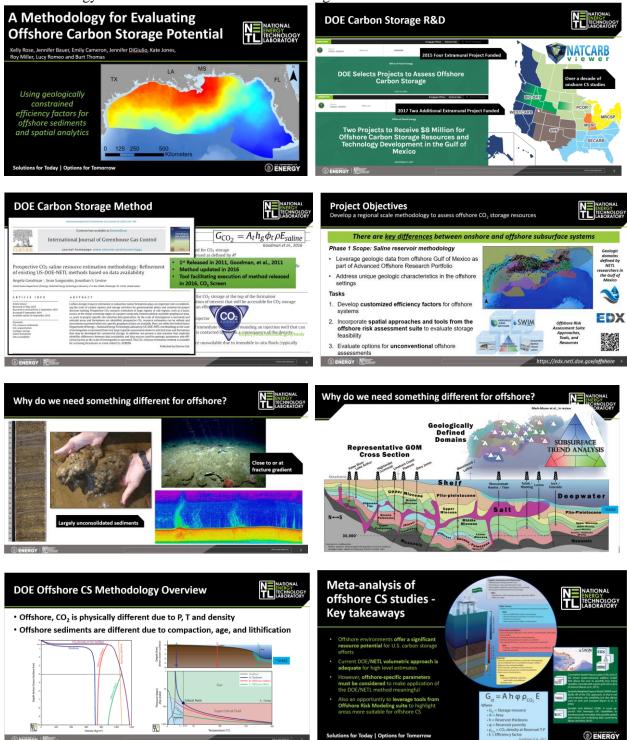
direction:

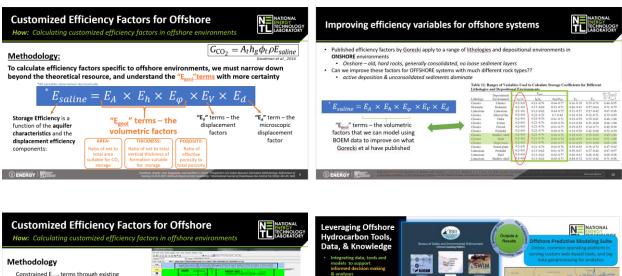
 $\Delta G_k \leq 0$

- · The use of N2/CO2 mixtures for producing hydrate while at the same time storing CO2 is tempting bacause even flue gas might be stored directly in hydrate.
- · But:
- Hydrate CH4/CO2 swap is possible through direct solid state conversion (extremely slow)
- and
 - a second mechanism in which CO2 hydrate forms from injection gas and water. Associated heat release dissociate in situ CH4 hydrate. Too much N2 deactivates the fast mechanism

Conclusions cont.

Liquid water slab exposed to CO2 at 83 bars and 276 K. CO2 phase to the right (but hard to see). Fairly thick (roughly 1.2 nm) and mic interface dyn

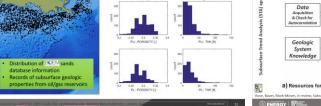


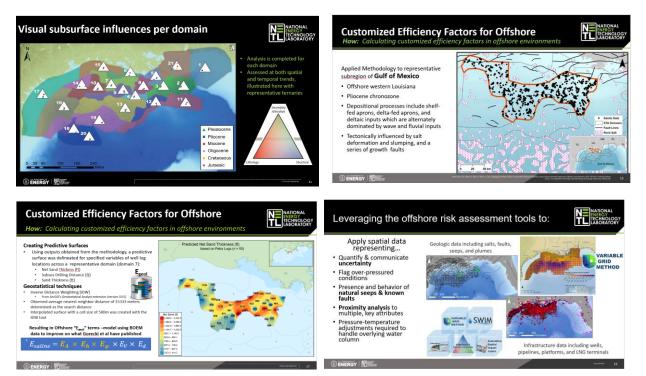

A Methodology for Evaluation Offshore Carbon Storage Potential

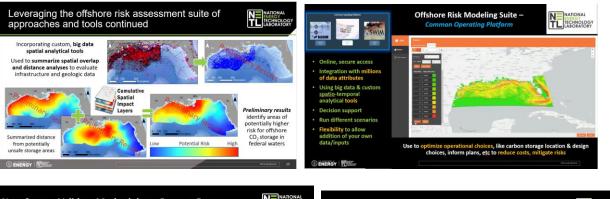
Dr. Kelly Rose, NETL Albany, DOE, Kelly.Rose@NETL.DOE.GOV

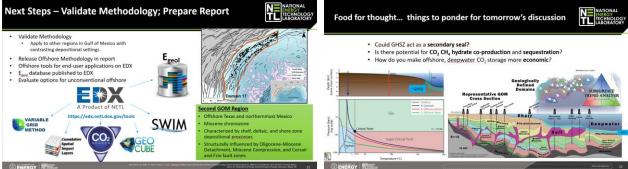
Offshore carbon storage in geological reservoirs is one important option for storing carbon dioxide that would otherwise be emitted to the atmosphere as a result of anthropogenic activities. Effective carbon storage requires both safety and permanence. One attractive National storage option includes subsurface geologic storage in offshore formations, similar to those that hold oil, gas, or brine. The major advantage of offshore storage is that it decreases the risk of leakage into fresh groundwater resources and minimizes the effects on human population centers. However, as with onshore storage options, there are many uncertainties surrounding offshore storage. These include issues related to both safety and permanence. In this paper, we conduct a literature review of the current storage methodologies for onshore carbon storage in saline formations, and contrast the offshore and onshore characteristics of reservoirs that allow us to make recommendations about future work to support offshore storage estimates and research. We conclude with the suggestion that despite important differences between onshore and offshore systems, carbon can be stored safely and permanently in offshore saline geologic formations. Furthermore, we propose development of a similar storage resource calculation for onshore and offshore systems. For our efforts we focus on the US-DOE-NETL advised methodology for calculating carbon storage resource estimates in saline formations.

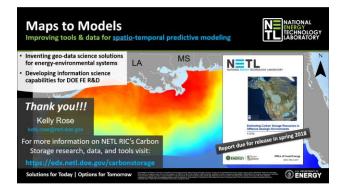
A Methodology for Evaluation Offshore Carbon Storage Potential




Constrained E_{psel} terms through existing knowledge and well log interpretations selected from representative depositional settings: • Area – Gulf of Mexico lateral extent • Thickness – sand intervals interpreted GEO from well logs
 Porosity – density porosities determined from well logs
 Other considerations: EDX BLOSON · Caprock/Seal Unit - Top shale EOS determined from well logs Focusing on saline "reservoirs" ts of GOM sp GEO Consta Spatial Support BOEM data are useful to constrain spatial TIONAL NE NATIONAL ENERGY TECHNOLOG LABORATORY NETL's STA Method - Improving prediction of subsurface properties variability of (Oil) reservoir properties

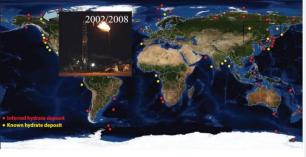

NE NATIONAL ENERGY TECHNOLOG LABORATORY


Are they useful to constrain carbon storage saline sands more generally?



Property - All Data Analysis - All Data SUBSURFACE 4 a) Resources for STA b) Domain Postulation C) Domain Validation d) Advanced Analyses

Pore-to-Core Imaging of Hydrate formation and dissociation patterns

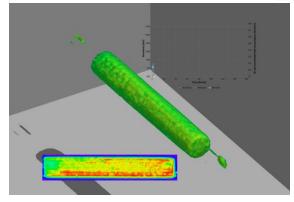

Geir Ersland*, Stian Almenningen, Martin Fernø and Arne Graue

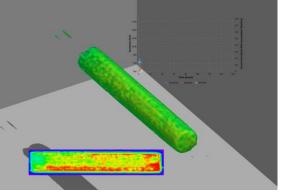
Department of Physics and Technology, University of Bergen, Bergen, Norway

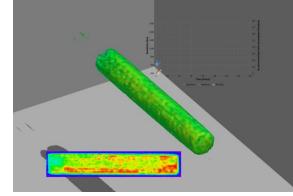
*e-mail: <u>Geir.Ersland@uib.no<mailto:Geir.Ersland@uib.no</u>>

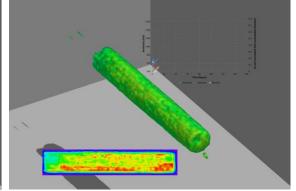
We report on visualization of CO2 and CH4 gas hydrate formation and dissociation patterns within porous sandstone using MRI and micromodels with sandstone pore shapes and sizes. The effect of salinity and saturation is identified on both scales. Direct observations of hydrate phase transition patterns in pores using micromodels at reservoir conditions provides an improved understanding of sedimentary gas hydrate and how such system respond to pressure depletion and thermal stimulation.

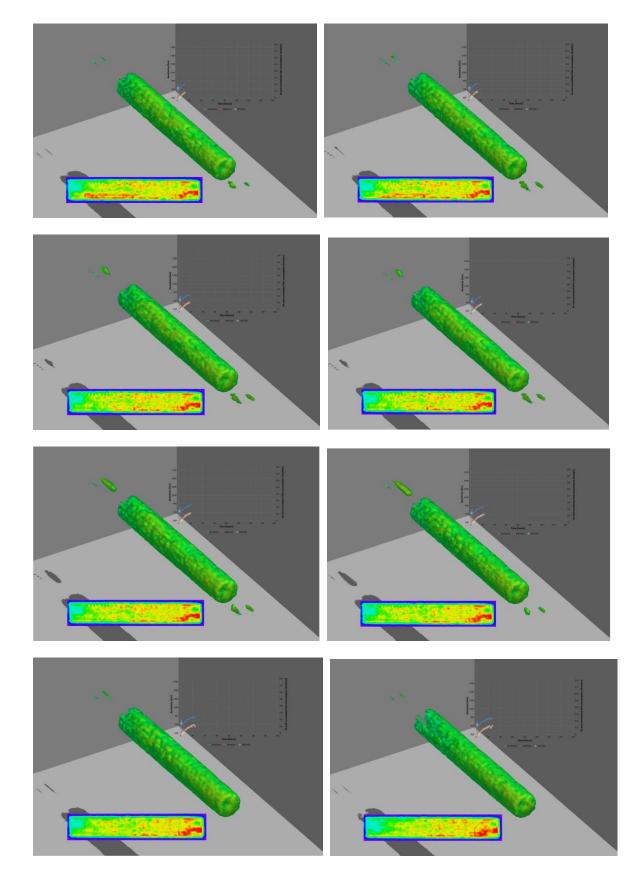


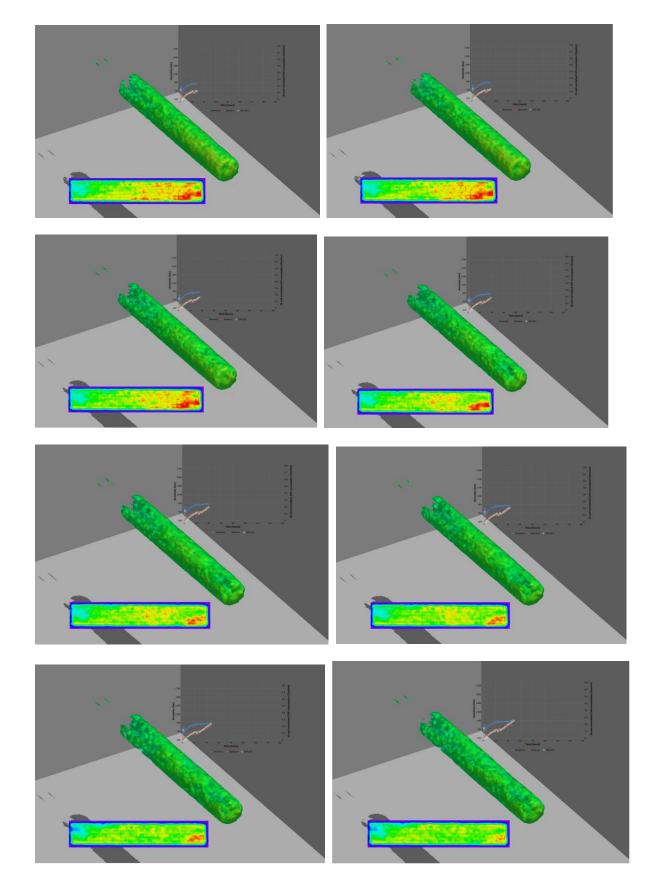


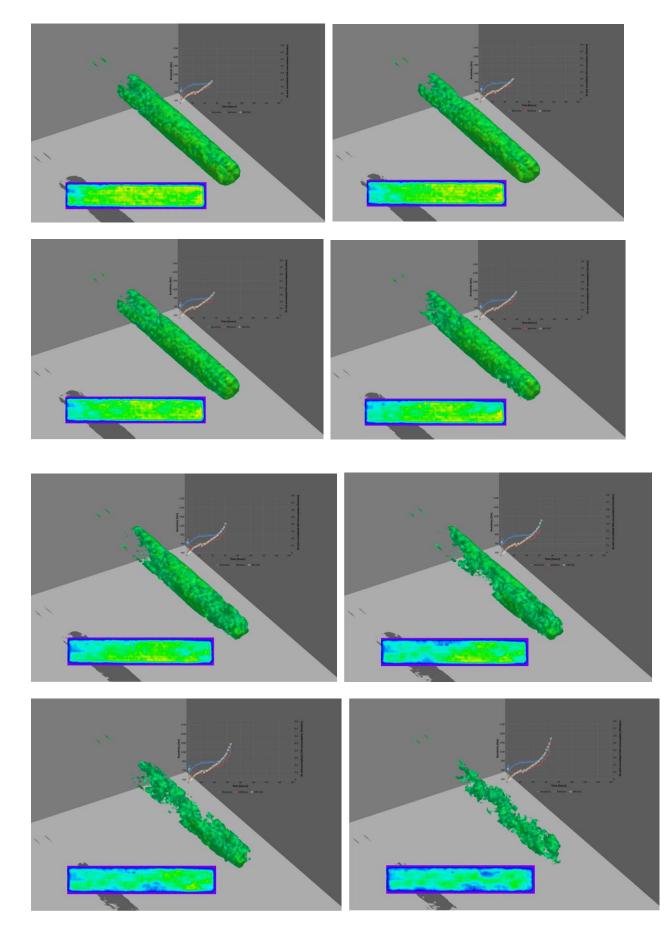


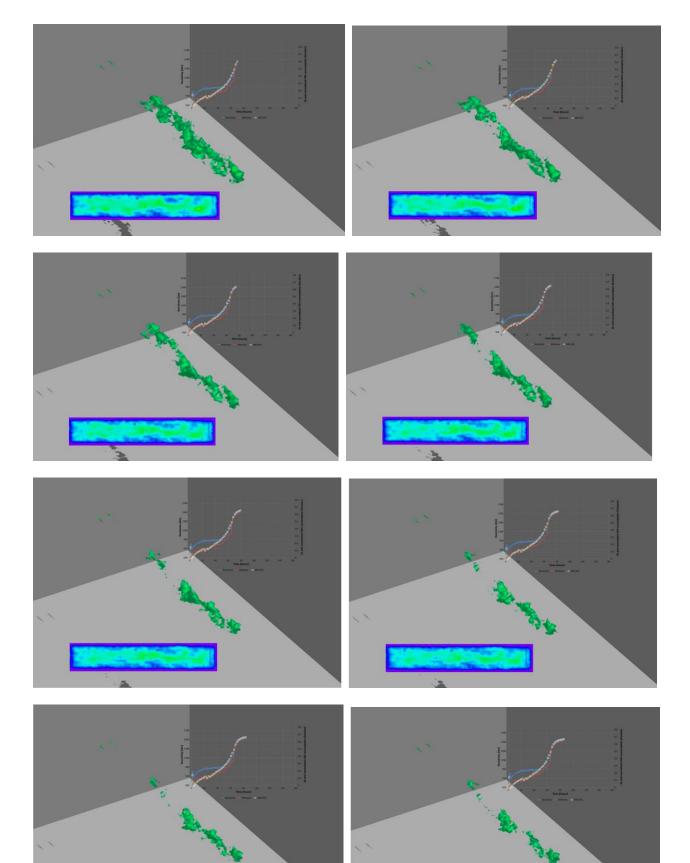


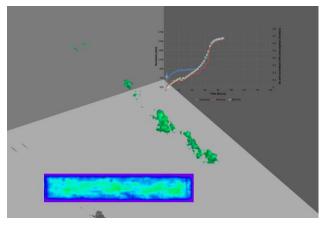

- CO2 exchange
- Hydrate stable region Unstable region Hydrate Reservoir Condition Temperature

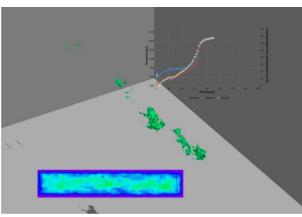


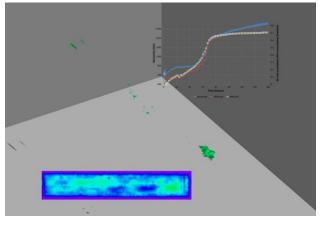


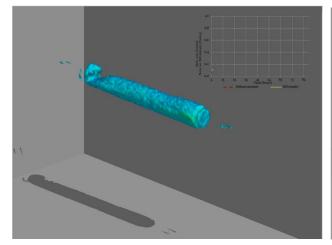


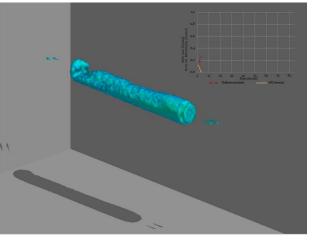


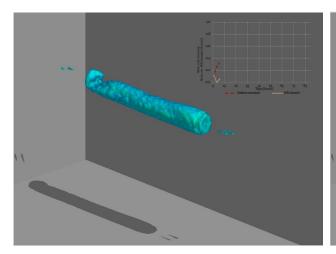


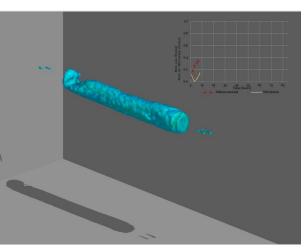


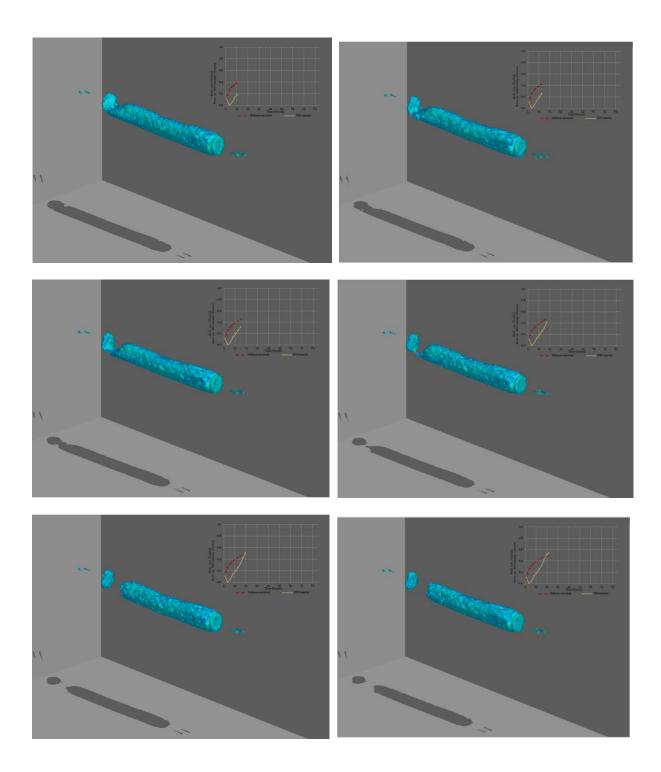


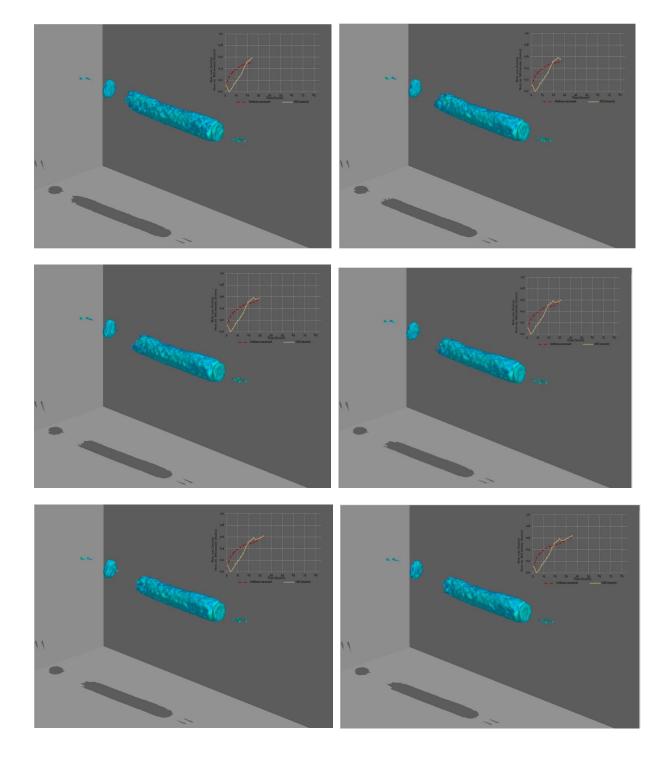


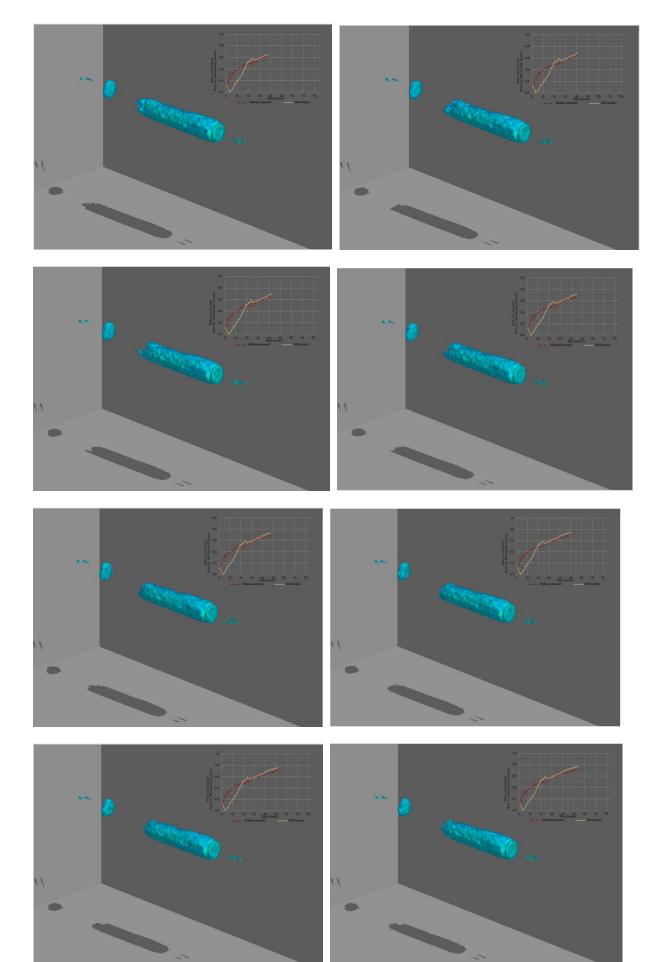

Experimental Conditions

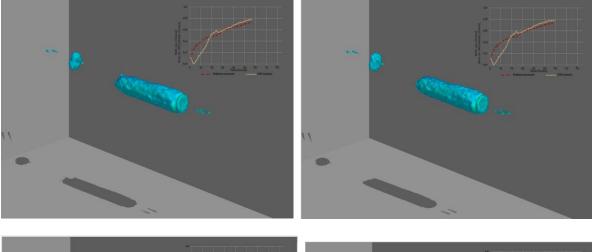

- Porous media
 - Bentheim sandstone
 - High permeable (1.1 D)
 - 20-25% porosity

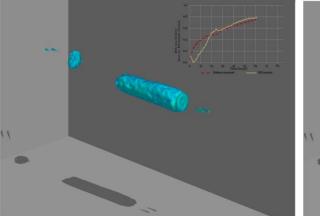

- 20-23% porosity
 Homogeneous (95-99% quartz)
 S_{Wi} = 0.493
 Pressurized with CH₄ to 8.3 MPa
 Temperature reduced from 23C to 4C

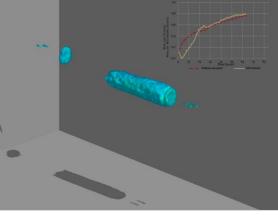


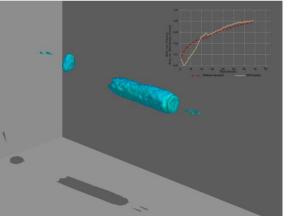


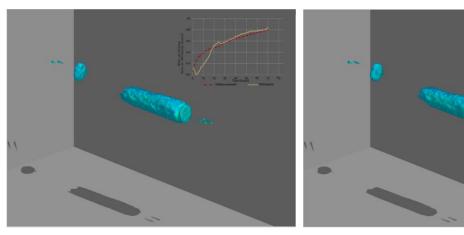


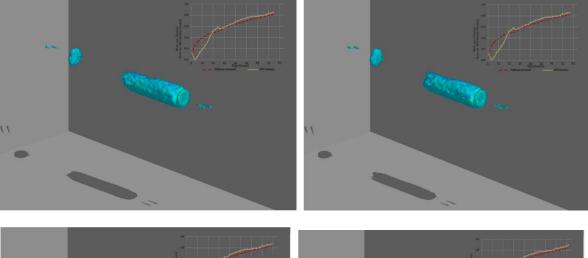


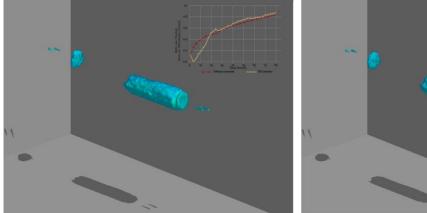


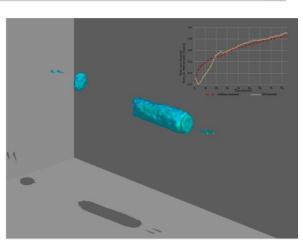


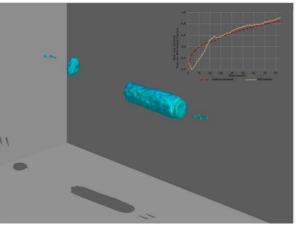


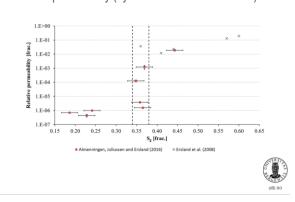


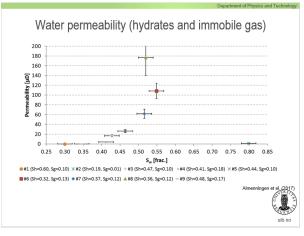




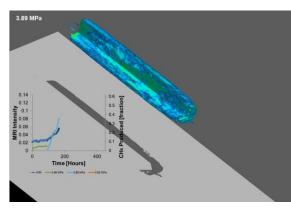


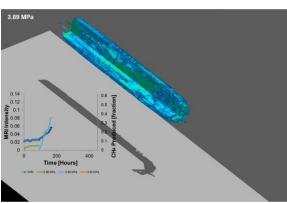


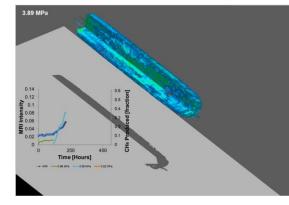


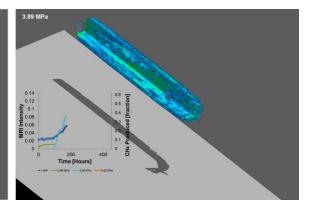


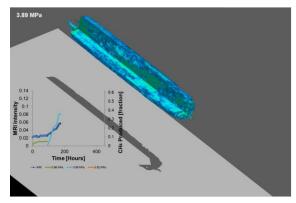
Gas permeability (hydrates and immobile water)

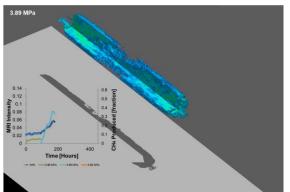


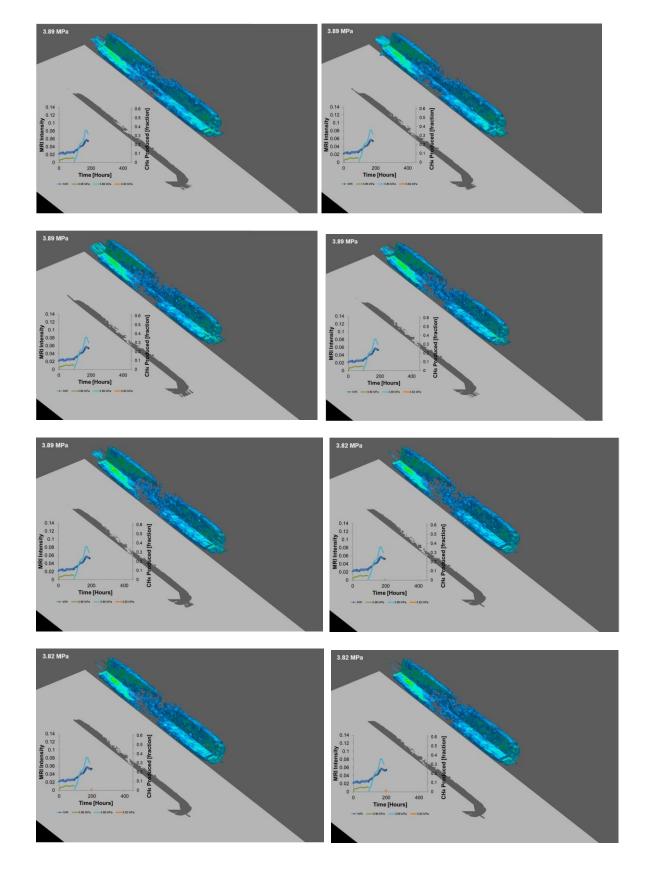

Depressurization - Experimental procedure

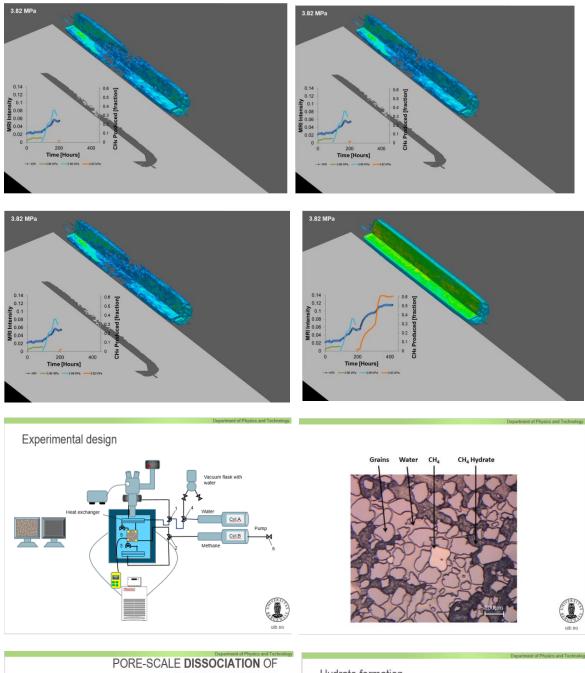

- Pressure reduced and maintained above the threephase equilibrium line
- Pressure reduced below the hydration pressure
 Sequential pressure steps (3.96, 3.89 and 3.82 MPa)


Dissociation quantified based on PVT and/or MRI

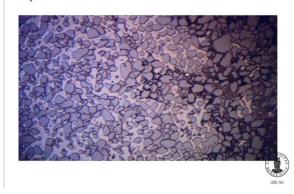


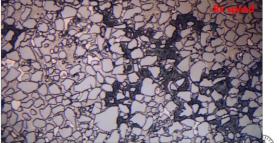


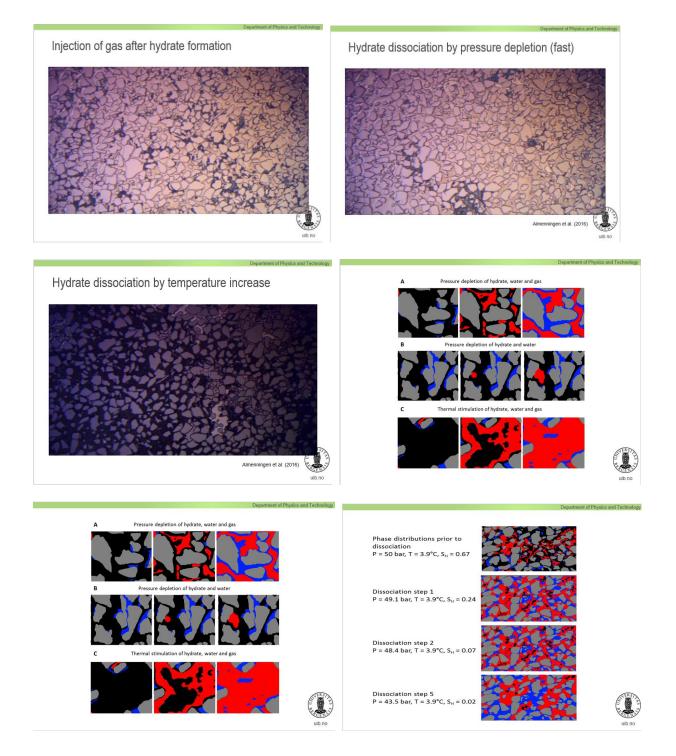












Hydrate formation

P = 8 MPa, T = 12 °C

References

- Almenningen, S. and G. Ersland. 2017. Water permeability measurements on hydrate-saturated sandstone cores with immobile gas. The 31th International Symposium of the Society of Core Analysts, Vienna, Austria, 27/8-1/9.
 Almenningen, S., J. Elatlandsmo, M. Ferne and G. Ersland. 2017. Multiscale Laboratory Verification of Depressurization for Production of Sedimentary Methane Hydrates. SPE Journal 22 (1).
 Almenningen, S., H. Juliussen and G. Ersland. 2016. Permeability measurements on hydrate-bearing sandstone cores with excess water. The 30th International Symposium of the Society of Core Analysts, Snowmass, Colorado, 21-26 August.
 Frisland G. J. Hussho, A. Graue, B. Kvamme, B. Baldwin, J.J. Howard and J.
- Ersland, G., J. Husebø, A. Graue, B. Kvamme, B. <u>Baldwin</u>, J.J. Howard and J. Stevens. 2008. Measurements of Gas Permeability and Non-Darcy Flow in Gas-Water Hydrate Systems. <u>Proceedings of the 6th International Conference</u> on Gas <u>Hydrates</u>, Vancouver, Canada, 6-20 July.

Enhancement of Gas Hydrate Reservoir Performance by Deep Depressurization below the Quadruple Point

Yoshihiro Konno¹, Yusuke Jin², Koya Akamine³, Motoyoshi Naiki³, and Norio Tenma²

¹The University of Tokyo

²National Institute of Advanced Industrial Science and Technology (AIST)

³Japan Oil Engineering Co., Ltd.

Depressurization is a promising gas production method for sandy gas hydrate reservoirs; however, recovery factor is considered to be plateaued after the sensible heat of reservoir is exhausted. Heat supply is the only way to continue gas production from such low-temperature reservoirs. Although injection of heat carrier such as steam and hot water is effective, the energy profit ratio generally decreases due to the process of heat production. To overcome these problems, we propose a new heat supply concept using the latent heat of ice formation. In this method, the bottom hole pressure is deeply depressurized below the quadruple point to form ice intentionally during hydrate dissociation. The latent heat of ice is expected to be used for hydrate dissociation and enhance gas recovery. As a part of a Japanese national hydrate research program (MH21, funded by the Ministry of Economy, Trade, and Industry), we conducted laboratory experiments and numerical simulations to evaluate the effect of ice formation on gas productivity. It was found that depressurization-induced gas production can be accelerated by ice formation during hydrate dissociation at a pressure below the quadruple point.1 Laboratory experiments using a large scale vessel revealed that the recovery factor when applying this method was 65% which is a comparable level of conventional natural gas production.2 Based on these results, we conducted numerical simulations for hypothetical low-temperature reservoirs commonly observed in the arctic region to evaluate the applicability of this method in real fields. The simulation predicted that the acceleration of gas production can be achieved during 1 year production. It indicates that this method is a promising enhanced recovery for sandy gas hydrate reservoirs.

References:

1. Konno, Y., Uchiumi, T., Oyama, H., Jin, Y., Nagao, J., Masuda, Y., and Ouchi, H. (2012). Dissociation behavior of methane hydrate in sandy porous media below the quadruple point. Energy & Fuels, 26(7), 4310-4320.

2. Konno, Y., Jin, Y., Shinjou, K., and Nagao, J. (2014). Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment. RSC Advances, 4(93), 51666 51675.

DATA NOT PUBLISHED TO DATE, PRESENTATION NOT AVAILABLE

Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

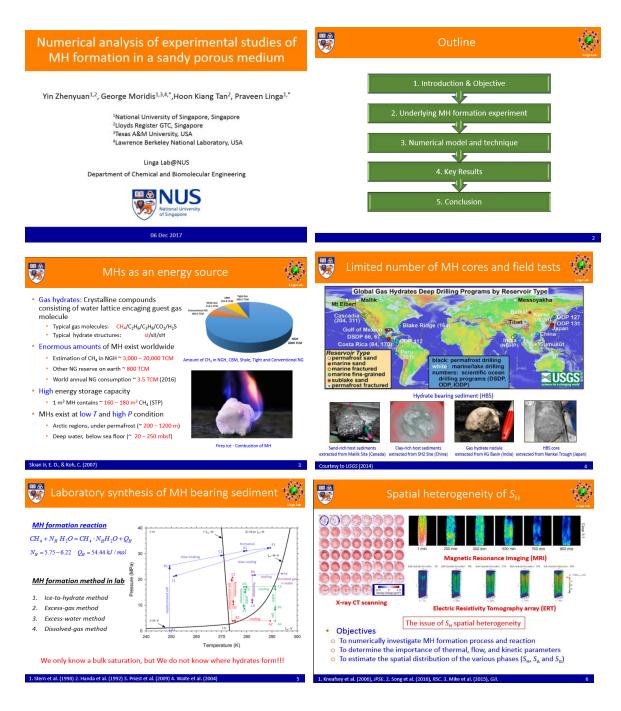
Yin Zhenyuan^{a,b}, George Moridis^{c,d,a}, Chong Zheng Rong^a, Praveen Linga^{a*}

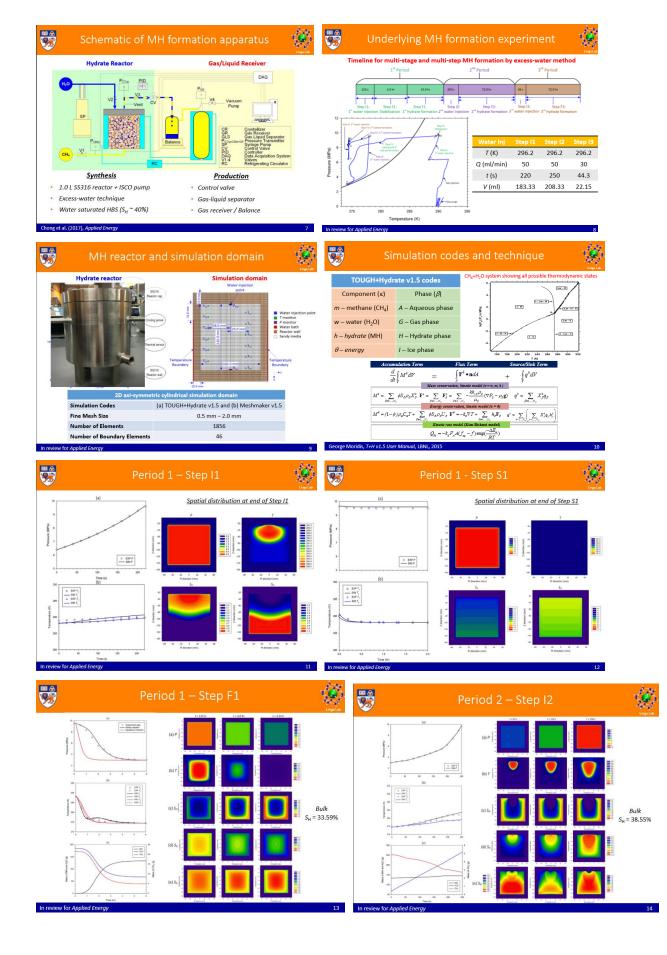
^aDepartment of Chemical and Biomolecular Engineering, National University of Singapore,

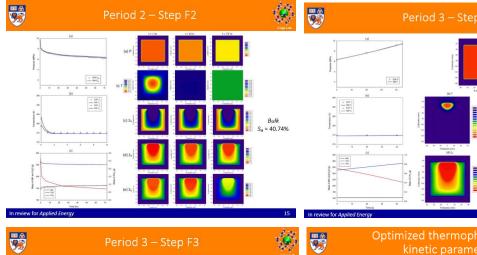
Singapore 117585, Singapore

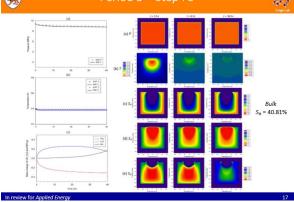
^bLloyd's Register Global Technology Centre Pte Ltd, Singapore 138522

^cPetroleum Engineering Dept., Texas A&M University, TX 77840, USA


^dEarth Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA


* Corresponding author. E-mail address: <u>gimoridis@lbl.gov</u> (G Moridis); <u>Praveen.linga@nus.edu.sg</u>. (P Linga)


Abstract


Methane hydrates (MH) are known to trap enormous amounts of CH₄ in oceanic and permafrostassociated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydratebearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments.

The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of buoyancy and of the pressure gradient caused by the pressure outlet. Sensitivity analysis indicates that the composite thermal conductivity of the HBS and the kinetic parameters of the hydration reaction are the dominant factors. The absolute permeability of the sand does not play a significant role in this small reactor.

Optimized thermophysical and kinetic parameters							
Period	Step	φ	S _{irA}	<i>k_{дw}</i> (W/m/K)	C _R (J/kg/ K)	N _H	F _A
Original value	-	0.440	0.10	1.65	1380	6.1	1
	11	0.448	0.12	1.65	1380	-	-
1st Period	S1	0.448	0.12	2.50	1309	-	-
	F1	0.448	0.12	2.50	1309	6.1	0.23
2 nd Period	12	0.448	0.12	2.50	1309	6.1	decreasing
2 ^{no} Period	F2	0.448	0.12	2.50	1309	6.1	decreasing
3 rd Period	13	0.448	0.12	2.50	1309	6.0	1.0×10 ⁻⁶
3 rd Period	F3	0.448	0.12	2.50	1309	6.0	1.0×10 ⁻⁶
100 100 11 11 01	0	o	•	10.6 10 814012 10.0 1.0 6.1 1.0	0		0 00072
00		50 100 Time (150	0 00 00 10 200 10	- 	10 Time	0 10 15 20 25

Bulk S_H = 40.74%

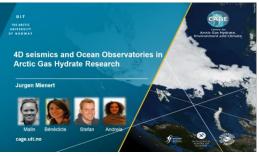
onclusions

- MH formation in sandy media is a kinetic reaction, excluding the possibility of an equilibrium reaction
- The dominant processes during MH formation in the 1.0 L reactor are thermal processes
 - Cooling
 - Warm water injection
- Uniformity of $S_{\rm H}$ distributions appears to be nearly impossible
 - o Water/Gas injector location
 - o Gravity drainage effects/Capillary-driven redistribution of phases
 - o The geometry of the reactor/ non-uniformity of the cooling process
 - o Cooling rate and heat flux from surrounding environment
- + To quantify the $S_{\rm A'}S_{\rm G}$ and $S_{\rm H}$ using numerical techniqe besides expensive experimental measurement (MRI, X-ray CT, ERT)

- A/Prof Praveen Linga (NUS) praveen.linga@nus.edu.sg
- Prof George Moridis (LBNL) gjmoridis@lbl.gov

Ç,

Dr. Jurgen Mienert - University of Tromsø


4D Seismics and Ocean Observatories in Arctic Gas Hydrate Research Jurgen Mienert

Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) University of Tromso - The Arctic University of Norway

We do apply high-resolution time lapse seismic studies that are integrated with seafloor observations to image and detect major changes in subseabed fluid migration and seabed-fluid release. Our 3D P-cable seismic system enables us to achieve high-resolution imaging of the sub seafloor while K-lander observatories detect and image gas releases from the seafloor. The big questions for such a study are: What monitoring is important to evaluate the development of pathways for fluids that may lead to gas blowouts from gas hydrate reservoirs? What monitoring is important to understand the evolution of benthic life in newly created cold seep environments of the Arctic? Seismic time-lapse monitoring has demonstrated already its great potential and societal relevance in the hydrocarbon industry. Here it is used to determine for example where the injected greenhouse gas CO2 is moving to within a CO2 storage site. We study the vast amounts of the natural methane gas (CH4) stored under the Arctic Ocean floor often occurring as ice-like, crystalline compounds called hydrates. These hydrates can consist of both hydrocarbon gases originating from thermogenic sources of hydrocarbon reservoirs deep below the ocean floor and/or from biogenic shallow sources. The Arctic holds vast undiscovered reserves of hydrates with mixtures of thermogenic and biogenic methane.

Our comprehensive time-lapse (4D) seismic studies have the aim: to track fracture network developments and gas plume migration with the gas hydrate stability zone, and to demonstrate instabilities within the gas hydrate reservoir.

Such a study can provide quantitative information to better understand detailed gas migration pathways, which may control the development of gas chimneys and/or plumes in the reservoir and episodic gas release from the seabed into the ocean.

Across disciplines with impacts

	SPHERE ne emissions from the Arctic Ocean
	TOCENE TO PRESENT ne, ocean acidification and CO ₂
	D-METHANE HISTORY ne to Pleistocene
	R COLUMN e release and gas quantification
SEABE Methan	ED e release and benthic faunal response
	EABED e of ice ages for fluid flow & methane hydra
	EABED RESERVOIRS he hydrate and free gas reservoirs

 GBL (Low Owley et al., 2016)

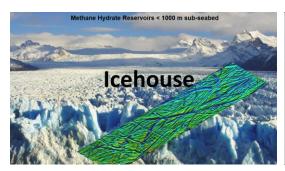
 Reflues et al., 2018)

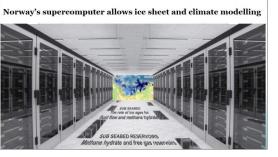
 Reflues (Low Owley al., 2016)

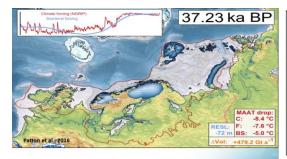
 Nature Comm, (Joant et al., 2017)

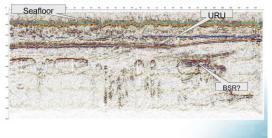
 Nature Comm, (Joant et al., 2017)

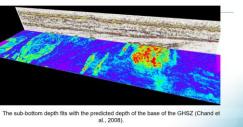
Our location: Gateway to the Arctic (~ 70 degrees N)




CAGE - Centre for Arctic Gas Hydrate, Environment and Climate

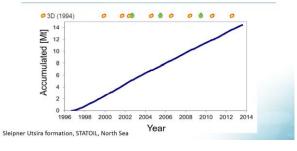




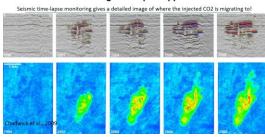


Barents Sea - P-Cable 3D seismic

Gas trapped beneath gas hydrates



CO2 injection monitoring techniques are proven


The Big Questions for Arctic Gas Hydrate Observations

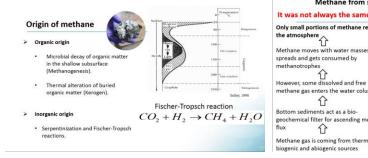
What type of monitoring is really necessary?

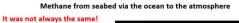
What kind of monitoring is important from an environmental point of view? What kind of monitoring is in climate research, industry and public interest?

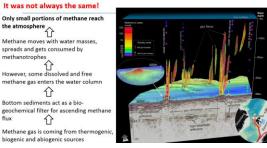
Monitoring techniques applied

The Biggest Technical Challenge

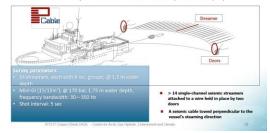
The importance of a good baseline dataset!

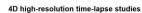

Time-lapse high-frequency seismic imaging!

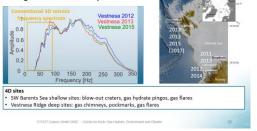

Time-lapse seismic imaging of CO2 plume development has proven its value.

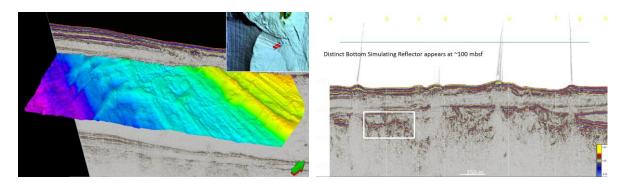

Monitoring of gas migration and gas chemistry at the seabed.

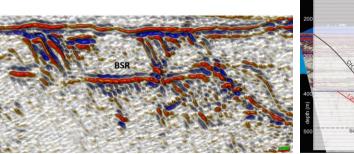
Cost effective battery systems.

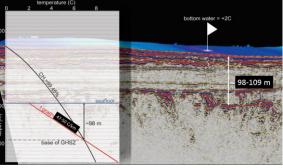

Technology breakthroughs in self detection of malfunctioning systems

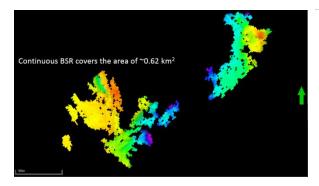


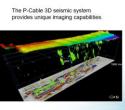

P-Cable 3D seismic provides base for HRS time-lapse studies (4D)

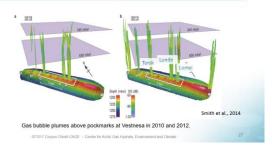




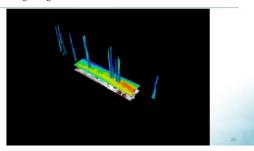

企

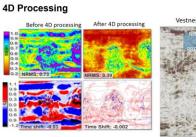

仓

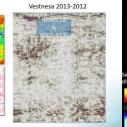


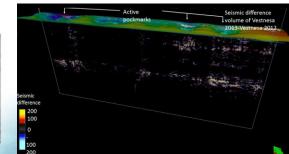


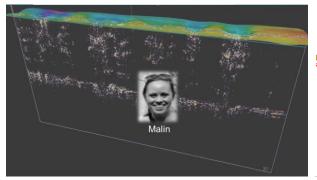
Detecting fluid migration pathways from the deep

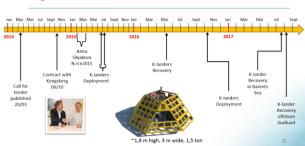


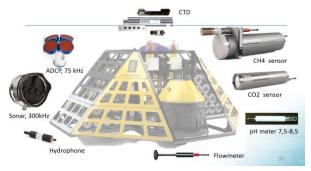


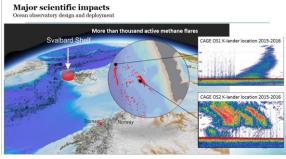

Active methane venting on the Vestnesa Ridge

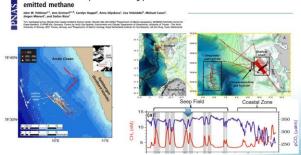


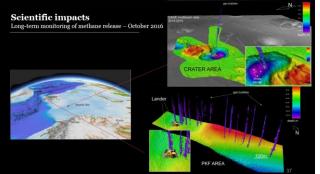

Vestnesa Ridge - the genesis and mechanisms of focused fluid flow








Integration of Arctic seafloor observatories



Geochemistry, G	eophysics, Geosystems
RESEARCH ARTICLE	Microseismicity Linked to Gas Migration and Leakage on the
0.1002/2017GC007107	Western Svalbard Shelf
ey Points: An occurs bottom antonometer was deplaced to record microantomicity in	Peter Franck' 🖏 Andreia Plaza-Faverola' 🖏 Jürgen Mienert', Stefan Buenz', Bénédicte Ferré', and Alun Hubbard' 😳
market addresses An automated algorithm is applied to detect 220000 short dustrian events	¹ Centre for Arctic Gas Hydrate, Environment and Clanate, Department of Geosciences, URT The Arctic University of Norway, Tremos, Norway
(<1 g) which occurrence vary over ~10 day and seasonal time scales	
We infer that two distinct types of events of grant from wadne macrofisma recalization and from fluid regulation and natural gas swepsige	Abstract The continental margin off Prins Karls Forland, vestem Svalbard, is characterized by wide sprind maturali gas sequeja rite the water column at and upslope of the gas hydre active start by deployed an occur bottom settlementer integrated in the MACXI (Montenet Arctic Seafbore Coan Exchange) automated saabed observatory at the pinch out of this zone at 38m water depth to livestigate active settlement over a continuous 270 day tended from 10 a Stocher 2010. An automated trajeania alax- position settlement have accelerated active and and an automated trajeania alaxies.
opporting Information Supporting Information 51 Table 51	rithm was applied to detect over 220,000 short duration events (SDE) defined as having a duration of less than 1s. The analysis reveals two different types of SDEs, each with a distinctive characteristic settince space and the set of the se
Correspondence to Frank, artic/banekpat.zo	whales. The second type corresponds to signals with a source within a few hundred meters of the seismem eter, either due east or west, that way on short (tens of days) and seasonal time scales. Based on evidence of prevalent seafloor seepage and subseafloor gas accumulations, we hypothesize that the second type of 5DSs is helated to subseafloor fluid migration and cas seepage. Furthermore, we postulate that the observed
Hation took, P., Roza-Fasenda, A., Menert, Dami, S., Ford, B., & Holbard, A. (07), Microseknicky limited to gas separation and lookage on the Western	temporal variations in microselemicity are driven by transient fluid release and due to the dynamics of the- maly forced, seasonal gas hydram discomposition. Our analysis presents a novel technique for monitoring the duration, intensity, and periodicity of fluid migration and seepage at the seabed and can help elucidate the environmental coronds on gas hydrate decomposition and release.

Dr. Xin Lu – China National Offshore Oil Corporation

Experimental study on the effective thermal conductivity of pressure-tight sampling corer Natural gas hydrate samples of South China Sea

Prof. Xin Lu CNOOC

Gas hydrates are considered as a potential strategic energy source for sustainable development. Thermal properties of gas hydrate-bearing sediments directly govern the heat transfer process during hydrate decomposition which couples with phase transitions and multiphase flows. The effective thermal conductivity of a multiphase system represents the composite capacity to conduct heat. In May 2017, CNOOC relied on the Deepwater Engineering Survey vessel "HYSY 708" at the station of Liwan in the northern part of the South China Sea. Using fully self-developed technology, process and equipment, at the depth of 1310m and the depth of hydrate ore body was 117~196m, the world's first successful implementation of shallow non diagenetic hydrate solid fluidization well testing and production in ocean water, marking China's has made a historic breakthrough in the key technology of natural gas hydrate exploration and development with independent intellectual property rights. Basing on the above condition and the sample of core by operation, here we report on point heat source measurements of the effective thermal conductivity of methane hydrate-bearing sediments through a thermistor-based method combining with X-ray CT observations. Methane hydrates were formed at different saturations, with various initial water contents, and in porous matrices simulated by grains with differing thermal conductivities. It is indicated that the effective thermal conductivity of sediments negatively correlated with the hydrate saturation, while an increase of initial water contents and thermal conductivity of grains has a positive impact on the elevation of the effective thermal conductivity. Moreover, the effective thermal conductivity was found to slightly increase with the proceeding of hydrate decomposition. Typical effective medium models were evaluated with the mea-surements of this study, and a hybrid fitting model combining three forms of selfconsistent models was proposed, with the optimal weighting parameters determined via the genetic algorithm. The effective prediction of the measurements in this work and results in literatures corroborates the feasibility of the model. This study could help in understanding the evolutions of sediment thermal properties during gas production and their effects on large-scale hydrate decomposition when expanded to field scale tests.

PRESENTATION WITHDRAWN

The first solid fluidization exploitation experimental system of marine natural gas hydrate in the world

Abstract: The reserves of marine natural gas hydrate, one of the most potential unconventional energy sources after shale gas, coal seam gas and tight gas, are about 100 times as much as that of terrestrial frozen soil. In marine environment, most of the veins, bulk hydrates and hydrates in fine-grained sediments belong to nondiagenetic natural gas hydrate, and there is no stable entrapment structure like conventional oil and gas fields and sandstone hydrate reservoirs. According to the physical characteristics and reservoir characteristics of marine non-diagenetic hydrate, Southwest Petroleum University innovatively proposes solid fluidization exploitation method, and establishes the first solid fluidization exploitation laboratory of marine natural gas hydrate in the world. The lab's position is "fully automated white-collar laboratory". The experimental system consists of rapid preparation and fragmentation of large samples, efficient pipe transportation, efficient separation and rapid detection modules and so on. The main functions of laboratory are rating of efficient rock breaking capacity, evaluation of rock carrying capacity in fluidization pilot exploitation of marine natural gas hydrate, evaluation of hydrate non-equilibrium decomposition and dynamic change laws of flow patterns, safe transportation of under different mining rates, and simulation of well control safety. The key technical indicators of laboratory are 12 MPa pressure, 65 m horizontal pipe, 30 m vertical pipe, and 1 decimeter pipe diameter. The laboratory can simulate the whole process of solid fluidization exploitation with 1200 m water depth, which is a landmark laboratory of Southwest Petroleum University with original innovation, independent design, independent research and development. The establishment of this laboratory is of great significance to the development of global gas hydrate research.

IN PLACE OF THE ORAL PRESENTATION A THOROUGH DESCRIPTION HAS BEEN INCLUDED

The first solid fluidization exploitation experimental system of marine natural gas hydrate in the world

Wei Na^{1*} Zhou Shouwei¹ Zhao Jinzhou¹ Wu Kaisong¹ Guo Ping¹ Li Qingping³ Fu Qiang² Gao Hang⁴ 1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Southwest Petroleum University, Sichuan, China;

2 China National Offshore Oil Corporation, Beijing, China;
 3 CNOOC Research Institute, Beijing, China;
 4 Honghua Group, Sichuan, China.

Abstract: The reserves of marine natural gas hydrate, one of the most potential unconventional energy sources after shale gas, coal seam gas and tight gas, are about 100 times as much as that of terrestrial frozen soil. In marine environment, most of the veins, bulk hydrates and hydrates in fine-grained sediments belong to non-diagenetic natural gas hydrate, and there is no stable entrapment structure like conventional oil and gas fields and sandstone hydrate reservoirs. According to the physical characteristics and reservoir characteristics of marine non-diagenetic hydrate, Southwest Petroleum University innovatively proposes solid fluidization exploitation method, and establishes the first solid fluidization exploitation laboratory of marine natural gas hydrate in the world. The lab's position is "fully automated white-collar laboratory". The experimental system consists of rapid preparation and fragmentation of large samples, efficient pipe transportation, efficient separation and rapid detection modules and so on. The main functions of laboratory are rating of efficient rock breaking capacity, evaluation of rock carrying capacity in fluidization pilot exploitation of marine natural gas hydrate, evaluation of hydrate non-equilibrium decomposition and dynamic change laws of flow patterns, safe transportation of under different mining rates, and simulation of well control safety. The key technical indicators of laboratory are 12 MPa pressure, 65 m horizontal pipe, 30 m vertical pipe, and 1 decimeter pipe diameter. The laboratory can simulate the whole process of solid fluidization exploitation with 1200 m water depth, which is a landmark laboratory of Southwest Petroleum University with original innovation, independent design, independent research and development. The establishment of this laboratory is of great significance to the development of global gas hydrate research.

* Corresponding author.

E-mail address: weina8081@163.com (Na Wei).

Keywords: Natural gas hydrate; Solid fluidization; Laboratory; The whole process simulation; Physical simulation; Preparation system; Breaking system; Pipe transportation system

Introduction

Natural gas hydrate, commonly known as "combustible ice", is a kind of crystalloid "clathrate compound" formed by the interaction of methane and other hydrocarbon gases or volatile liquids with water, and it's one of the most potential unconventional energy sources after shale gas, coal seam gas and tight gas [1,2]. Generally, we can obtain 164 m³ methane and 0.8 m³ water from the decomposition of natural gas hydrate per volume unit [3]. Natural gas hydrate is mainly distributed in terrestrial permafrost area and deep sea environment (referred to the definition of United States Geological Survey which is in short of USGS as water depth more than 1000 m in 2008), the total amount of which reached 7.6×10^{18} m³, and the carbon content is 2 times as much as that of the proved fossil fuels [4] (including coal, oil and conventional natural gas etc.), of which the marine natural gas hydrate reserves are about 100 times as much as that of the land frozen soil [5], as shown in Figure 1 [6]. Therefore, the safe and efficient exploitation of natural gas hydrate, especially of natural gas hydrate in deep sea, is the frontier field of innovational technology in the world [7-10]. The United States, Canada, Germany and our neighbors such as Japan, India, South Korea and other countries have made long-term research program of natural gas hydrate [11]. Japan, Canada and the United States etc. conducted a short-term test of natural gas hydrate in the permafrost region of MARLIK, Canada in 2002 and 2008 and in the permafrost region of Alaska, USA in 2012. In March 2013, Japan successfully carried out the pilot exploitation of natural gas hydrate in its offshore waters. And China successfully tested the pilot exploitation of natural gas hydrate in Shenhu sea area, South China Sea in 2017 [12-17].

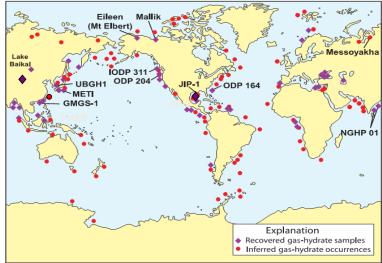


Figure 1. Distribution of natural gas hydrate resources in the world

Existing forms of natural gas hydrate are mainly as follows [18-21]: ①sandstone reservoir, distributed in the rock intergranular pores of polar permafrost; ②sandstone reservoir, distributed in rock intergranular pores of seabed formation; ③Non sandstone reservoirs, filled with fractures in rock formations; ④Vein and bulk hydrate, accompanied by a small amount of sediment; ⑤hydrate, dispersed in a fine-grained sediment with pellets. According to the existing drilling core data and exploration geological data, different forms of hydrate are shown in Figure 2.

Figure 2. Different forms of natural gas hydrate

In marine environment, most of the veins, bulk hydrates and hydrates in fine-grained sediments belong to non-diagenetic natural gas hydrate, and there is no stable entrapment structure like conventional oil and gas fields and sandstone hydrate reservoirs. Moreover, there is no rock structure as a reservoir skeleton, the hydrate itself is the skeleton instead. Reservoir is unstable, the hydrate layer is easily decomposed by external influences, and the reservoir is easy to collapse and the decomposition of hydrate is hard to control. At the same time, the decomposition of natural gas hydrate in the shallow sea will lead to instability of the seabed structure foundation, will cause the submarine slip and other potential engineering geological disasters, and will result in greenhouse effect and other environmental safety issues, as shown in Figure 3. Therefore, catastrophic accidents, potential geological hazards, ecological damage, environmental greenhouse effect, production control, equipment risks and safety risks caused by insensible exploitation of non-diagenetic weak cemented natural gas hydrates of shallow strata of deep sea have always been the focus of hydrate exploitation, and we must adopt a safe and effective method of scientific and technological innovation to carry out green exploitation of such hydrate resources.

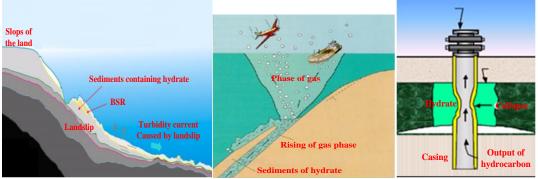


Figure 3. Environmental risks, equipment risks and production control risks

1 Technical ideas of solid fluidization exploitation of marine non-diagenetic gas hydrate

Nowadays, all the pilot exploitations in the world have been carried out in the ore body of diagenetic gas hydrate, and the exploitation techniques and methods of marine non-diagenetic gas hydrate are still blank, in which situation solid fluidization exploitation method is expected to be the frontier of science and technology innovation and one of the revolutionary technology to exploit non-diagenetic natural gas hydrates properly in the shallow layer of the world's ocean. The basic principle is as follows: use mining equipment to exploit natural gas hydrate orebody under relatively stable temperature and pressure at the bottom of the sea, crush the sediment containing the gas hydrate into fine particles and then mix with seawater, transport the mixer to offshore platform using closed pipes, and then develop post-processing in the offshore platform, the process flow is shown in Figure 4. The advantages are as follows: (1) The entire mining process is carried out in the submarine natural gas hydrate zone, without changing the original temperature and pressure conditions of natural gas hydrates, it's similar to the construction of an artificial enclosed area consisting of submarine pipes and pumping systems, functioning as the sealing effect of the cap rock of conventional oil and gas reservoirs to transform the unenclosed natural gas hydrate orebody into a decomposing-controlled artificial closed orebody in a closed system. Thus, marine natural gas hydrates won't decompose in large quantities, which makes the situ development come true and can avoid engineering geological disasters and greenhouse effect resulting from the decomposition of natural gas hydrates; (2)Meanwhile, this method takes advantage of natural changes in temperature and pressure of natural gas hydrate during transmission, realizing orderly-controlled decomposition in the scope of airtight transmission line.

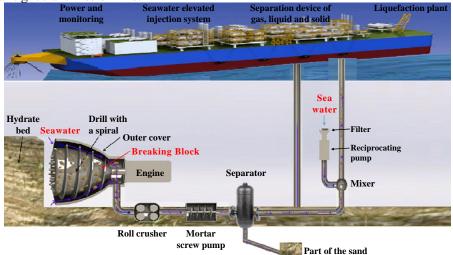


Figure 4. The solid fluidization exploitation process of marine non-diagenetic natural gas hydrate

2 Solid fluidization exploitation laboratory of marine non-diagenetic natural gas hydrate

Based on this industrial background, the world's first "marine non-diagenetic natural gas hydrate solid fluidization exploitation laboratory" was established at Southwest Petroleum University on April 28, 2015, in order to verify and carry out scientific research on the technology of solid fluidization, as shown in Figure 5. The lab is positioned as a "fully automated white-collar laboratory", the experimental system consists of rapid preparation and fragmentation of large samples, efficient pipe transportation, efficient separation and rapid detection modules and so on. The main functions of laboratory are rating of efficient rock breaking capacity, evaluation of rock carrying capacity in the pilot exploitation of marine natural gas hydrate fluidization, evaluation of hydrate non-equilibrium decomposition and dynamic change laws of flow patterns, safe transportation of under different mining rates, and simulation of well control safety. The key technical indicators of laboratory are 12 MPa pressure, 65 m horizontal pipe, 30 m vertical pipe, and 1 decimeter in-pipe diameter. The laboratory can simulate the whole process of solid fluidization exploitation with 1200 m water depth, which is a landmark laboratory of Southwest Petroleum University with original innovation, independent design, independent research and development.

Figure 5. The first solid fluidization exploitation laboratory of marine non-diagenetic natural gas hydrate in the world

2.1 Main functions of the laboratory

According to the technical idea of marine non-diagenetic natural gas hydrate solid fluidization exploitation, the laboratory has the following main functions:

(1)Rapid preparation of large samples of 1 m³ and high performance of rock-breaking capacity;

2)Safety transportation of hydrate under different mining rate;

(3)Evaluation of the non-equilibrium decomposition of hydrate and the law of dynamic change of fluid state;

(4)Simulation of the law of well control safety.

2.2 Process of marine non-diagenetic natural gas hydrate solid fluidization exploitation experimental system

In combination with the marine non-diagenetic natural gas hydrate solid fluidization exploitation and the main functions of the laboratory, the experimental design ideas and concepts are as follows:

(1)Similar prototype: hydrate reservoir depth of 1200 m, pipeline diameter of 0.380~0.508 m, pipeline length of 1,200~4,500 m. It can't be completed just through one similar experiment in the existing conditions due to the fact that length diameter ratio of the line is too large, therefore, we choose to complete pipe flow simulation in the whole process combining each experimental data through multiple cycles, multiple pressure (high pressure to low pressure), and multiple heat exchange and heating, and we magnify experimental flow parameters as much as possible to ensure safe and efficient transportation in condition that well control safety is meet.

2)Simulate to prefabricate natural gas hydrate (sand included) sample according to the component of marine natural gas hydrate, and then add pre-prepared sea water to form hydrate slurry while breaking the sample,;

(3) Then the slurry is transferred to the circulation piping system, to simulate the multiphase pipeline transportation flow of gas hydrate slurry in the actual process of the exploitation;

(4) The horizontal and vertical wellbore can work independently in the experiment: horizontal section is focused on solving the problem of solid phase migration, and the vertical pipe section is focused on the

prediction, measurement, pressure evolution and regulation of multi-phase flow characteristic parameters in the condition of hydrate phase change;

(5) The separation system is used to process and measure the decomposition of hydrate and decomposed products after the pipeline transportation is finished;

6 Make it come true to control the operation and collet the testing data and image in the process of multiphase transportation, and have the capacity to monitor, process, analyze, display and store in real time;

(7) Through experimental research, the theoretical model of multiphase flow in solid fluidization exploitation is formed, perfected and enriched.

According to the experimental design ideas and concepts, the flow of solid fluidization exploitation experimental system of marine natural gas hydrate is divided into the following 5 functional modules (the specific experimental system flow is shown in Figure 6:

1)Marine natural gas hydrate sample preparation module;

(2)Marine natural gas hydrate fragmentation and fidelity migration module;

③Experimental module of pipe transportation characteristics of marine natural gas hydrate slurry;

(4) Marine natural gas hydrate output separation module;

(5)Dynamic image capture, data acquisition and safety control module.

Figure 6. The process of marine natural gas hydrate solid fluidization exploitation experimental system

2.3 Key equipment of marine non-diagenetic natural gas hydrate solid fluidization exploitation

experimental system

1) Preparing and breaking system of the hydrate

The device is mainly used to simulate hydrate deposits within 1200 m water depth at different temperatures and pressures. The system can rapidly generate natural gas hydrate of 1.062 m³ within 24 hours through bubbling, spraying, mixing and other links, and break it into hydrate clastic in specified size and then output in accordance with the experimental requirements, in order to meet the needs of solid fluidization exploitation and pipeline transportation and experimental separation, as shown in Figure 7. The main performance indexes are as follows:

1)Design pressure: 16 MPa;

(2) Design temperature: $-10 \sim 60$ °C;

③Size of pot body: Phi 950 mm×1500 mm;

(4) Total volume of cavity: 1062 L;

(5) Medium: quartz sand, sea water, methane, chemical reagents and so on.

Figure 7. Preparing and breaking system of the hydrate

2) Slurry circulating pump

The power unit of complex medium fluid flow process of solid fluidization exploitation is the key equipment which is expected to adapt to the requirements of gas-liquid-solid (natural gas, sand, solid of the hydrate, and seawater) multiphase pipeline transportation. Southwest Petroleum University worked out a set of single-screw slurry circulating pump through its own design, research and development, and commission. The device is an essential power device for the purpose of ensuring the transmission and pipeline transportation characteristics of hydrates, as shown in Figure 8, and the main performance indexes are as follows:

1)Displacement: 24 L/s;

- 2) Design pressure: 16 MPa;
- 3 Volume fraction of solid: less than 30%;
- (4) Inlet and outlet pipe diameter: 3 inches;

5 Lift: more than 100 m.

Figure 8. Slurry circulating pump

3) Dynamic pressure regulator

The method of solid fluidization exploitation is to transport the solid ore from water of 1200 m depth to the platform, and the pipeline pressure is from 12 MPa to atmospheric pressure. The pipeline loop of "marine natural gas hydrate solid fluidization exploitation experimental system" is a closed cycle system, but the fluid pressure of which can't be reduced or be adjusted dynamically in a closed environment. Based on this objective and physical reality, Southwest Petroleum University has creatively designed and developed a dynamic pressure regulator. The device can dynamically adjust the pressure (from 12 MPa to 1 MPa) of the pipeline flow in the condition of material balance, according to the pressure reduction to cycle the gas-liquid-solid mixing phase of 30 m water depth, as shown in Figure 9. The main performance indexes are as follows:

(1)Working pressure: 12 MPa;

(2)Design pressure: 16 MPa;

(3)Working temperature: $-10 \sim 60 \,^{\circ}\text{C}$;

(4)Design temperature: 60 °C;

- 5)Size of working chamber: 1.15 m³;
- (6) The working medium: sea water, methane.

Figure 9. Dynamic pressure regulator

4) Efficient three-phase separator

The efficient three-phase separator consists of three-phase separator, storage tank, water storage tank, methane gas tank, gas flow meter and ball valve. Its main function is to separate and measure the quality of solid phase, gas and sea phase after the cycling experiment. The main performance indexes are as follows:

1)Displacement: 0~24 L/s;

(2) Design pressure: 16 MPa;

(3) The design temperature is between -10 °C and 60 °C;

(4) Inlet and outlet pipe diameter: 76.2 mm;

(5) The solid particle size: less than 10 mm.

Figure 10. Efficient three-phase separator

5) Real-time phase content monitoring sampler

The pipeline loop of "marine natural gas hydrates solid fluidization exploitation experimental system" is designed to realize the physical process in a closed circulatory system by constant depressurization and heating up. Therefore, the solid phase of natural gas hydrate in the pipeline is continuously gasified into free gas during the process of depressurization and heating, causing the dynamic change of the proportion of gas, liquid, and solid phase in the pipeline transportation system. Therefore, the sampler was used to analyze and measure the proportion of gas, liquid, and solid phase by using the method of physical settlement, taking advantage of the

density difference among gas, liquid, and solid. The instantaneous component ratio of the slurry in each 30 m cycle was analyzed by the device to evaluate the decomposition efficiency of the hydrate solid phase and the migration efficiency of the sea sand. The "real-time phase content monitoring sampler" is mainly composed of sampling and measuring device, mass flowmeter and quick opening switch. The main performance indexes are as follows:

- 1)Design pressure: 16 MPa;
- (2)Working pressure: 12 MPa;
- (3) Design temperature: $-10 \sim 60 \,^{\circ}$ C;
- (4)Length of kettle body: 200 mm;
- (5) Diameter: Phi 25 mm;
- 6 Width of the visual window: 14 mm;
- 7)Length of the visual window: 100 mm.

Figure 11. Real-time phase content monitoring sampler

6) Pipeline temperature control system

The pipeline temperature control system is mainly used to simulate the temperature rise of the hydrate slurry in the rising flow of every 30 m pipeline in the sea. Therefore, thermal compensation to the vertical pipe is used to simulate the thermal exchange from the sea environment to the sea pipe by using the method of the electric heating and artificially forced heat transformation, as shown in Figure 12. The main performance indexes are as follows:

(1)Heating length: 30 m;

2 Maximum heating power: 4 kW;

(3)Highest heating temperature: 60 °C;

(4)Working temperature: 0~40 °C;

(5)Heating mode: electric heating, temperature control.

Figure 12. Pipeline temperature control system

7) Automatic monitoring system

The automatic monitoring system can automatically collect and control the key parameters of the whole experimental system, as shown in Figure 13. The main performance indexes are as follows:

①Opening, closing and monitoring of automatic valve;

(2)Control and monitoring of temperature compensation;

(3)Control and monitoring of the dynamic regulation of pressure;

(4)Control and monitoring of the temperature and pressure of the kettle;

(5)Control and monitoring of the speed and stroke of crushing device;

6 Monitoring of the temperature and pressure in pipeline;

7 Monitoring of the image in high speed pipeline complex medium multiphase flow.

Figure 13. Automatic monitoring system

3 Conclusion

1) The "solid fluidization exploitation" adopts mechanical crushing to start pipeline transportation, and then develop in advantage of automatic decomposition, precipitation and lifting of the hydrate, to turn the uncontrollable into controllable and realize safe and green drilling. The pilot exploitation and development of non-diagenetic hydrate are still blank, and solid fluidization exploitation method is expected to be the frontier of science and technology innovation and one of the revolutionary technology to develop non-diagenetic natural gas hydrates properly in the shallow layer of the world's ocean.

2) Solid fluidization exploitation laboratory of marine natural gas hydrate is positioned as a "fully

automated white-collar laboratory". The main functions of laboratory are rating of efficient rock breaking capacity, evaluation of rock carrying capacity in marine natural gas hydrate fluidization pilot exploitation, evaluation of hydrate non-equilibrium decomposition and flow patterns dynamic change laws, safe transportation under different mining rates, and simulation of well control safety. The key technical indicators of laboratory are 12 MPa pressure, 65 m horizontal pipe, and 30 m vertical pipe. The laboratory can simulate the whole process of solid fluidization exploitation with 1200 m water depth.

3) The establishment of the first solid fluidization exploitation experimental system of marine natural gas hydrate in the world has a positive and far-reaching significance in promoting the development of natural gas hydrate research worldwide.

Acknowledgement

This research was supported by the National Key Research Project "New technology of marine hydrate solid-fluidization test" (No. 2016YFC0304008).

References

[1] Tian Gong. New sources of energy after shale gas - natural gas hydrate[J]. Natural Gas Industry, 2016, 36(5): 24.

[2] Xiao Gang, Bai Yuhu. Natural gas hydrates – flammable ice[M]. Wuhan: Wuhan University Press, 2012: 1-7.

[3] Guo Ping. Theory and application of fluid phase in oil and gas reservoirs[M]. Beijing: Petroleum Industry Press, 2004: 185-187.

[4] Boswell R, Collett TS. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-215.

[5] Xu Hong, Huang Junquan, Xia Bin, Cai Qianzhong. Current research situation and resource potential evaluation of natural gas hydrate in the world (II) [J]. NATUR. GAS IND., 2005, 25(6): 18-23.

[6] Kvenvolden KA, Ginsburg GD, Soloviev VA. Worldwide distribution of subaquatic gas hydrates[J]. Geo-Marine Letters, 1993, 13(1): 32-40.

[7] Li Lisong, Miao Qi. Review on natural gas hydrate exploration and development technology[J]. Natural Gas and Oil, 2014, 32(1): 67-71.

[8] Liu Xin, Pan Zhen, Wang Yingguang, Shang Liyan, Li Ping. Research progress in exploration and development methods of natural gas hydrate[J]. Contemporary Chemical Industry, 2013, 42(7): 958-960.

[9] Liu Yushan. New trend of exploration and exploitation of marine natural gas hydrate(I) [J]. Mineral Deposits, 2011, 30(6): 1154-1156.

[10] Liu Yushan, Zhu Youhai, Wu Bihao. Recent status of marine gas hydrate exploration and production[J]. Marine Geology Frontiers, 2013, 29(6): 23-31.

[11] Liu Yushan. New trend of exploration and exploitation of marine natural gas hydrate(II) [J]. Mineral Deposits, 2012, 31(1): 176-177.

[12] Zhu Youhai. Production test from gas hydrate of Mackenzie permafrost Canada[J]. Advances in Earth Science, 2006, 21(5): 513-520.

[13] Matsumoto R, Takedomi Y, Wasada H. Exploration of marine gas hydrates in Nankai trough, offshore central Japan[J]. Annual Meeting Expanded Abstracts - American Association of Petroleum Geologists, 2001, 6: 3-6.

[14] Wang Yi, Li Xiaosen. Research progress of natural gas hydrate production technology[J]. Advances in new and renewable energy, 2013, 1(1): 69-79.

[15] Liu Shixin, Guo Ping, Du Jianfen. Technological advance of hydrate gas field development[J]. NATUR. GAS IND., 2005, 25(3): 121-123.

[16] Liu Hua, Li Xiangfang, Xia Jianrong, Sui Xiuxiang, Zhang Yi. Status of research on nature gas hydrate drilling and production techniques[J]. Drilling & Production Technology, 2006, 29(5): 54-57.

[17] Liu Jianjun, Shao Zuliang, Zheng Yongxiang. Numerical simulation of the decomposition of natural gas hydrates by depressurization[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(1): 80-90.

[18] Su Pibo, Zeng Fancai, Sha Zhibin, Shang Jiujing. Occurrence of gas hydrate in some marine drilling areas[J]. Marine Geology Frontiers, 2013, 29(12): 16-24.

[19] Liang Jin, Wang Jingli, Yang Chengzhi, Kang Dongju, Lu Jingan, Liang Jinqiang. Geophysical characteristics of gas hydrate bearing sediments in the eastern sea area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2017, 37(2): 126-133.

[20] Liang Jinqiang, Zhang Guangxue, Lu Jing'an, Su Pibo, Sha Zhibin, Gong Yuehua, et al. Accumulation characteristics and genetic models of natural gas hydrate reservoirs in the NE slope of the South China Sea[J]. Natural Gas Industry, 2016, 36(10): 157-162

[21] He Jiaxiong, Lu Zhenquan, Su Pibo, Zhang Wei, Feng Junxi. Source supply Ssystem and reservoir forming model prediction of natural gas hydrate in the deep water area of the Northern South China Sea[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 39(1): 80-90.

[22] Zhou Shouwei, Chen Wei, Li Qingping. The green solid fluidization development principle of natural gas hydrate stored in shallow layers of deep water[J]. China Offshore Oil and Gas, , 2014, 26(5): 1-7.

[23] People's Daily Online. The establishment of the first marine non-diagenetic natural gas hydrate solid fluidized exploitation laboratory[EB/OL]. [2015-05-04]. http://energy.people.com.cn/n/2015/0504/c71661-26941555.html.
[24] Wei Na, Meng Yingfeng, Zhou Shouwei, Guo Ping, Li Qingping, Zhang Mi, et al. Experimental simulation device for solid-state fluidized exploiting of ocean natural gas hydrate: China, 201510659180.9[P]. 2015-12-30.

Dr. Bjørn Kvamme Department of Physics and Technology, University of Bergen, Norway Bjorn.kvamme@uib.no

ABSTRACT

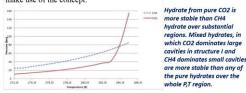
Hydrates in sediments will never be able to reach equilibrium. The reason is that there are too many phases that are active in terms of significance for hydrate thermodynamics. Solid mineral surfaces are active because they structure water to densities far beyond liquid water densities. As example maximum density of first adsorbed layer of water on Calcite is by experiments found to be in the order of 2.4 times liquid water density. The corresponding chemical potential of water in this adsorbed layer is far lower that liquid water chemical potential and out of reach for any hydrate water chemical potential. While this characteristic property of mineral surfaces as being thermodynamic inhibitor and thus exclude any real "cementing" of hydrate in porous media there is also another side of these mineral surfaces. Some hydrate formers like CO2 and H2S can adsorb directly on some mineral surface while other hydrate formers like for instance CH4 can be trapped in adsorbed water structures. In either case this primary or secondary adsorption leads to up-concentration of hydrate formers in structured water. This gives a beneficial situation for primary nucleation of hydrate. Hydrate crystal surfaces by itself serve as adsorption sites for water and hydrate formers from various phases (gas, liquid, mineral adsorbed). In summary this leads to many phases of significance for hydrate phase transitions which have to be accounted for in a balance between number of variables and conservation laws plus equilibrium conditions. It is easy to verify that even the simplest system of methane, liquid water and hydrate is highly thermodynamically over specified with pressure and temperature defined locally in a pore in a sediment. It does not change the situation of more hydrate formers are added to the system since the first and second laws of thermodynamics will dictate the hydrate formation towards the most stable hydrate first, under constraints of mass and heat transport. With respect to the latter it is important to keep in mind that hydrate formation on the gas/liquid interface is subject to mass availability which differ from average "bulk" gas since it is the adsorbed gas phase on the liquid water interface can be substantially different from the gas phase composition. In summary a number of different hydrates can form since the chemical potential of hydrate formers in various phase are not the same. As example hydrate formed from liquid water and gas will give a different hydrate composition that hydrate formed from adsorbed hydrate formers. And the associated free energies of each hydrate phase will be different, and by definition each of these hydrate phases are unique phases. Hydrates in sediments can therefore not even be considered as being in quasi equilibrium since many slow processes have substantial impact over long time scales and are parts of methane fluxes from natural gas hydrate reservoirs worldwide, as in some cases also development of geo mechanical instabilities. During hydrate production slow kinetic processes under stationary conditions developed during geological time scales can become highly significant when fluid flow in the sediments changes. Implementation of true non-equilibrium analysis, and corresponding thermodynamic and kinetic models is a necessity in development of future generations of hydrate reservoir simulators. In this work we discuss a specific approach of using a reactive transport simulator as basis for treating various hydrate phase transitions as pseudo mineral reactions. Parameterization of other reservoir simulator variables like permeability versus hydrate saturation is also discussed. All the topics is well suited for international collaboration which could benefit the whole hydrate community, ranging from dynamics of methane fluxes over to hydrate production.

Fiery Ice 2017 Corpus Christie, Texas December 6, 2017 reservoir scale

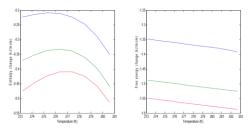
Bjørn Kvamme Department of Physics and Technology University of Bergen bjorn.kvamme@ift.uib.no

Hydrates (grey) in porous media (black: grains, white: fluids) cannot touch mineral surfaces . Minerals can be Kaolinite and other clay minerals, Calcite, Quarts and several others

Modeling


CH4/CO2

exchange on


A practical case of non-equilibrium and motivation for multi-stage modeling strategy

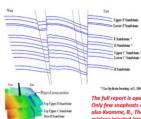
Many research groups around the world has been tempted by the possibility of a win-win situations of combined safe storage of CO2 and release of CH4 from in situ CH4 hydrate.

The possibilities are easy to see from simple hydrate equilibrium experiments but the mechanisms are more important in order to fully make use of the concept.

Free energy and enthalpy changes for conversion from pure methane hydrate to pure carbon dioxide hydrate (Kvamme & Tanaka, 1995) Blue: 43 bar, Green: 83 bar, Red: 120 bar

Free energy chage for the water in the structure is not large. CO2 change is also limited since it comes from a fairly dense phase and have reasonable filling. But CH4 will benefit from the entropy change of getting released.

Phase Field Theory (PFT) has similarities to Density Functional Theory (DFT) in classical statistical mechanics

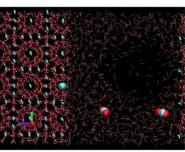

This is deliberately made small and unreadable details are unimportant in the context of this presentation. Separate detailed presentations are available, as well as several PhD theses and publications.

Will be happy to present PFT in more detail in separate presentations. Interesting concept for collaboration since it is a nice platform for pore scale modeling that utilize Molecular Modeling and bridges to reservoir sinulator development

Practically it can (simplified) be thought of as minimizing free energy (1. and 2. laws of thermodynamics) under the constraints of mass- and heat-transport. Heat transport is so far simplified as a «lumped» conduction/convection term in a fashion similar to what is done in reservoir modeling ,as well as interpretation of experiments

Mass transport has implicit diffusion and Navier-Stokes for hydrodynamics

The Ignik Sikumo field test was funded by DOE and JOGMEC. The pilot plant experiment was conducted by Conocophillips and **JOGMEC**



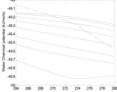
While different laboratories around the world has investigated the CO2/CH4 exchange for the last 2 decades only one pilot plant study has been conducted.

Estimated hydrate saturation in the socalled upper C was 75 %, 15 % free water and rest pore bounded water What are the mechanisms involved in the conversion and how can this be modelled on a reservoir scale?

The full report is open and available for do vnload from NETL sts of the main results are given here. See Thermodynamic limitations of the CO2/N2 ed into CH4 hydrate in the Ignik Sikumi fi trial, 2016, J. Chem. Eng. Data, 2016, 61 (3), pp 1280-1295

Conversion mechanisms: 1. Solid state conversion

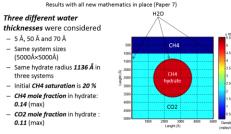
Obviously we have to wait for several years if the solid state nism is the only mechanism


- Formation of a new hydrate from injected CO2 and free pore water release heat.
- Heat is transported though water phase and minerals while injection gas is heat insulator
- New CO2 hydrate forms rapid and low permeability makes it tempting to add N2
- Addition of limited amounts of N2 is ok but 77.5 per cent N2 by volumes as in Ignik is far too much.

Solid state conversion is slow, with diffusivity coefficient in the order of 10^-16 m^2/s

The process in entropy dominated (as indicated before the experiment)

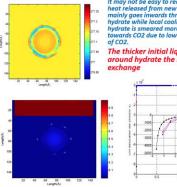
The relative impact of this mechanism will


The second mechanism is much faster and in the rate order of liquid water transport but requires advanced theory to investigate due to complex dynamic couplings

Dashed curve is chemical potential of liquid water. Solid lines are chemical potential of inqua water. Solid lines are chemical potential for water in hydrates created from mole-fractions of CO2 in Nitrogen of 0.01 (top), 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 (bottom)

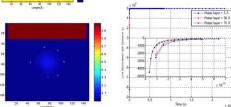
At 280 K and pressures relevant for Ignik Sikumi test more than 20 % CO2

Simulation setup

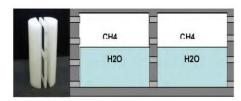

ncrease with lower free vater in pores

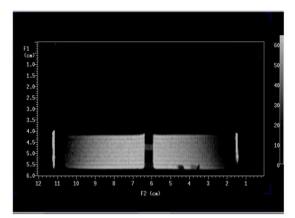
ween mass tran I heat transport

in N2 is needed to retain the fast CH4/CO2 exchange mechanism


98

^{268 270 272 274 276 278 28} Temperature (K)




It may not be easy to read from these figures but heat released from new CO2 hydrate formation mainly goes inwards through liquid water and hydrate while local cooling during in situ CH4 hydrate is smeared more out on interface towards CO2 due to low heat transport capacity of CO2. The thicker initial liquid water film

round hydrate the longer period of fast

Experiments with methane and water at 83 bar and 3 C Similar experiment with CO2 did not show any penetration of the hydrate film after 500 our (resolution ~ 100 micrometer)

The most efficient hydrate nucleation is heterogeneous hydrate nucleation towards solid surfaces or liquid water surface

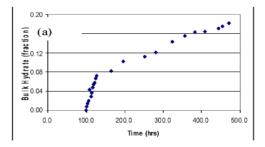
Guest molecules		Molar concentration	Molar concentration after CO2 separation	$\mu_i^{\text{per}} = \frac{1}{\beta} \ln(\beta \Lambda_i^3) + \frac{1}{\beta} \ln(x_i N) - \frac{1}{\beta} \left(\frac{\partial \ln Q}{\partial N_i} \right)_{T,V}$ $= \frac{1}{\beta} \log(\beta A_i^3) + \frac{1}{\beta} \log(\beta A_i^3$
Methane	(CH4)	0.8448	0.8752	$= \frac{1}{\beta} \ln(\beta \Lambda_i^3) + \frac{1}{\beta} \ln(x_i N) - \frac{1}{\beta} \left(\frac{\partial \ln Q^{2D}}{\partial N_i} \right),$
Ethane	(C2H6)	0.0876	0.0907	1
Propane	(C3Hs)	0.0304	0.0314	$-\frac{1}{\theta} \ln Q_i^{(D)}$
Isobutane	(i-C4H10)	0.0025	0.0026	Leave Leave Leave 1
Carbon dioxide	(CO2)	0.0347		$= \frac{1}{\beta} \ln(\beta \Lambda_i^3) + \frac{1}{\beta} \ln(x_i N) - \frac{1}{\beta} (\beta \mu_i^{2D}) - \frac{1}{\beta}$

Composition of the Sleipner gas (North Sea) If *liquid water is available* then it is not actually the gas phase composition that determines which components that creates the hydrate – it is *the adsorbed layer of* hydrate formers

Adsorption composition can be widely different than the «bulk» gas and is basically determined by the individual molecules attraction to water and thermodynamic state (simplified: how far from condensation)

 $-\frac{1}{\theta} \ln Q_i^{(1D)}$ $= \frac{1}{\beta} \ln(\beta \Lambda_i^3) + \frac{1}{\beta} \ln(x_i N) - \frac{1}{\beta} (\beta \mu_i^{2D}) - \frac{1}{\beta} \ln Q_i^{1D}$ The symbols and details of this 2D adsoprtion theory is not interesting in this context. Will

send the paper (Kvamme, B., Thermodynamic limitations of the CO2/N2 mixture injected into CH4 hydrate in the Ignik Sikumi field trial, J. Chem. Eng. Data, 2016, 61 (3), pp 1280–1295) As a simple example of the estimated


equilibrium between a gas phase consisting of 10 mole% CO2 in CO2/N2 mixture and a liquid water surface the adsorbed phase contains 32 mole% CO2 at 30 bar and 274 K

What governs hydrate formation ?

- Possibility to reach equilibrium (Gibbs). Is there balance between defined independent thermodynamic variables, conservation laws and conditions of equilibrium?
- Initial distance from equilibrium in all independent thermodynamic variables
- Combined First and Second laws of thermodynamics. In terms of Gibbs it implies that all systems will stribe towards minimum free energy as function of temperature, pressure and distribution of masses in the distem over possible phases, under constraints of mass and heat transport.
- Kinetics (combined thermodynamic control, mass transport dynamics and heat transport dynamics)

Gibbs phase rule

- · In this system there are two components and thus
- · Two degrees of freedom when hydrate is formed homogeneously from dissolved methane. Hydrate equilibrium can be achieved
- · Only one degree of freedom whith hydrate forming heterogeneously on the gas/liquid interface. Overdetermined when both P and T is defined. Progress towards local and global minimum of free energy

How many phases are actually then active and significant with respect to hydrate phase transitions in porous media?

The minimum number of significant phases for one hydrate former in a pore is:

- Hydrate former phase
- Liquid water
- Adsorbed phase on mineral surfaces
- Initial hydrate forming
- Adsorbed on initial hydrate Additional hydrate phases
- (hydrate former from aquous solution, adsorbed,

Hydrate growing on a liquid water/CH4 Interfa Initial hydrate formed from CH4 gas and liquid water. Then also growth from dissolved CH4 in water. Then also growth from dissolved CH4 water and third – some water from gas will adsorb on initial hydrate and create hydrate

from gas, water from various These three events will give different hydrates. Black is CH4 phase and hydrate. White is liquid phases) So 5+ phases for two components gives a system over specified by minimum 3 independent thermodynamic variables when local T and P is defined by local flow

Gibbs Phase Rule

p. Of deg. Of
$$\longrightarrow \tau = N - \pi + 2$$

readom No. Of components No. Of Phases

 Gibbs phase rule is actually very trivial and it is hard to see why it even has a name credited to the statement/equation. It is simply: - Number of independent thermodynamic variables (temperature, pressure and

masses in all phases)

minus conservation laws

minus conditions of equilibrium

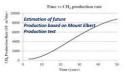
And the resulting number is the number of independent thermodynamic variables that must be fixed in order to make equilibrium possible. This is the degrees of freedom that appears in Gibbs phase rule.

Local temperature and pressure in a reservoir or in a pipeline is always given so any number of degrees of freedom different than two excludes possibility for full thermodynamic equilibrium

The filling fraction of j in cavity type i is given by

θ. $1 + \sum h_{ij}$

Ν


which then relates to the mole-fraction of *j* in the hydrate

$$x_{j} = \frac{v_{large}\theta_{large,j} + v_{small}\theta_{small,j}}{1 + \sum_{j} v_{large}\theta_{large,j} + v_{small}\theta_{small,j}}$$

$$x_{H2O}^{Hydrate} = 1 - \sum_{i} x_{j}$$

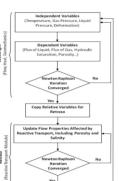
So any change in chemical potential of guest cules due to changes in concentrations will lead to a new hydrate (composition and density will be different and by definition it is a new phase)

Multi-scale modeling of hydrates in porous media and international collaboration

There are many options for the various steps in multi-scale modeling .

- On nano scale the are complementa hydrid methods (Molecular Dynamic with periodic Monte Carlo steps) to speed progress up and
- On nano to pore scale modeling there are also interesting complementary con - see next overhead for one example
- There is substantial value of symbiosis theory, modeling, experiments and pilot experiments

Numerical tool


Spatial discretization:

Finite elements (1D, 2D and 3D) Temporal discretization Finite differences

Non linear solver:

Newton-Raphson/Direct substitution Approach / Global Implicit

We started out with the RetrasoCodeBight (RCB), which was an ideal gas hydrogeological simulator with implicit geomechanics, in 2006 and reworked it into a reactive transport simulator for aquifer storage for CO2 thorugh my programming and a PhD student (Shunping Liu), and funded by an USA cintrolled JIP. After 4 PhD's of reworking it further into a hydrate simulator there are still a number of very significant hydrate phase transition to include but we have a steady goal and we want to borate l

So - if the system cannot reach true thermodynamic equilibrium - then there is no rule that says chemical potential of hydrate formers is the same in all phases

 $\mu_{w}^{H,i}(T, P, \vec{x}^{H}) = \mu_{w}^{H,0}(T, P) - \sum v_{i} \ln(1 + \sum h_{ki}^{i})$ $-\beta \left(\begin{array}{cc} \mu & i \\ k & j \end{array} \right) + \Delta g \left(\begin{array}{cc} \mu & i \\ k & j \end{array} \right)$ h e _

What is chemical potential for the guest in the «parent» phase ?

What is the resulting free energy of that specific hydrate phase ?

Right: CO2 (enhanced red and grey) adsorbing onto Hematite from water solution. Adsorbed CO2chemical potential: -39.21 kJ/mole at 274 K

$\Delta G_i = \delta \left[x_w^{H,i} (\mu_w^{H,i} - \mu_w^p) + x_{CH4}^{H,i} (\mu_{CH4}^{H,i} - \mu_{CH4}^p) \right]$

Free energy changes for different phase transitions involving hydrate from CH4

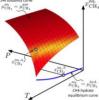
table 1 is calculated according to equation 1. Note that and as such the label hydrate for the phase does not energy for any of the ay involve hydrate

1	8	Initial phase(s)	Driving force	Final phase(s)	Possible
1	-1	Hydrate	Outside stability in terms of local P and/or T	Gas, Liquid water	competing
z	-1	Hydrate	Sublimation (gas under saturated with water)	Gas	
	-1	Hydrate	Outside liquid water under saturated with respect to carbon disaide and/or other enclathrated impurities originating from the carbon disaide phase	Liquid water, (Gas)	phase transitions involving
4	-1	Hydrate	Hydrate gets in contact with solid walls at which adsorbed water have lower chemical potential than hydrate water	Liquid water, Gas	hydrate with a basis from a system of CH4
	+1	Gas/fluid	Hydrate more stable than water and hydrate formers in the fluid phase	Hydrate	containing
	+1	Gas + Liquid water	Hydrate more stable than condensed water and hydrate formers from gas/fluid	Hydrate	water. More components in
,	+1	Surface reformation	Non-uniform hydrate rearranges due to mass limitations (lower free energy hydrate particles consumes mass from hydrates of higher free energy)	Hydrate	the CH4 phase will not change the picture as
	+1	Aqueous Phase	Liquid water super saturated with carbon dioxide and/or other hydrate formers, with reference to hydrate free energy	Hydrate	even more hydrate phases
	+1	Adsorbed	Adsorbed water on rust forms hydrate with adsorbed hydrate formers.	Hydrate	will occur (most stable hydrate
10	+1	Adsorbed +fluid	Water and hydrate formers from gas/fluid forms hydrate	Hydrate	form first) ²⁰

Permeability versus hydrate saturation

- Hydrate is unable to attach to mineral surfacs and will be pore filling like a special grain
- Evaluation of different possible pore structures from CT scan images of real porous material gives
- more than one structure with same porosity But there are significant differences in geomechanical stability of different possible structutures
- Illustration to the right are fromToru Sato (Tokyo University), which used Boltzmann flow to intep permability in Darcy flow
- This is a very interesting an conplementary concept to PFT. Since it starts from the hydrodynamic end it will easier handle large volumes, although with more simplified phase transition dynamics

Optimized pore structure based or CT scan and; below: estimated elocity profiles from lattice



Thermodynamic data

- Thermodynamic data for fluid phases and water is available outside of equilibrium, with variable accuracy depending on equation of state. Molecular Dynamics (MD) simulations are alternatives for liquid CO2 containing impurities. (Kvamme et.al., Phys.Chem.Chem.Phys., 2014, 16, 8623)
- Liquid water based on MD (Above reference or Kvamme & Tanaka, J. Phys. • Chem. 1995, 99, 7114-7119, also for outside equilibrium
- Hydrate thermodynamics (Kyamme & Tanaka, 1995) is also based on absolute thermodynamics but linked to an equilibrium theory. Hydrate properties outside equilibrium from Taylor expansions in all independent variable (temperature, pressure and concentrations). (Kvamme et.al., Phys.Chem. Chem. Phys., 2013, 15, 2063.
- Ncessary properties for extensions to pressures and temperatures outside of equilibrium using MonteCarlo simulations of model hydrate systems
- See slide 39 for some examples of hydrate «reactions». Ovehead also repeated here for convenience

Any change in cavity partition function results in a new hydrate phase

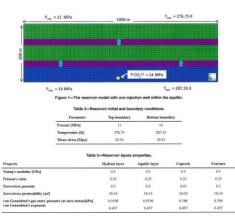
In an non-equilibrium situation hydrate formed from dissolved methane in water (between blue curve and red) are different from other hydrates

On the reservoir level there are already a number of hydrate simulators so why do we need another one?

Most existing hydrate simulators are either built up as extensions of *oil/gas simulators* or extensions of *hydrogeological* simulators

The various TOUGH HYDRATE versions started from the same framework as the TOUGH REACT versions. As such there is likely the possibility of making a new TOUGH HYDRATE based on TOUGH REACT in a similar fashion that we are extending our Reactive Transport code (RetrasoCodeBright)

Considering each hydrate phase as a pseudo mineral opens up new possibilities

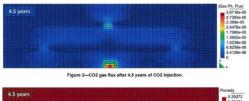

Using free energy minimization tools which have been used for solving parallell gochemical reactions in flowing systems

 $\Delta G_i = \delta \left[x_w^{H,i} (\mu_w^{H,i} - \mu_w^p) + x_{CH4}^{H,i} (\mu_{CH4}^{H,i} - \mu_{CH4}^p) \right]$

Free energy changes for different phase transitions involving hydrate from CH4

In a reactive transport simulator each hydrate pseudo "mineral" appear as a "mineral" subject to formation or dissociation in a competition based on minimum free energy under constraints of heat and mass transport

1	8	Initial phase(s)	Driving force	Final phase(s)	
1	-1	Hydrate	Outside stability in terms of local P and/or T	Gas, Liquid water	Thermodynamic
2	-1	Hydrate	Sublimation (gas under saturated with water)	Gas	properties of
3	-1	Hydrate	Outside liquid water under saturated with respect to carbon dioxide and/or other enclathrated impurities originating from the carbon dioxide phase	Liquid water, (Gas)	fluids are available for any T and P directly
4	-1	Hydrate	Hydrate gets in contact with solid walls at which adsorbed water have lower chemical potential than hydrate water	Liquid water, Gas	from residual thermodynamics.
s	+1	Gas/fluid	Hydrate more stable than water and hydrate formers in the fluid phase	Hydrate	Hydrate – on the
6	+1	Gas + Liquid water	Hydrate more stable than condensed water and hydrate formers from gas/fluid	Hydrate	other hand is based on an
7	+1	Surface reformation	Non-uniform hydrate rearranges due to mass limitations (lower free energy hydrate particles consumes mass from hydrates of higher free energy)	Hydrate	equilibrium theory but properties of
*	+1	Aqueous Phase	Liquid water super saturated with carbon dioxide and/or other hydrate formers, with reference to hydrate free energy	Hydrate	hydrate outside equilibrium can
9	+1	Adsorbed	Adsorbed water on rust forms hydrate with adsorbed hydrate formers.	Hydrate	be calculated by Tavlor
10	+1	Adsorbed +fluid	Water and hydrate formers from gas/fluid forms hydrate	Hydrate	expansions ²⁵



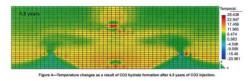


Figure 3—Porosity started to decrease as a result of hydrate formation after CO2 has reached to the CH4 hydrate layers, where the CO2 hydrate formation condition is suitable, results after 4.5 years of CO2 injection

kinetic models

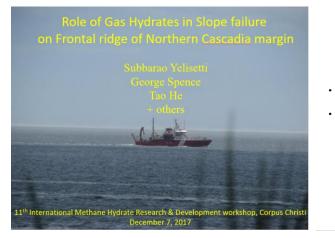
- Our primary tool for development of kinetic models is Phase Field Theory (PFT), in which our latest models (Kvamme et.al., Phys.Chem. Chem. Phys., 2013, 15, 2063) contain implicit hydrodynamics and heat transport.
- In simplified language **PFT** theory implies **minimization** of free energy under constraints of mass- and heat transport.
- Results from these rigirous models are extracted and transferred into simplified models

Property	Value	Unit	
CH4 hydrate molecular weight	11119.5	g/mol	
CH4 hydrate density	907.40	kg/m3	
CH4 hydrate specific heat	2600	J/(kg.K)	
CH4 hydrate reaction enthalpy	53.24	kJ/mol	
CO2-hydrate molecular weight	1092	g/mol	
CO2-hydrate density	1021.47	kg/m3	
CO2-bydrate specific heat	2200	J/(kg.K)	
CO2-bydrate reaction enthalpy	65.22	kJ/mol	
Thermal conductivity of saturated medium	3.1	W/(mK)	
Solid phase density	2163	Kg/m3	
Specific heat of rock	874	J/(kg.K.)	

The PhD candidate came in lucky circumstances with another PhD candidate so she had to complete thesis before the final steps solving the heat balance for the dissoction of CH4 hydrate and heat transport through the formation. Temperatures listed above will of course be lower due to dissociation enthalpy for the in situ CH4 hydrate and the corresponding kinetic rate for CH4 hydrate dissociation.

- The only practically realistics mechanism involved in CO2/CH4 swap is through formation of a new CO2 hydrate from free pore water and incoming gas
- Release of the in situ CH4 hydrate is kinetically governed by coupled sets of mass- and heat transport which requires state of the art multiscale modeling.
- With modern graphical computers we can reach pore scale with Phase Field Theory modeling

Conclusions


- Adding N2 to CO2 in small amounts will be usefull for increasing permeability and redusing the kinetic rate of new CO2 to avoid blocking.
- Amounts corresponding to filling of N2 in small cavities can be feasible
- Work on development of other additives is in progress

Dr. Subbarao Yelisetti – Texas A&M University – Kingsville

Role of gas hydrates in slope failure of northern Cascadia margin Subbarao Yelisettia*, Tao Heb and George Spencec aDepartment of Physics and Geosciences, Texas A&M University-Kingsville, Kingsville, Texas 78363, USA. bKey Laboratory of Orogenic Belts and Crustal Evolution, MOE (School of Earth and Space Sciences, Peking University), Beijing 100871, China. cSchool of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.

Abstract

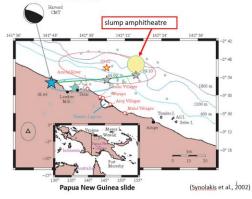
Recent multibeam bathymetric and ocean bottom seismic studies from the northern Cascadia margin indicated several slope failure features associated with frontal accreted ridges near the foot of the continental slope. The combined volume estimate based on multibeam data of these slides (>1 km3) is approaching the mass failure volume for other slides that have generated large tsunamis-for example 1-3km3 for a 1998 Papua New Guinea slide. The reason for these slope failure features is not clear although several lines of evidence indicate that there is some connection between the presence of hydrates and slope failure features on this margin. Vertical incidence and ocean bottom seismic data collected over the Slipstream slide indicate the presence of a bottom simulating reflector (BSR) at a depth of ~265-275 meters below the seafloor (mbsf). Tomographic velocity analyses of P- and S-waves indicate shallow high velocities at a depth of ~100 mbsf. The top of this high velocity layer coincides with the depth of the glide plane for this slide. On an adjacent frontal ridge, the depth of the glide plane associated with the Orca slide, matches with the depth of the BSR. In both these cases, the contrast in sediment strength between the hydrate saturated sediments and non-hydrated sediments could be providing the glide plane for failure. Shear stress distribution models for Slipstream slide indicate that the glide plane is more likely associated with the shallow high-velocity gas hydrate layer. These models further indicate that the sliding process starts from the top of the slope and then progressively retreats to the place of current headwall in a series of triangular blocks or wedges.

SeaJade Objectives

(Seafloor Earthquake Array – Japan CAnada CascaDia Experiment)

- To monitor earthquake activity on Canada's west coast
- To understand subsea-landslide and tsunami hazards

1929 Grand Banks earthquake (M 7.2), slump and tsunami

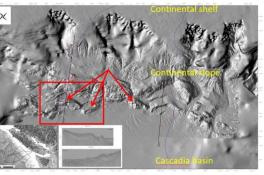

undersea cable breaks out to 500 km (turbidity currents)
 failure area 20,000 km², sed vol 100-150 km³ (thickness ~5 m)

• tsunami : 28 deaths; observed in Portugal

Storegga Slide: mother of all landslides 15 W 25% 5'W 15'E 5'E 70'N mass failure area equiv to Iceland headwall ~250 km long • extends ~ 150 km • runout ~800 km 60% •failure area~3000 km³ Multiple events (3?) • oldest, biggest 250 ka • most recent 8.2 ka 15 W 10 W 5°E 10'E 1 Run-up of tsu Storegga tsunami deposits (Bondevik et al., 2003)

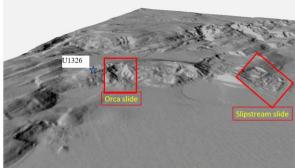
1998 Papua New Guinea earthquake (M 7.1) and tsunami

• slump sediment volume only 1-4 km² (max thickness 600 m) • tsunami : 2200 deaths

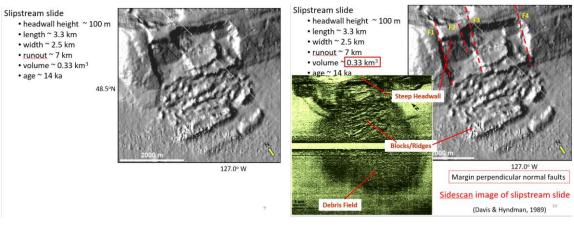


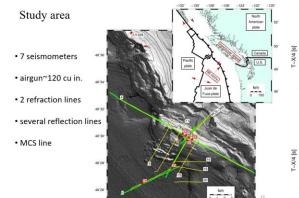
Cascadia margin, Vancouver Island

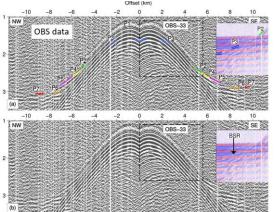
Atlantic

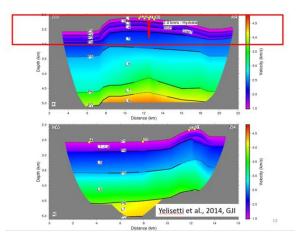

(Fine et al. 2005)

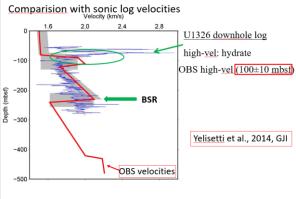
6

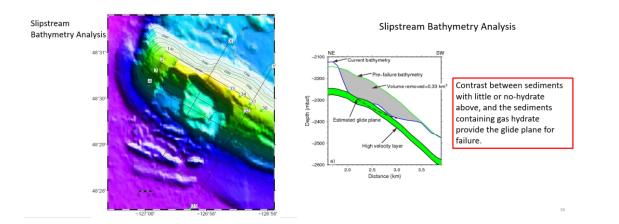


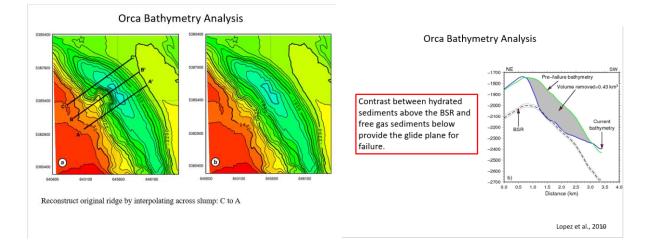

Swath bathymetry, U Washington, 2004

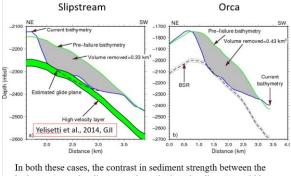




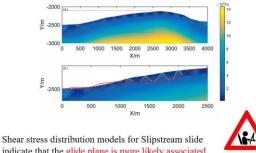

U1326 : IODP drilling, 2005

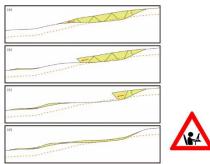






104




hydrate saturated sediments and non-hydrated sediments could be providing the glide plane for failure.

Shear stress distribution models

indicate that the glide plane is more likely associated with the shallow high-velocity gas hydrate layer.

Shear stress distribution models

The sliding process starts from the top of the slope and then progressively retreats to the place of current headwall in a series of triangular blocks or wedges.

3D Finite Element Modeling for Possible Creeping Behavior of Gas Hydraterelated Slipstream Submarine Slide, offshore Vancouver Island, Canada

Songbo Long, Tao He, Kun Lan, George D. Spence, and Subbarao Yelisetti

Technology Status of Mining Guide Device of Natural Gas Hydrate in Seabed Shallow Layer

He Xia¹ Li Xuefeng¹ Zhong Lin¹ Wang Guorong¹ Liu Qingyou^{2,5} Zhou Shouwei^{3,5}, Li Qingping⁴ Fu Qiang⁴ Wang Leizhen¹

1College of Mechanical and Electrical Engineering, Southwest Petroleum University; 2. Key Laboratory for Fluid Machinery and Power Machinery of the Education Ministry of China, Xi Hua University, 610039; 3. China National Offshore Oil Corporation (CNOOC), Beijing, 100010; 4. CNOOC Research Institute, Beijing, 100027; 5. State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, 610500

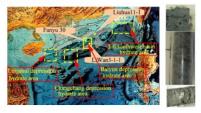
Corresponding Email: zhonglin858296@163.com

Abstract The new method with solid fluidization exploitation of natural gas hydrate (NGH) and the new technology with jet flow mining crushing provide new ideas for the potential commercial exploitation of non-diagenetic NGH in seabed shallow layer, and the key point in commercial exploitation is to increase the mining efficiency, and furthermore the mining device guide is the essential technology, which determine the NGH commercial exploitation efficiency. For rotary steering, soft-bodied robots and continuous mechanical arm technology, the relevant guide technology applied to applicability evaluation of NGH mining are carried out, which demonstrates the feasibility of the guide tool of continuous tube with ultra-short radius and the technology applied to the mining guidance robots with hydraulic jet mining. Based on this, the scientific problems of existing guidance technology applied to the mining guidance of seabed shallow NGH are proposed, which contain the stability of formation and borehole wall, equipment dimensions restricted by well diameter, the diversion of high curvature, in-situ real-time detection, the map construction of mining regional NGH reservoir and path planning of the unexploited area. Furthermore, the future potential development directions of research on the light weight, small size, high flexibility , high strength of mining guide devices and the real-time monitoring and evaluation of NGH reservoir location are put forward.

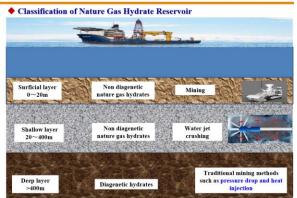
Key word: NGH in seabed shallow layer; Mining guide device; Scientific problems; Future development; Applicability evaluation of guide device; Feasibility demonstration of mining guide technology

Technological Status of Mining Guiding Devices of

Submarine Shallow Nature Gas Hydrate


Reporter: Lin Zhong

Email: 201699010108@swpu.edu.cn


Southwest Petroleum University December 7, 2017

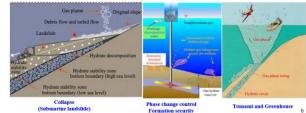
1. Engineering Background of Solid Fluidization Mining

- Distribution Characteristics of Nature Gas Hydrate Reservoirs in China
- 11 potential nature gas hydrate areas in the south China sea
- Prospective resource, 68 billion tons
- Non diagenesis nature gas hydrate, 90%

1. Engineering Background of Solid-state Fluidization Mining

- 1. Engineering Background of Solid Fluidization Mining of
- Submarine Shallow Nature Gas Hydrate
- 2. Guiding Key Technologies of Solid Fluidization Mining
- 3. Applicability of Existing Guiding Technology
- 4. Development of Mining Guiding Devices

1. Engineering Background of Solid Fluidization Mining


- ♦ Types of Nature Gas Hydrate Reservoir in China
- Insitu resource growth Reservoir variation eduction of resource estimation coefficient (resource of mining risk)

 Shallow reservoir and weak cementation
 Loose sediment for covering layer

1. Engineering Background of Solid Fluidization Mining

- ♦ Urgent Problems of Nature Gas Hydrate Commercial Mining
- Traditionally Production problems---Collapse, Tsunami and Greenhouse Effect
- Urgent issue—Hydrate Phase change control, Mining formation Security
- A novel mining process need to be proposed for hydrate commercial mining

1. Engineering Background of Solid Fluidization Mining

1. Engineering Background of Solid Fluidization Mining

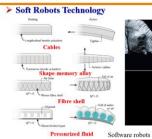
Commercial Mining Requirements

3. Applicability of Existing Guiding Technology

> Rotary steerable Drilling Technology

(a) Push-back rotary steerable tool

(b) Directive rotary steerable tool

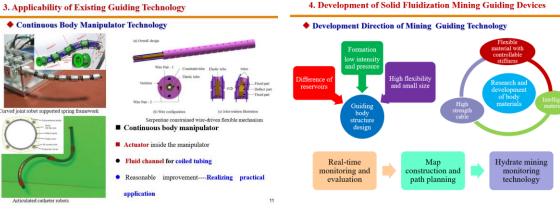

Eccentric ring Range of motion

1¢ 0

cantilever

- Push-the-bit rotary steerable tool
- Drilling bit rotary angle-Lateral force (formation reacting force)
- Not applicable non-diagenetic hydrate formation
- Point-the-bit rotary steerable tool
- Guiding offset mechanism including cantilever bearing, eccentric ring and focal bearing.
- Stable slope interval-- 0° to15° every 30m
- · Completing guide, minimum distance-180m.
- Flexible guidance, 20m- 400m

3. Applicability of Existing Guiding Technology



12

Application of Soft Robot in Solid Fluidization Mining

- Low Load-carrying capacity
- Bulk materials limited in downhole--- strength, stiffness and flexibility

4. Development of Solid Fluidization Mining Guiding Devices

- 4. Development of Solid Fluidization Mining Guiding Devices
- Urgent Issue of Mining Guiding Devices for Commercial Mining
- ♦ Stability of hydrates formation and wellbore wall
- Devices size of borehole dimensions constraints
- Distance and method of in-situ real-time detection of efficient mining
- **•** Synchronous map construction in hydrate mining and the path planning of virgin areas.

Thank you!

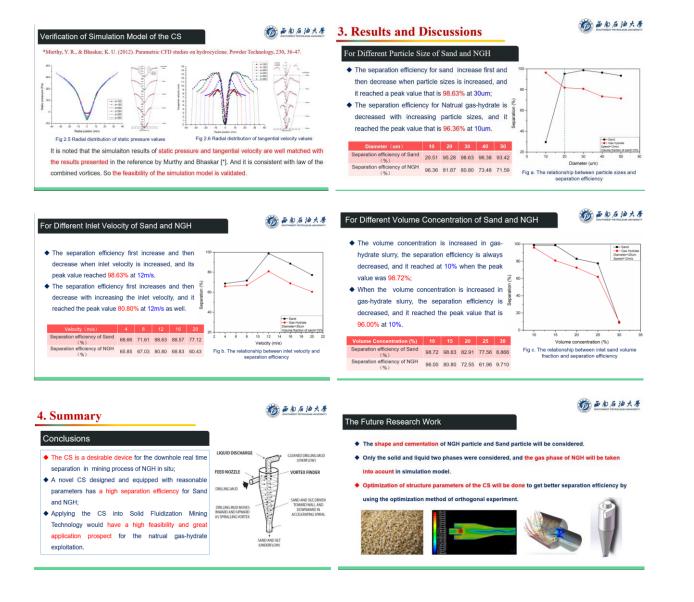
Lin Zhong Email: 201699010108@swpu.edu.cn Southwest Petroleum University

109

Feasibility Research on a Purification Technology of Natural Gas-hydrate Slurry by Sand Removal based on Hydrocyclone Separation

GuorongWang¹, Shunzuo Qiu¹, Yang Tang^{1, 3}, Qingyou Liu^{2, 3}

¹School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, 610500, China

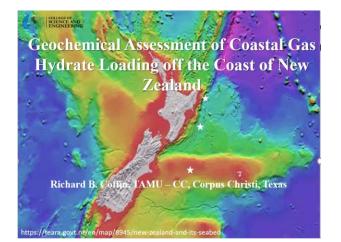

²Key Laboratory for Fluid Machinery and Power Machinery of the Education Ministry of China, Xi Hua University, 610039, China

³State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, 610500, China

Corresponding Email:tangyanggreat@126.com

Abstract: Downhole real time separation technology is indispensable for solid fluidization and green exploitation of submarine shallow gas-hydrate. It is necessary to carry out research, because it can reduce energy consumption, increase mining efficiency and prevented gas-hydrate storage from collapse and leakage. Therefore, firstly anew exploitation and separation process was presented by our research group. And a hydrocyclone used for submarine gas-hydrate slurry was designed based on the properties of seabed gas-hydrate and the multiphase flow theory. Then separation efficiency of the hydrocyclone was analyzed, including particle sizes, inlet velocity, and sediment volume concentration, in gas-hydrate slurry by simulation method of Computational Fluid Dynamics (CFD). The simulation analysis results show that the separation efficiency of sand and gas-hydrate is more than 60% with the hydrocyclone in the conventional condition. For sand separation, when only the particle sizes was increased, the separation efficiency increased first and then decreased, and it reached the peak valuethatis 98.63% at 30 um; when only the inlet velocity was increased, the separation efficiency first increased and then decreased, and reaches the peak value that is 98.63% at 12m/s; when only the sediment volume concentration was increased in gas-hydrate slurry, the separation efficiency always decreased, and it reached at 10% when the peak value is 98.72%. Forgas-hydrate, increasing the particle sizes, the separation efficiency decreases, and reaches the peak at 10um, the peak value is 96.36%; Increasing inlet velocity, the separation efficiency first increases and then decrease, and reaches the peak at 12m/s, the peak value is 80.80%; Increasing sediment volume concentration in gas-hydrate slurry, the separation efficiency decreases, and reaches the peak at 10%, the peak value is 96.00%. According to this study, it is revealed that the hydrocyclone equipped with reasonable parameters has high separation efficiency and large amount of treatment for gas hydrate, and it will have a high feasibility and great application prospecting gas-hydrate exploitation. Keywords: Natural gas-hydrate; Hydrocyclone Separation; Sand-removal; CFD; Simulation analysis .

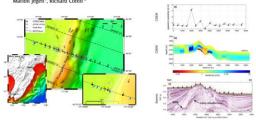
Yang Tang Email: <u>tangyanggreat@swpu.edu.cn</u> Southwest Petroleum University Geochemical Assessment of Coastal Gas Hydrate Loading off the Coast of New Zealand


Dr. Richard Coffin - Texas A&M University - Corpus Christi, richard.coffin@tamucc.edu

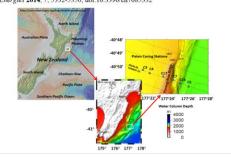
Across world coastal oceans there have been extensive surveys with the application of seismic data to predict deep sediment gas hydrate loading. Over the past 10 years comparisons of seismic data and geochemistry show there is a need to combine these data for a more thorough understanding of the deep sediment gas hydrate loading. Initial observations in predicting hydrate presence with integration of seismic and geochemistry data off the mid Chilean margin suggested gas hydrate loading could be greater at a location where seismic data showed moderate gas blanking. On the Atwater Valley in the Gulf of Mexico geochemical assessment showed a region with a strong vertical rise in the BSR to be a site where gas hydrate are likely not stable as a result of salt diapir intrusions creating gas hydrate instability and higher vertical methane advection. Here we present a series of data along the eastern coast of New Zealand that include seismic profiles, geochemistry, controlled source electromagnetics, and heatflow to assess gas hydrate loading. This comparison of locations shows remarkable inconsistencies in the data sets applied to gas hydrate predictions. Through these locations comparisons include:

The Porangahau Ridge in the Hikurangi Margin where geochemical profiles focusing anaerobic methane oxidation display moderate vertical gas migration in a region that strong seismic, active heat flow, and controlled source electromagnetic data suggest deep gas hydrate loading and active fluid and gas advection. A carbon isotope mass balance shows the highest methane contribution to the location at a point where these instruments indicate strong advection. It is interesting these data do suggest moderate vertical methane migration relative to work done in the Gulf of Mexico and off the mid-Chilean margin.

Mahia Peninsula, located north from the Porangahau Ridge display strong similarity in geochemical and seismic data for assessment vertical methane fluxes in two different transects. However, porewater geochemical data from these transects compared to a "control" location where seismic data indicates no gas hydrate loading are similar. These data do confirm the realization that while gas hydrate loading assessment requires use of seismic data in the assessment there are likely extensive areas not identified. There is a need for future development of a better assessment of coastal gas hydrate loading.


Chatham Rise, a region where published seismic data was believed to contain gas hydrate loading was found to have a total absence of vertical methane migration. Thorough sediment porewater analysis at through this region showed no vertical methane fluxes to be present. In this location, radiocarbon data of shallow sediment carbonate and organic carbon suggest a potential for carbon dioxide migration. This observation has resulted in plans for a paleo-geochemical study to understand vertical carbon dioxide migration over climate cycles.

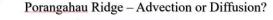
COLLEGE OF SCIENCE AND ENGINEERING

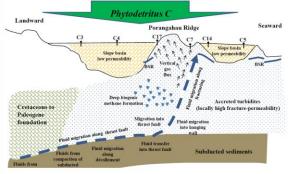

Preliminary interpretation of electromagnetic, heat flow, seismic, and geochemical data for gas hydrate distribution across the Porangahau Ridge, New Zealand Katrin Schwalenberg **, Warren Wood *, Ingo Pecher **, Leila Hamdan ⁴, Stuart Henrys *, Marion Jegen *, Kichard Odin ⁴

COLLEGE OF SCIENCE AND ENGINEERING

Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand

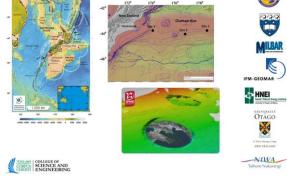
Richard B. Coffin^{1,8}, Leila J. Hamdan², Joseph P. Smith³, Paula S. Rose^{4,5}, Rebecca E. Plummer⁵, Brandon Yoza⁶, Ingo Pecher⁷ and Michael T. Montgomery¹ Energies **2014**, 7, 5332-5356; doi:10.3390/en7085332


CORPUS CORPUS COLLEGE OF SCIENCE AND ENGINEERING


Acknowledgements

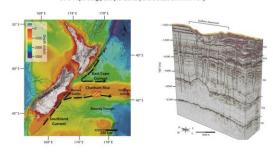
- Ingo Pecher, University of Auckland
- Branden Yoza, University of Hawaii
- Jens Greinert, Geomar
- Joe Smith, US Naval Academy
- Paula Rose, TAMU-CC
- Kate Waghorn, University of Auckland
- Bryan Davy, GNS Wellington

COLLEGE OF SCIENCE AND ENGINEERING

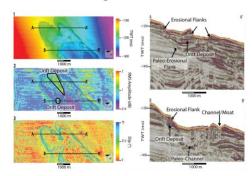


Coffin et al. 2014

Methan	e C		F	Phytoo	letritu	s C						
oc ←	DIC			5	oc			- 12				-12 -
1	1 -				•		d(δ ¹³ C	$\langle C \rangle = \delta$	5 ¹³ C.	+ d(δ ^B C _Δ
*сн₄	*			C	to,			dC		Δ		dC
e Water	Carbon	1			ent Ca	rbon						
		SOC		-	CaCO		-	DOC			DIC	
Cor		nembers	Samples		embers	Samples		embers	Samples		embers	Sample
C4	PD	DIC *	-24.4	PD -0.3	CH4 -83.3	-2.7	PD -21.7	-41.5	-23.3	PD -21.7	CH4 -83.3	-41.5
			-24.4	-0.3	-83.3	-43.9	-21.7	-41.5	-42.8	-21.7	-83.3	-41.5
	10 5410		-23.4	-0.3	-83.3	-15.0	-21.7	-38.5	-26.6		-83.3	-38.5
CI	-21.7	-38.3										
	-21.7					0.0	0.0			_		
	-21.7	Cor	e l	DIC	D	OC	CaC	CO3	SOC			
	-21.7			DIC 32%	-	OC 7%	CaC 3º		SOC 12%	_		
	-21.7	Cor						6		_		


	Minimum SMT	Maximum SMT	Minimum Diffusion	Maximum Diffusion	
Location	(cmbsf)	(cmbsf)	(mM CH ₄ m ⁻² a ⁻¹)	(mM CH ₄ m ⁻² a ⁻¹)	Reference
Beaufort Sea	147	2905	2.1	154.8	Coffin et al. 2013
Chatham Rise, New Zealand	1600	11700			Coffin et al., 2013
Hikurangi Margin, NZ, 2015	370	1136	16	73	Coffin et al., 2015
Mid Chilean Margin	33	1011	13.3	362.0	Coffin et al., 2006
Atwater Valley, Gulf of Mexico	0	410	20.4	249.1	Coffin et al., 2008
Kara, Chukchi and White Seas	-		0.44	47.4	Lein et al., 2011
Hikurangi Margin, New Zealand	183	1287	11.4	86.2	Coffin et al., 2009
Alaminos Canyon, Gulf of Mexico	308	1793			Coffin et al., 2009
Umitaka Spur,	200	300	58	102	Condenated 2007
Japan Western Argentine Basin	370	22000	58	162.5	Snyder et al., 2007 Hensen et al., 2003
GB & MC, Gulf of Mexico	~100	~250			Ruppel et al., 2005
Southern Chilean Margin		-	46	100	Treude et al., 2005
Bering Sea Slope	6			25.3	Wehrmann et al., 201

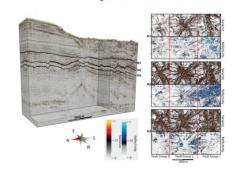
Geochemical Analysis of Vertical Methane Fluxes on the Chatham Rise, Eastern New Zealand


Basin Research Basin

Kate Alyse Waghorn, *, † 0 Ingo Pecher, * Lorna J. Strachan, * Gareth Crutchley, ; Jörg Bialas, § Richard Coffin, f, ** Bryan Davy, ; Stephanie Koch, § 0 Karsten F. Kroeger, ; Cord Pacenberra § Sudinta Sarkara and SO 296 Scientific Party

COLLEGE OF SCIENCE AND CORPUS

Paleo Depressions and Erosion

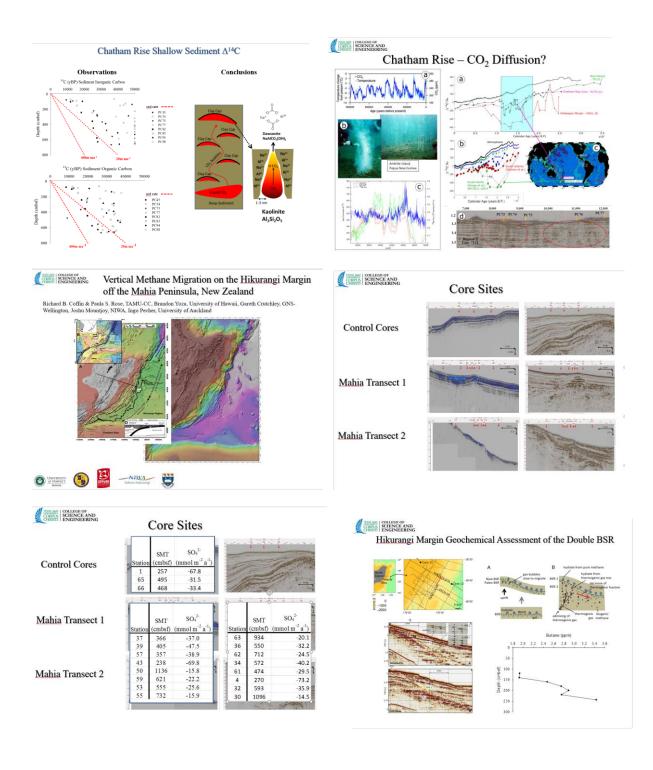


Waghorn et al., 2017

<image>

COLLEGE OF SCIENCE AND ENGINEERING

Paleo Depressions and Erosion



Waghorn et al., 2017

COLLEGE OF SCIENCE AND ENGINEERING

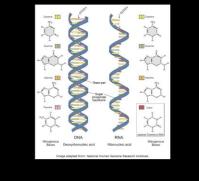
Chatham Rise – Methane Diffusion? Site Core ID SO₄? Minimum (mbsf) R2, N

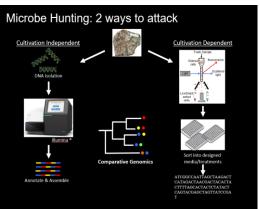
Site		SO4 ²⁻ Minimum (mbsf)	R2, N		
1	44-1-PC9	34.4	0.140, 18		
1	45-1-PC9	101.8	0.829, 25		
1	51-1-PC9	22.1	0.549, 21		
1	52-1-PC9	69.0	0.607, 22		
1	53-1-PC9	103.3	0.774,25		
1	54-1-PC9	100.2	0.763, 27		
2A	73-2-PC9	51.5	0.955, 18		
2A	74-1-PC9	77.2	0.936, 17		
2A	75-2-PC9	16.2	0.988, 27		
2A	76-1-PC9	50.5	0.962, 24		
2A	77-2-PC9	37.5	0.920, 23		
2B	82-3-PC9	23.5	0.958, 13		
2B	83-1-PC9	38.0	0.760, 13		
2B	84-1-PC9	33.6	0.957, 14		
2B	85-2-PC9	51.6	0.859, 12		
3	94-1-PC9	66.5	0.653, 24		
3	95-1-PC9	55.4	0.201, 19		
3	96-1-PC9	77.8	0.185, 21		
3	97-1-PC9	no slope	n.d.		
3	98-1-PC9	117.3	0.622, 18		

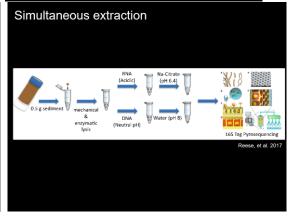
Key Findings

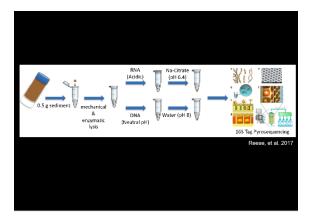
- Integration of seismic, geochemical, heatflow, and controlled source electromagnetic data on the <u>Hikurangi</u> Margin, New Zealand showed high vertical fluid and gas migration with low methane flux. – 2006
- Observation of no vertical methane gas flux in regions across the Chatham Rise New Zealand, thought to have current and past hydrate loading. Current interpretation is deep system CO2. – 2013
- Presence in elevated gas flux at locations on the Hikurangi Margin where seismic data were interpreted to have low gas loading, no BSR was observed. – 2015
- Presence of butane in shallow sediment above a double BSR on the <u>Hikurangi</u> Margin that suggests the presence of deep sediment thermogenic gas. – 2015

Organic matter remineralization pathways in Baltic Sea Basin sediments revealed through DNA and RNA sequencing

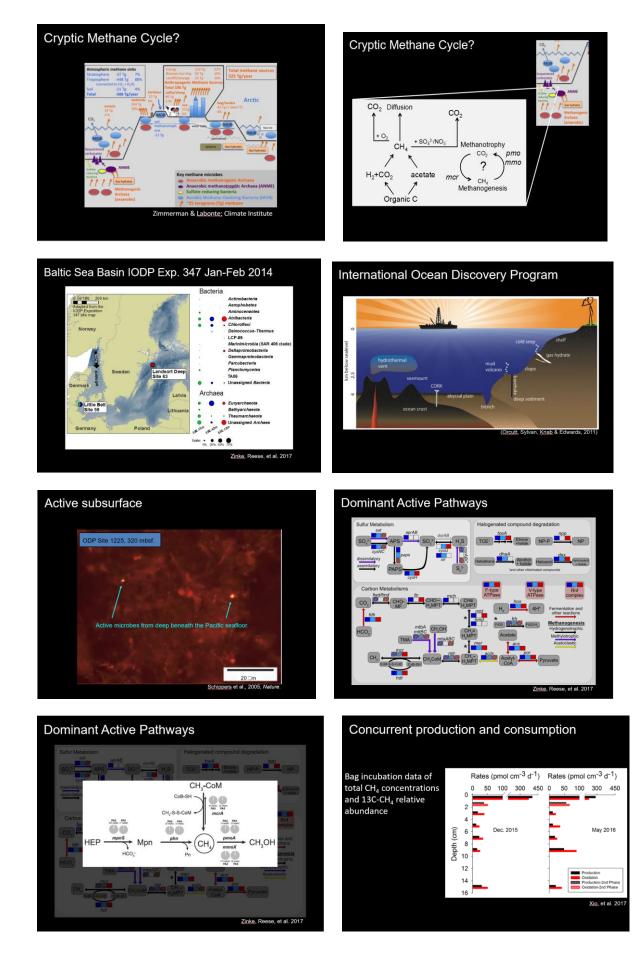

Brandi Kiel Reese, Laura A. Zinke, Ian PG Marshall, Jordan T. Bird, Hans Røy, Bo Barker Jørgensen, Karen G. Lloyd, Jan P. Amend

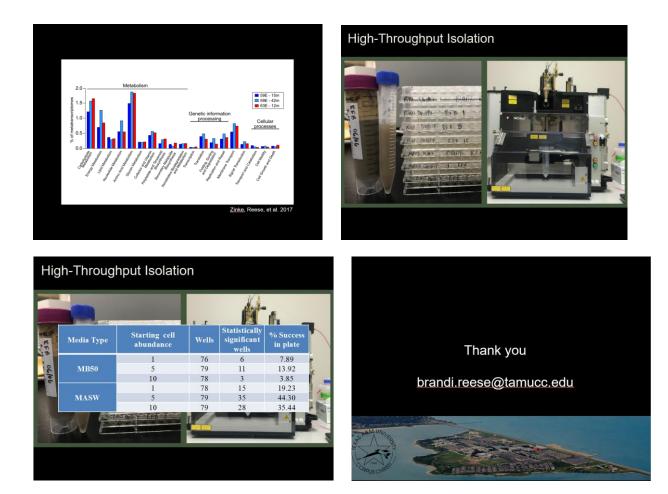

The Baltic Sea Basin has a dynamic climatic history. The Scandinavian ice sheet advanced and retreated numerous times throughout the Pleistocene and Holocene, affecting sediment deposition. Sediments deposited during warmer marine-brackish conditions tended to be rich in organic matter (over 5% of total sediment dry weight in some sediment) and methanogenic, indicating microbially-driven organic remineralization. Sediments deposited during glacial periods tended to be organic-poor and contained little to no methane. The microbial biomass and metabolic diversity in Baltic Sea sediments reflected these differences (Andren et al, 2015, Marshall *et al.*, 2017), and it was hypothesized that microbial fermentation pathways differed between sediment types and depths. Here, we used metagenomics and metatranscriptomics to determine the types of organic matter catabolic pathways present in these sediments. We examined fermentation, carbohydrate active enzyme, and protease encoding genes in Baltic Sea sediments from four sites ranging between 20 cm to 80 meters below seafloor. Sediment microbial communities contained more carbohydrate active enzymes in the more organic rich, marine influenced sediments. Presence of fermentative pathways differed between sites and depths, with greater relative proportions of fermentation genes involved in pyruvate fermentation. Metatranscriptomics from three of these samples revealed that these pathways were not only present, but were transcribed. This is an important step in understanding the types of organic matter remineralization in marine sediments, and how microbial communities conserve energy through burial.





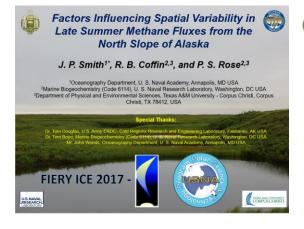
How can we tell if they are dead or alive?

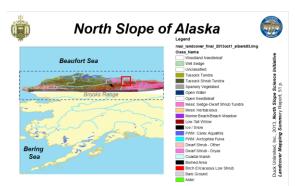




Factors Influencing Spatial Variability in Late Summer Methane Fluxes from the North Slope of Alaska

J. P. Smith^{1*}, R. B. Coffin^{2,3}, and P. S. Rose^{2,3}


¹Oceanography Department, U. S. Naval Academy, 572C Holloway Road, 9D, Annapolis, MD 21402-1363 USA.


²Marine Biogeochemistry (Code 6114), U. S. Naval Research Laboratory, Washington, DC 20375 USA.

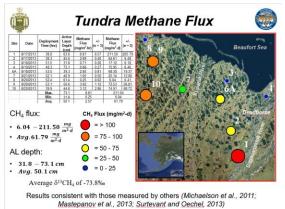
³Department of Physical and Environmental Sciences, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA.

⁴U.S. Army ERDC- Cold Regions Research and Engineering Laboratory, Mail: P.O. Box 35170 Fort Wainwright, AK 99703-0170 USA.

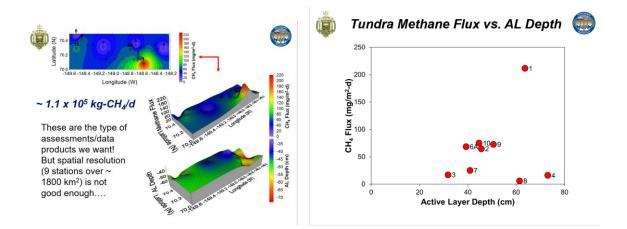
Regional climate change in the Arctic can change the timing, duration, and intensity of the spring-summer thaw cycle leading to alteration of high-Arctic coastal landscapes, changes in sediment dynamics, changes in heat flux and the export of tundra-sourced organic matter (OM) to the coastal shelf, and changes in the flux of methane (CH_4) to the atmosphere. To better understand these potential changes, it is important to understand the scale of spatial variability in current OM accumulation and CH₄ flux and the geochemical and geophysical factors controlling this variability. In August 2013, soil cores were collected and gas traps were deployed at 9 locations spread across a study area of ~1800 km² on the North Slope of Alaska near Prudhoe Bay to measure soil parameters, CH₄ concentrations, and atmospheric CH₄ flux. Results showed significant differences in CH₄ concentrations with depth through the active layer (AL) of tundra wetland soils and variability in estimated daily CH₄ flux over a relatively small spatial area. Variations in biogeochemical, geophysical parameters such as soil composition, OM concentrations, water content, and AL depth from site-to-site play a large role in controlling the CH₄ flux regime as does the geological setting. Results of this study can be reviewed in the context of previous research and research conducted by others in order to try and better understand primary factors controlling spatial variability in CH₄ flux on the North Slope of Alaska. This enhanced understanding can be used to inform future research efforts to better constrain the scale at which future studies should be conducted to better quantify OM cycling on and CH₄ flux from the North Slope through the entire freeze-thaw cycle to enable better predictions of annual CH₄ flux under future Artic climate change scenarios.

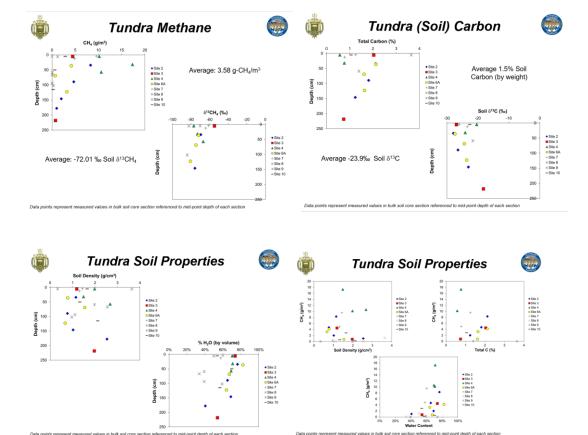
Northernmost region of Alaska (~ 300,000 km²) area north of the Brooks Mountain range to the Alaskan Coastal Plain bordering the Beaufort Sea

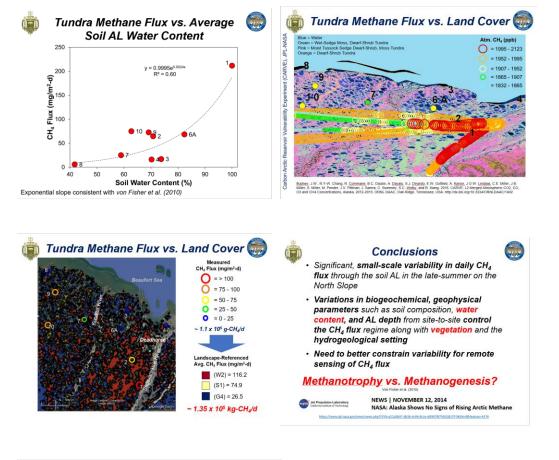
- Arctic tundra ~ 8% of global land surface and permafrost soils contain vast amount of OM (est. 1672 Pg-C; Tamocai et al., 2009)
- Increased thaw period and/or melting of tundra permafrost could release large amounts of CO₂ and CH₄ (McGuire et al., 2012)
- Artic (tundra) wetlands contribute ~23 Tg-CH₄/y (est.) to atmosphere (~10-20% of total annual global contribution (Zhuang et al., 2004))
- · Arctic tundra wetland landscapes are heterogeneous
- In order to quantify present and future tundra wetland CH₄ flux, need to constrain spatial variability in CH₄ fluxes across a diverse, heterogenous tundra landscape
- Some studies investigate spatial variability in tundra CH₄ flux on small scales & influence of local geophysical and geochemical conditions (Morrissey and Livingston, 1992; Sturtevant et al., 2012; Kim, 2015)



Largely undisturbed thermokarst terrain peppered with thaw lakes and natural lakes and crossed by the Kuparuk and Sagavanirktok Rivers.






- powered SIPRE rotary corer
 Active layer (AL) depths measured
- manually using a frost probe
- Custom PVC gas traps (16183 cm³) with gas extraction stopcock valve deployed ~ 1 m into the AL (x 3, ~ 10 m apart) for 38-54 hours

12

ution in NRL-DISTANCE field ant (Barrow, AK, 2015)

Participation in NRL-Sea Ice Physics field experiment (Barrow, AK, 2016)

Led USNA-PS&TP/National Aeronautics and Space Administration (NASA), Operation IceBridge (OIB) ICEX-2017 (Thule AB,

Language Proficiency, Regional Expe Cultural Awareness (LREC) Program ay 2018)

USNA – Polar Science & Technology Program (PS&TP) r: ONR 32 Arctic & Global Prediction Program; Pl(s): S. Gallaher; Smith, J. P. (USNA) Partners: NASA OIB; APL UW; NPS; NRL-DC

A field-oriented Polar S&T program at USNA to partner and collaborate with the Polar S&T community to meet the needs and objectives of the U.S. Navy in Polar operational environments, Goals;

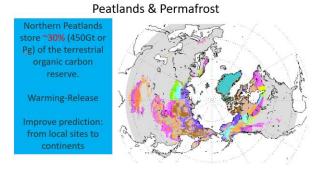
- 1. Develop faculty-led Midshipmen research and engineering Capstone
- projects 2. Enhance course development and materials for Midshipman education in
- materials for Midshipman education in Polar Science 3. Provide an experienced and educated USNA faculty and Midshipman work force for collaboration and partnership the Polar S&T community on field-oriented S&T projects. 4. STEM-Education and Outreach

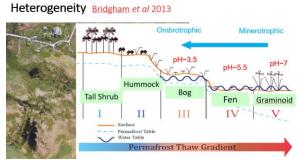
 Supported by the ONR 32 Arctic & Global Prediction Program (FY15-16) U.S. NAVINI, RESEARCH

2017 Summer Internships at University of Kansas and NASA Goddard Space Flight Cer

Methanogenic pathways in Alaskan peatlands at different trophic levels with evidence from stable isotope ratios and metagenomics

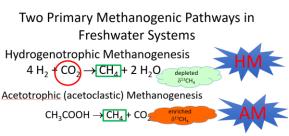
Lin Zhang, Xiao Liu, Lauren Langford, Jeff Chanton, Spencer Roth, Jeffra Schaefer, Tamar Barkay Mark E Hines

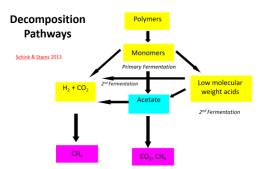

To better constrain the large uncertainties in emission fluxes, it is necessary to improve the understanding of methanogenic pathways in northern peatlands with heterogeneous surface vegetation and pH. Surface vegetation is an excellent indicator of porewater pH, which heavily influences the microbial communities in peatlands. Stable C isotope ratios (δ^{13} C) have been used as a robust tool to distinguish methanogenic pathways, especially in conjunction with metagenomic analysis of the microbial communities. To link surface vegetation species compositions, pH, microbial communities, and methanogenic pathways, 15 peatland sites were studied in Fairbanks and Anchorage, Alaska in the summer of 2014. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH₄ and volatile fatty acid production rates, δ^{13} C values, and surface vegetation composition. In the ombrotrophic group (pH~3.3), various Sphagna species dominanted, but included shrubs Ledum decumbens and Eriophorum vaginatum. Primary fermentation rates were slow with no CH₄ detected. The fen cluster (pH~5.3) was dominated by various *Carex* species, and CH₄ production rates were lower than those in the intermediate cluster but more enriched in ¹³C (-49‰). Methanosaeta and Methanosarcina were the dominant methanogens. In the intermediate trophic level (pH~4.7), Sphagnum squarrosum and Carex aquatilis were abundant. The same methanogens as in fen cluster also dominated this group, but with higher abundances, which, in part, lead to the higher CH₄ production rates in this cluster. The syntrophs Syntrophobacter and Pelobacter were also more abundant than the fen sites, which may explain the δ^{13} CH₄ values that were the lightest among the three clusters (-54‰). The high methanogenic potential in the intermediate trophic sites warrant further study since they are not only present in large areas currently, but also represent the transient stage during the evolution from bog to fen in projected climate change scenarios.

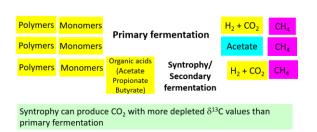



Lin Zhang, Xiao Liu, Jeff <u>Chanton,</u> Tamar <mark>Barkay,</mark> Mark Hines

DBAL CARBON		A Th			
PROJECT	1.11-3				
Tg CH ₄ yr ⁻¹	2000–2009				
-	Top-Down	Bottom-Up			
Sources					
Natural Sources	218 [179-273]	347 [238 484]			
Natural Wetlands	(175 [142-208])	217 [177-284]			
Other Sources	43 [37 - 03]	130 [01 200]			
Anthropogen. Sources	335 [273-409]	(331)[304-368]			
Agriculture & Waste	209 [180-241]	200 [187-224]			
Rice		36 [33-40]			
Ruminants		89 [87-94]			
Landfills & Waste		75 [67-90]			
Biomass Burning	30 [24-45]	35 [32-39]			
Fossil Fuels	96 [77-123]	96 [85-105]			


OBAL						
To Chi sut 1	2000	-2009				
Tg CH ₄ yr ⁻¹	Z000- Top-Down	-2009 Bottom-Up				
Sources						
Natural Sources	218 [179 273]	347 [228 484]				
Natural Wetlands	(175 [142-208])	217 [177-284]				
Other Sources	43 (97-05)	130 [01-200]				
Anthropogen. Sources	Natural wet	and have				
Agriculture & Waste						
Rice	the largest	tabsolute				
Ruminants	uncertaint	v of any of				
Landfills & Waste						
Biomass Burning	the emission	categories.				
Fossil Fuels	96 [77-123]	96 [85-105]				





Test if syntrophy is important in methanogenesis

127

Measured Parameters:

- 1. Biogeochemical Function
 - Production Rates (µM/day) CH₄, CO₂, H₂, Acetate, Propionate, and Butyrate, Sulfate, Nitrate, and $\delta^{13}C$ of CH₄ and CO₂
- 2. Vegetation: non-vascular, vascular 35 different species
- 3. Environment: pH Temp

P - Function

0.5

0.0

-0.5

10

Incubations

Avg 1.1

-1.0

Production Rates (Biogeochem. Func.)

40 41 32

1.3 14 20 22

-0.5

0.0 Dim 1 (32.26%

9.2

2.3

6

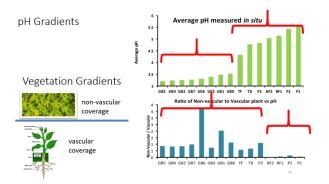
Dim 2 (17.81%)

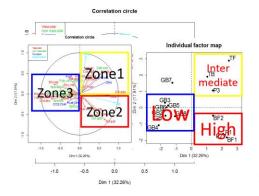
Multiple Factor Analysis Clustering Sites into Groups

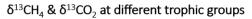
Correlation circle

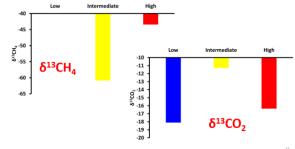
1.0

50

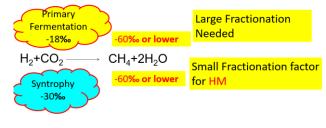

68 41

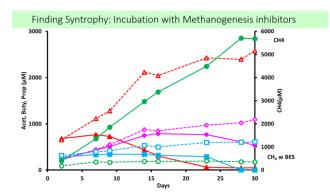

BF1 P2 P 22

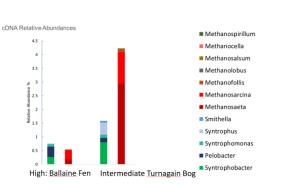

8 14.2


0.5

Avg





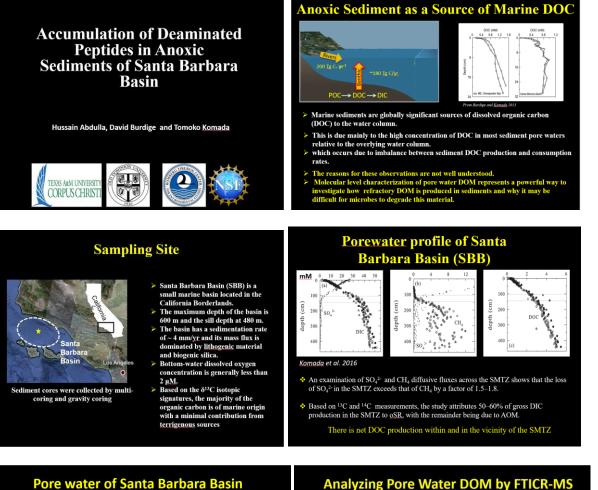


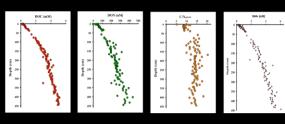
Summary

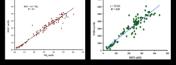
*	Low Trophic Level Eriophorum vaginatum; Ledum decumbens; Sphagnum majus No CH ₄ , Low pH Small methanogen community
	Intermediate Trophic Sphagnum squarrosum; Sphagnum magellanicum; Carex aquatilis Lots CH ₄ , <u>Acet</u> , Prop, <u>Buty</u> , Intermediate pH Lots methanogens, fermenters, syntrophs
	High Trophic Carex aquatilis; Very little moss Some CH_4 , High pH Less methanogens, fermenters, syntrophs than the intermediate group

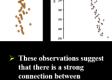
Thank You!

NSF Macrosystem Biology 1241937 and ARC1304804




Accumulation of Deaminated Peptides in Anoxic Sediments of Santa Barbara Basin


Hussain A. Abdulla^{a*}, David J. Burdige^b, Tomoko Komada^c


- a. Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
- b. Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, 4600 Elkhorn Ave., Norfolk, VA 23529, USA.
- c. Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon CA 94920, USA.

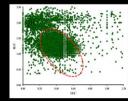
Proteins represent the most abundant class of biomolecules in marine sinking particles and microbial biomass, yet their cycling in marine sediments is not fully understood. To investigate whether some portion of hydrolyzed proteins escapes complete remineralization and accumulate in the pore waters, we analyzed dissolved organic matter from the anoxic sediments of Santa Barbara Basin, California, by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). The results showed an increase in the molecular diversity and abundance of dissolved organic nitrogen (DON) formulas with depth. A comparison of the detected DON formulas to a database of small peptides (2-4 amino acid sequences) returned 119 matches, and these formulas were most abundant near the sediment surface. When we compared our detected formulas to all possible structures that would result from deamination of peptides in the database, we found 680 formula matches. However, these molecular formulas can represent hundreds of different structural isomers (in the present case as many as 3,257 different deaminated peptide structures), which cannot be distinguished by the FTICR-MS settings that were used. Analysis of amino acid sequences suggests that these deaminated peptides may be the products of selective degradation of source proteins in marine sediments. We hypothesize that these deaminated peptides accumulate in the pore waters due to extracellular proteinases being inhibited from completely hydrolyzing specific peptides to free amino acids. We suggest that anaerobic microbes deaminate peptides largely to produce H_2 , which is ultimately used as a reducing agent by other sediment microbes (e.g. CO_2 reduction by methanogens). Simple calculations suggest that deaminated peptides may represent ~ 25-45% of DOC accumulating in these sediment pore waters. Unlike rapid remineralization of free amino acids, peptide deamination leaves behind the peptide carbon skeleton. Molecular structures of these remnant carbon skeletons may hold important clues about specific microbial processes influencing organic matter remineralization and accumulation.

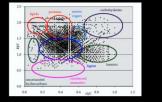
connection between ammonium production in these sediments and the net production of both DOC and DON.

	PeakHeight	C	H	H+1	N	0	S	P	m/z2	ppm	O/C	H/C
242.176130	2709646	13	24	25	1	3	0	0	242.176167	-0.2	0.23	1.92
255.232965	13314955	16	31	32	0	2	0	0	255.232954	0	0.13	2.00
265.147905	4494712	12	25	26	0	4	1	0	265.147904	0	0.33	2.17
267.123817	1151582	14	19	20	0	5	0	0	267.123797	0.1	0.36	1.43
269.139493	1224269	14	21	22	0	5	0	0	269.139447	0.2	0.36	1.57
269.248640	1660183	17	33	34	0	2	0	0	269.248604	0.1	0.12	2.00
277.108179	1080988	15	17	18	0	5	0	0	277.108147	0.1	0.33	1.20
279.123772	1407817	15	19	20	0	5	0	0	279.123797	-0.1	0.33	1.33
279.160202	1544333	16	23	24	0	4	0	0	279.160183	0.1	0.25	1.50
279.232942	2360340	18	31	32	0	2	0	0	279.232954	0	0.11	1.78
281.139326	1404859	15	21	22	0	5	0	0	281.139447	-0.4	0.33	1.47
281.248563	12375655	18	33	34	0	2	0	0	281.248604	-0.1	0.11	1.89
283.100902	1089197	14	19	20	0	4	1	0	283.100953	-0.2	0.29	1.43
283.118665	1982127	14	19	20	0	6	0	0	283.118712	-0.2	0.43	1.43
283.155114	2076979	15	23	24	0	5	0	0	283.155097	0.1	0.33	1.60
283.264244	48803648	18	35	36	0	2	0	0	283.264254	0	0.11	2.00

131

Analyzing Pore Water DOM by FTICR-MS

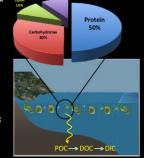

> Using FTICR-MS we were able to identify 8,843 unique molecular formulas in all of the 28 pore water samples.


Out of these:

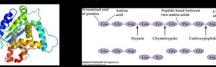
- > 2726 molecular formulas contain only carbon, hydrogen and Oxygen, CHO compounds (~31% of the total formulas) 3091 molecular formulas contain sulfur heteroatom (~35% of the total
- molecular formulas)
- molecular formulas)

These samples has almost 4x more nitrogen and sulfur molecular formulas relative to open ocean and terrestrial DOM samples.

N bearing formulas in Pore Water

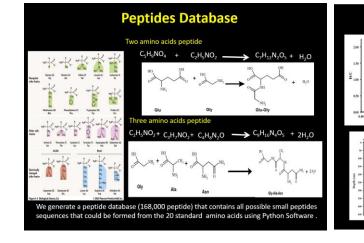

C M C M C A Chu

unsin Carbo

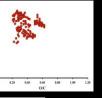

- > Plotting all the N-bearing formulas (from the 28 samples) on the van Krevelen diagram
- Showed that the majority of the N-bearing formulas (64%) fall in the CRAM -like region (red oval).

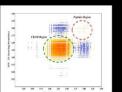
Protein as a Nitrogen Source to the Sediment

- > Of all biomolecules produced in the on an observed and produced in the marine environment, protein account for the majority (over 50% of organic carbon and 80% of organic nitrogen) of phytoplankton and prokaryotic cell
- This observation is reflected in the marine sinking particles where total hydrolysable amino acids (THAA) show 10-fold higher concentrations relative to total hydrolysable carbohydrates (THCH) and lipids (Wakeham et aL1997).
- The enrichment of protein in the sinking particles is further supported by their low C/N ratio (range = 7-8.5; Thunell, 1998).



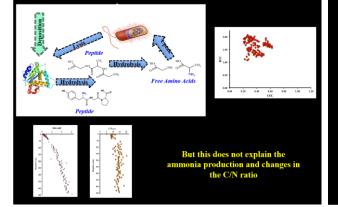
Microbial Degradation of Protein

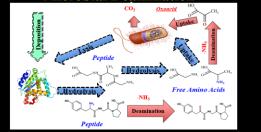



- Microbial co hydrolyze th obial communities use extracellular peptidase (also called proteinases) enzymes to Jyze the peptide bond and break down the proteins or peptides into smaller peptides or individual amino acids.
- Some peptidases (<u>exopeptidases</u>) are only able to attack the side chain (terminal amino acid) of peptides/proteins and release single amino acids or dipeptides, while other peptidases (<u>endopeptidases</u>) are able to cleave the peptide bond inside the protein chain and break the peptide into smaller peptides, but not into single amino acids
- From mechanistic prospective, these peptidases are also highly selective and specific.

Due to the high diversity and specificity of these enzymes, the absence or inhibition of specific peptidases enzymes could results in <u>slower</u> degradation/hydrolysis of particular peptides compared to other

Detecting Peptides by FTICR-MS



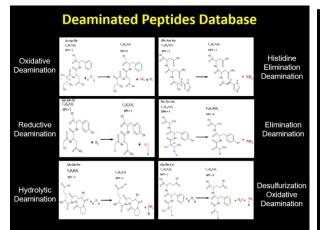

Identifying high abundance of soluble peptides and amino acids at the sediment surface is expected due to higher activities of ne accountent surface is expected due to higher activities of extracellular peptidase enzymes at the surface comparing to the deeper sediment.

This accumulation of soluble amino acids and peptides at the surface also indicates that the production of these free amino acids and soluble peptides in the surface is exceeding the microbial uptakes.

Detecting Peptides by FTICR-MS

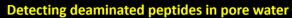
Microbial Deamination

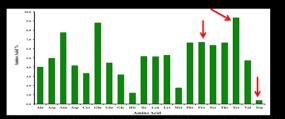
- In addition to anabolic uptake, microbes can also use amino acids as an energy source during fermentation or perhaps terminal respiration.
- Although microbes generally do not prefer to use amino acids as a source of energy because this requires removal of the amine group, in the absence of other biomolecules that can serve as an energy source (e.g. carbohydrates), and in the presence of excess Δ amino acids, anaerobic bacteria have been shown to use amino acids for generation of metabolic energy.


What about Peptide deamination?

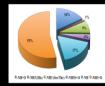
Deamination of Peptides

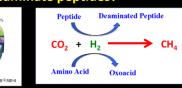
- Although the majority of previous studies had been focused on deamination of free amino acids, there are some studies that showed deamination could also be perform on small peptides.
- These later studies observed that although the ammonia producing bacterium deaminates peptides, the carbon skeletons of the peptides were not completely utilized (Russell, 1983).
- Which implies that <u>deaminated</u> peptides could accumulate as refractory biomolecules.
- To investigate the accumulation of deaminated peptides, we perform hypothetical deamination processes on small peptides database (168,400 peptides; the one mentioned above) and compare the resulted deaminated peptides with our Nmolecular formulas detect on the pore water profile by FTICR-MS.


Deaminated Peptides Database

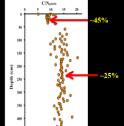

- 1) Oxidative deamination (-NH₃+O)
- Reductive deamination (-NH) 2)
- 3) Hydrolytic deamination (-NH +O) For peptides that contains either glutamine or asparagine, Eliminating deamination $(-NH_3)$ For the peptides that contains a hydroxyl
- 4)
- amino acid (serine or threonine)
 5) Eliminating deamination (-NH₃) In peptides that contain <u>histidine</u>,
 6) Desulfurization (-NH₃S+O) for peptides that contain cysteine.
- We repeated the deamination until the DPN =0
- A total of 251 combinations were performed on each peptides, after make sure it follow the other rules (e.g for mechanism NO. 3, it has to have
- either glutamine or asparagine). We generate over 1 Million Deaminated peptides but they are only 23,829 molecular formula (as many compounds have the same molecular formulas)

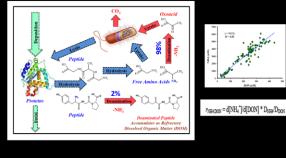
Detecting deaminated peptides in pore water

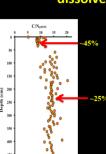

- 1.5 ¥ 1.0 0.00 Å 0.80 1.00 0.20 0.40 0.0
- Comparing the molecular formulas of the deaminated peptides in our database with N-bearing formulas detected in SBB pore waters, we identified 680 exact matches
- Plotting these formulas on the van Krevelen diagram, we see a shift in the deaminated peptides towards lower H/C ratios and higher oxidation states (higher O/C ratios) relative to the original peptides
- The majority (~70%) of the deaminated peptides also fall in the upper CRAM region (H/C ratio between 0.9 and 1.5).

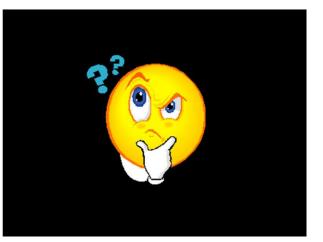


- An examination of the relative abundance the individual amino acids that are found in the precursor deaminated peptides shows > Tyrosine, glutamine and asparagine had the highest mole percentages, with 9.4, 8.8 and 7.8% respectively. > Phenylalamine, proline, serine and threonine also had relatively high abundances (greater than 6 mole%). > Tryptophan, histidine and methionine showed the lowest abundances, with 0.4, 1.2 and 1.7 mole%, respectively.


Why do anaerobic bacteria deaminate peptides?


- Many anaerobic bacteria use H₂ as a reducing agent, including sulfate-reducing bacteria, methanogens that carrying out CO₂ reduction, and <u>acetogenic</u> bacteria.
- > Thus it does not seem surprising that other microbial processes would compete with reductive deamination for H₂.
- Furthermore, the tight coupling in general between H₂ production and consumption in anoxic marine sediments results in pore water H₂ concentrations being kept at very low levels.


The contribution of refractory peptides and deaminated peptides to the oceanic pool of dissolved organic carbon


- Using simple carbon and nitrogen mass balance calculations we estimate the relative importance of dissolved peptides plus deaminated peptides to the total DOC pool.
- Assuming that peptides and deaminated peptides represent the total pool of DON in the PPL extract
- Using C/N ratio = 3.4 for peptide and C/N = 7.7 for deaminated peptides

Protein Cycling

- **CONCLUSIONS**
- We highlighted one of the possible mechanisms that explain the accumulation of refractory DOM in anoxic sediment.
- > We challenge the traditional view of the high lability of entire peptides and proteins
- During the microbial degradation of proteins, a selective subset of peptides but mg ute unit round to graduation to proteins, a setterite autorit of periodes deaminated and accumulated later as DOM in the pore water based on the premise that complete hydrolysis of proteins and peptides to free amino acids is not always possible because of enzyme limitations.
- The non-hydrolyzed peptides are in turn subject to deamination for subsequent catabolic uptake.
- The peptides that could not be hydrolyzed completely into free amino acids are used by anaerobic bacteria, either to generate H₂ through the oxidative deamination mechanism, or to be part of the Stickland fermentation reaction to oxidize or reduce free amino acids.

Breakout Sessions

Objective

This 3 day workshop was attended by 55 scientists from 12 countries. The text through this document is an overview of the presentations and discussions during the workshop. Following this summary key note speaker presentations, summaries of research discussions, and posters are presented. The key issues addressed during the workshop included the following:

- 1. Future Arctic Ocean research plans need to be developed with a long term field and laboratory research and monitoring plan. As a result of the discussions an international workshop to focus on development of an international Arctic Ocean methane hydrate research program will be planned for the fall of 2008. Topics that will be addressed in the workshop will include an overview of the current Arctic Ocean data, new seismic and pressure core sampling protocol, application of general ocean circulation models coupled with methane data and applied to the Arctic Ocean, and determination of the methane assimilation in the water column relative to the flux into the atmosphere.
- 2. Methane hydrate drilling needs a more thorough evaluation of well production rates that are coupled with production models. There is also a need for exploration protocol and models.
- 3. Higher resolution seismic profiling needs to be developed and applied. The seismic data need to be coupled with CSEM, shallow sediment porewater geochemistry profiles, and heatflow data for a more thorough evaluation of deep sediment hydrate deposits. Coupling these parameters is intended to provide pre-drilling site evaluation.
- 4. Laboratory and pilot scale experiments need to focus on geologic accumulation of hydrates, production testing, geomechanic sediment properties, biogeochemical influence on hydrate formation and stability, and sediment thermodynamics.
- 5. Theoretical modeling needs further development in rock physics flow simulations, geomechanical sediment properties, and environmental system cycling.
- 6. Production testing needs small scale evaluation to address, environmental impact assessment and regulation, efficiency of hydrate dissociation protocols in terms of pressure and temperature, and flow assurance.

The following is a review of the discussion sessions, as presented by the session chairs and rapporteurs.

Chair:	Laboratory Experimentation:
Prof. Bjørn Kvamme	1) Limitations on experimentation relative to the environment.
Rapporteur:	2) Mineral/hydrate/
Prof. Na Wei	Fluid interactions focus on porous non steady stat conditions

Recorded by Kevin Supak

Microbiology and Hydrates

- We don't know much about the individual microbial cell methane consumption.
- Not all species behave the same and need to understand the genes that control processes
- Understand the cell behavior of methane production and consumption
- Comment: In-Situ monitoring is gaining attention because labs cannot adequately grow the proper organisms. Another comment from Brandi Reese: Start with model organisms

to better understand the processes before looking at the field. Temperature affects the metabolism of these organisms.

• We don't have experiments with joint CH4 consumption/production.

Multiscale Modeling

- Verify modeling of how mineral surfaces work
- Between the reservoir surface and the mudline we know there is a thermogenic layer but we don't know much between the thermogenic layer and the reservoir in BSR formations (ethane/propane hydrocarbon layer?)
- Many different technical disciplines required to model/understand these different surfaces
- Requires state-of-the-art microbiology modeling to assist in the effort
- There is a need to simulate the cold conditions bacteria?
- There are competing phase transitions that are not well understood.

Non-Equilibrium Systems

- Water leaking in or gas from other structures
- Gas hydrate generation and distribution throughout the world they all act differently
- Pressure and temperature changes affect the formation differently

Basic question: What is the age of the gas hydrate in the different regions of the world?

CO2 / Methane Exchange

• Solid state mechanism is too slow

It was suggested to go around the room and share their biggest experimental challenges. Questions from around the room:

- Understand gas seep methane releases to climate what is the sedimentary record (bio markers or chemical)?
- Scientists around the world use different standards for measuring sediment solutions and it is difficult to compare results
 - Comment from audience not easy to make laboratory samples standardized; but care should be taken in how to make and care for samples.
 - $\circ~$ The same happens when you take a core sample you effectively shut off the flow and reservoir effects
- Is there a uniform way to form hydrate bearing sediments to standardize the way we study them (shear rates, dissociation processes, etc.)
- Too little funding is spent in benchmarking reservoir simulators
- How can we improve the speed of forming hydrate bearing sediments in static experiments to get more experiment frequency.
 - Comment have a circulation rate of fluid to enhance homogeneity
 - Comment homogeneity is a relative term
- Can we incorporate field production data (engineering data) to develop feedback to laboratory experiment? Too much time is spent on controlling the experiment and they aren't controlled perfectly.
 - Comment not enough field data, never got into an actual production mode, mineral and mineral distribution in the field is not the same as the laboratory mineral simulants
- Question from the industry: Further investigate practical applications and industrial collaboration.

- Comment what is the true energy potential of these hydrates reserves? What is the value of producing this for industry?
- What engineering is needed in drilling technology to recover from hydrate reserves?
- Better understanding phase change properties/kinetics is still challenging for hydrate simulations. This could be the reason there is a difference between the model and experiment.

Chair: Prof. Joo Yong Lee	Gas Hydrate Related Modelling: Load Predictions, Coastal - Platform Stability, Environmental Safety
Rapporteur: Mr. Zhenyuan Yin	

Topic of the session: Gas hydrate related modelling: Load Predications, Coastal - Platform Stability, Environmental Safety

Session Chair:

Lee Joo Yong

Rapporteur:

Yin Zhenyuan

- 1.1 Reservoir Stability
 - Fluids from reservoir, rate and property
 - Stability of reservoir and related Geomechanics
 - Leakages of fluids
 - Reservoir deformation
 - Rock mechanics should be included

1.2 Wellbore stability

- Cementing and Casing
- Platform stability
- Sliding upon methane hydrate bearing sediment dissociation
- Subsidence
- Devise optimum Completion technology
- 1.3 Geomechanics code on methane hydrate
 - The effect of depressurization effect should be fully understood
 - Coupling between reservoir modeling and geomechnics modelling codes
 - Validation between experimental data and simulation results are strongly needed
 - o Geomechanics code depended on constitutional relationships, linear elasticity model
 - Very complicated process due to the two-way coupling of the flow and geomechincs processes
 - Develop implicate geomechanics code to take account of the quick phase transition behavior happened during MH dissociation
- 1.4 Seismic aspects of MH
 - The identification of BSR and its week indication of hydrate bearing layer
 - Slow failure due to hydrate dissociation with pore pressure increase

- Contrast in strain due to slide plane
- Step-wise depressurization rather than sudden depressurization

After the short discussion, the group merged with the other group discussing on the laboratory experiments.

Chair: Prof. Subbarao Yelisetti

> Rapporteur: Ms. Hao Yu

Gas Hydrate Deep Drilling: Technology, Recent Data

• How many of you are involved with drilling studies? And how many with hydrate drilling?

A: 11 members joined the discussion. Four of us are involved with drilling studies and two with hydrate drilling.

• Many drilling studies around the world in the past two decades (northern Cascadia, southern Cascadia, US east coast (Blake Ridge), offshore India, Korea, South China Sea, Nankai margin off Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo). What have we learned from these? What are the main technological problems for methane hydrate production? and how can we overcome these?

A: The most challenging issues are drilling under pressure and storing core samples. There are some methods to maintain pressure. For example, UT Austin uses new pressure coring tool. New development of technologies:

1) Geotech (whole system); 2) Georgia Tech; 3) AIST; 4) UT Austin's new pressure coring tool. All systems are supported by Geotech. However, maintaining pressure in transportation is still a big challenge. Also, time is a big factor- samples need to be studied immediately

• What about the status of hydrate funding in various countries? For example Canada reduced funding for hydrate research...but we ask funding for studying geohazards/climatic effects and some how relate those to hydrate studies.

A: Japan currently has funding.

Korea's funding primarily comes from the government. US plans to spend 20 million dollars on this for next 5 years, 70% from government.

IODP offers funding for drilling proposals.

US DoE – is funding UT led hydrate drilling efforts in the GoM, ~\$40 million

Developing artificial sand pack hydrate deposits in laboratory and comparing the mechanical, physical, geochemical, and petrophysical properties with drilling samples from the GoM.

• Many production methods discussed (for example, depressurization, Hot water circulation, solid fluidization, thermal stimulation and gas swapping). What is the most economically feasible production method?

A: It is uncertain, and depends on the depth and characteristics of the system. For example, methane hydrates exploited in South China Sea are in the shallow shelf of about 20 mbsf, while methane hydrates off Indian and Japan are in deep waters. Hence the production methods are different.

• Previous production tests were carried out only for few days (1-3 weeks). Is it possible to establish a technological base that can produce gas for the long-term?

A: Cost is the most important problem in deciding the production test period. Environmental factors also prevents this. For example, it is difficult to get access to Mallik gas hydrate drilling site in Canada.

US plans to drill North Slope of Alaska in this or next year.

Japan doesn't have fixed plan in production tests, because the methane hydrate storage area has many holders, which needs coordination.

• We have seen sand entering production wells from drilling in Canada, Japan and Korea. How can we prevent this?

A: It is hard. Filtering techniques maybe helpful. China is developing a method to separate sand from methane gas in South China Sea using cyclone separator.

• What are the environmental risk factors associated with hydrate drilling? Gas pipe blowouts? Effect of natural hazards on drilling platforms? Earthquakes, typhoons? Does gas production from methane hydrate induce a large-scale seafloor slide or earthquake?

A: Environmental risks include landslides and seafloor subsidence. Landslides reported earlier at the IODP drilling off New Zealand. Seafloor subsidence has been discussed in some conference held in Japan. In deep waters, platform is relatively safe. At present short term production tests doesn't worry too much about earthquakes.

• What about international collaboration for deep-sea drilling?

A: India, US and Japan successfully collaborated in drilling in the Bay of Bengal.

USGS is trying to collaborate with India now.

These are good cases. Political factors and funding prevent this.

We need to find better ways to have more such collaborations at the international level involving many countries.

• Does commercial gas production from methane hydrate appears feasible in the near future? A: Japan: 2027, China: 2030

• Where does your research fall interns of deep-sea hydrate drilling? What are your thoughts about the future of hydrate drilling?

A: Cheap drilling technology is much needed. Currently the technology primarily comes from the oil and gas exploitation.

Island offshore company provides cheap drilling facilities

New drilling proposals:

Proposal to drill over chatham rise off New Zealand looking for geochemical profiles to interpret vertical fluid and gas migration-Richard Coffin and Ingo Pecher+others? Proposal to drill in the hikurangi margin hydrate system -Richard Coffin and Ingo Pecher+others? Proposal to drill in the Rio Grande fan off the coast of southern Brazil Proposal to drill in the northwest Atlantic

 Chair:
 Chair:

 Dr. Kelly Rose
 Carbon Sequestration Related to Gas Hydrate Mining: Pla

 Rapporteur:
 Dr. Xin Lu

There was a general discussion on can you do CO2/CH4 exchange to CCS? Offshore shallow water EOR with CO2 is likely leading the charge. Kelly indicated that this is likely a risky move due to shelf stability and high sands permeability.

Steve asked a bold question regarding CCS: "Are we past the tipping point?" He indicated that his personal opinion is yes and maybe we should focus research on adaptation strategies rather than CCS.

Rick said land based studies should be the place to start CO2 storage/EOR because it's easier/cheaper.

Bjorn indicated that GasNova funds big gas storage projects. Bjorn said that Europe has mandated that CO2 injection into deepwater water-flooded wells is the CCS solution and Norway is following suit – and not encouraging CO2/CH4 hydrate exchange.

Kelly inquired to the Integrity of hydrate seals/layers and how that might work for CO2 sequestration. Can you make a hydrate cement with CO2? Bjorn says thermodynamically probably not.

Is there a difference between shallow versus deepwater CO2 water columns being able to handle the acidification?

Will the ocean be a toxic soup by adding a lot of CO2 whether in hydrates or as free gas? Kevin asked the question has there been any large-scale test to verify sedimentary stability with CH4/CO2 exchange? There doesn't seem to be.

Rick asked if there is value in injection N2 and CO2 together?

How do you make this attractive in deepwater GoM or arctic – especially for the operators/services companies, DOE, etc.?

Chair:

Prof. Richard Coffin

Rapporteur: Mr. Sajjad Abdullajintakam

Summary of Discussion: Site Assessment

Perspective:

- Instrumentation
- Sampling
- Seismic Data

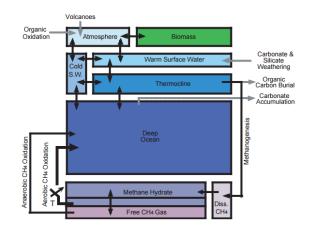
Initial Site Assessment: Seismic and Geochemical Evaluation, Recent Data (Positive and Negative), Additional Approaches.

Sampling Perspective

- Sample collection to lab changes the thermodynamics
- · Problems with assessment of in-situ methane concentration
- Isotope mass balance offers back calculations
- ONBOARD/in-situ data is more effective

Seismic Data Perspective:

Instrumentation perspective:


- Pressure cores excellent but expensive
- Economically feasible approaches ..?
- Alternate/developing techniques Raman spectroscopy
- High resolution data sets on seismics
- Estimate fracture system to back calculate reservoir include in modelling parameters
- · Inversion of seismics in elasticity and geo-mechanics

Geochemistry Perspective:

- Limitations:
 - · Resolution is limited
 - BSR can not necessarily indicate GH; GH may/may not have BSR
- Calibration of methane and pressure cores with sulfate-DIC prediction Control Source Electromagnetics in compliment with BSR Provides higher resolution
 - For shallow GH system, fishery echo-sounding data is useful -offer potential collaborations with fisheries research
 - · Gather data from different proxies/methods used world wide margins and compare more/most effective methods
 - · International attempt to share data/protocols for this initiative
- · Elements other than C and O.. Non traditional geochemical proxies
- How sulfate profiles are used for back-calculation by different groups?
- · Redefine carbon budgets with methane-carbon energy included

Modelling Perspective:

- Initial site assessment data needs to be going into modelling
- Next generation reservoir simulations need collaboration between modelling community
- Estimate fracture system to back calculate reservoir include in modelling parameters
- Inversion of seismics in elasticity and geo-mechanics

Practical Strategies to Make this a Reality

- Next generation reservoir simulations need collaboration between modelling community
- International participation is necessary
- International funding base for this educational source seed funding for many prospectus endeavors
- Teaching/Educational aspect is fundamental
- Establish an international school community
 - need to profile it in an appropriate manner (diplomatic issues)
 - Expand to next generation scientists
 - Expand/bridge with non-GH systems e.g oil and gas.. multidisciplinary approach
 - Two future international proposals NSF, EU, DOE, Horizon 2020, other..
 i) for education
 - ii) for a cruise black sea

Next IMHRD

- Compile work groups and science focus by different participants and then establish an comprehensive effort
- Advertise to all participating countries in advance
- Next workshop focus on better arranging breakup groups
- Need a survey/questionnaire before the workshop to set better breakup groups

Chair:
Prof. Brandi ReeseBiogeochemical Assessments of Gas Hydrate Loading and Monitoring
Environmental HealthRapporteur:
Prof. Joseph SmithHealth

Attendees

			ATTENDE					
	Name	Email	Affiliation	Nation	Presenting	Poster	Talk	Registered
1	Abdulla, Hussain	hussian.abdulla@tamucc.edu	TAMU-CC	US	Y		Х	Y
2	Abdullajintakam, Sajjad	sajjad.abdullajintakam@tamucc.edu	TAMU-CC	US	Y	Х		Y
3	Chee, Soon Seong	schee@slb.com	Schlumberger	Malaysia	Ν			Y
4	Ciferno, Jared	Jared.Ciferno@NETL.DOE.GOV	DOE-NETL	US	Y		Х	Y
5	Cifuentes, Luis	luis.cifuentes@tamucc.edu	TAMU-CC	US	Ν			
6	Cooper, Jenna	Jenna.Cooper@tamucc.edu	TAMU-CC	US	Y	Х		Y
7	Coffin, Richard	Richard.coffin@tamucc.edu	TAMU-CC	US	Y		Х	Y
8	Chen,Wei	zhonglin858296@163.com	CNOOC	China	Ν			Y
9	Clark, Corrie	cllanes@islander.tamucc.edu	TAMU-CC	US	Y	Х		Y
10	Cui, Jingyuan	Jingyuan.cui@cnpcusa.com	CNPC	US	Ν			Y
11	Ersland, Geir	Geir.Ersland@uib.no	University of Bergen	Norway	Y		Х	Y
12	Furui, Kenji	furui@waseda.jp	Waseda University	Japan	N			Y
13	Kanno, Takayuki	tkanno@slb.com	Schlumberger K.K.	Japan	Ν			Y
14	Konno, Yoshihiro	<u>Yoshihiro-konno@edu.k.u-</u> tokyo.ac.jp	University of Tokyo	Japan	Y		Х	Y
15	Kvamme, Bjørn	bjorn.kvamme@ift.uib.no	University of Bergen	Norway	Y		Х	Y
16	Lee, Joo Yong	jyl@kigam.re.kr	KIGAM	S. Korea	Y		Х	Y
17	Lu, Xin	lvxin@cnooc.com.cn	CNOOC	China	Y		Х	Y
18	Qiang, Fu	zhonglin858296@163.com	CNOOC	China	Ν			Y
19	Qinping, Li	zhonglin858296@163.com	CNOOC	China	Y			Y
20	Masutani, Stephen	stephenm@hawaii.edu	University of Hawaii	US	Ν			Y
21	Oyama, Ai	aioyama@hawaii.edu	University of Hawaii	US	Ν			Y
22	Reese, Brandi	Brandi.reese@tamucc.edu	TAMU-CC	USA	Y		Х	Y
23	Mienert, Jurgen	jurgen.mienert@uit.no	University of Tromsoe	Norway	Y		Х	Y
24	Murgulet, Val	Valeriu.Murgulet@tamucc.edu	TAMU-CC	US	Ν			Y
25	Shouwei, Zhou	zhonglin858296@163.com	CNOOC	China	Ν			Y
26	Smith, Joe	jpsmith@usna.edu	USNA	US	Х		Х	
27	Szczerbinska, B	barbara.szczerbinska@tamucc.edu	TAMU-CC	US	Ν			Y
28	Tamborello, Brittney		University of Oklahoma	US				Y
29	Tenma, Norio	tenma-n@aist.go.jp	AIST	Japan	Ν			Y
30	Tomaru, Hitoshi	tomaru@chiba-u.jp	University of Chiba	Japan	Y	Х		Y
31	Uchida, Tsutomu	t-uchida@eng.hokudai.ac.jp	University of Hokkaido	Japan	Ν			Y

32	Wang, Guorong	swpi2002@163.com	SWPU	China	Y		Х	Y
33	Wang, Xu	Kelly.Parker@cnpcuse.com	CNPC	USA	Ν			YY
34	Wei, Na	weina8081@163.com	SWPU	China	Y		Х	Y
35	Yanzhen, Liu	<u>chemliu@yeah.net</u>	Dalian University of Technology	China	Y	Х		Y
36	Yang, Tang	tangyanggreat@126.com	SWPU	China	Y		Х	Y
37	Yelisetti, Subbarao	Subbarao.Yelisetti@tamuk.edu	TAMU-K	US	Y		Х	
38	Yin, Zhenyuan	E0013211@u.nus.edu	National University of Singapore	Singapore	Y		Х	Y
39	Yu,Hao	hao.yu@tamucc.edu	TAMU-CC	US	Y	Х		Y
40	Zhang, Lin	lin.zhang@tamucc.edu	TAMU-CC	US				Y
41	Zhong, Lin	zhonglin858296@163.com	CNOOC	China	Y		Х	Y