The topic of vibration control and energy dissipation is among the oldest and most relevant in the field of engineering. This area encompasses exciting frontier problems ranging from the control of vibrations of drill bits buried thousands of feet underground, to the isolation of towering skyscrapers against seismic excitation, and finally to the stabilization of solar panels attached to a spacecraft. Armed with an ever increasing arsenal of sensing and actuation technologies and theoretical progress, a vibrant community of researchers have gathered to tackle some of the world’s toughest challenges in vibration control and energy suppression problems.


This issue only provides a brief glimpse into the possibilities offered by research in vibration control and energy dissipation. As the current research builds upon the efforts of previous investigators, the results presented in this issue will now help to open the doors for increasingly advanced topics that are sure to offer benefits and push society forward.

Acknowledgments: This research was partially supported by the Major State Basic Development Program of China (973 Program, grant number 2015CB057704), Innovative research group project (grant number 51421064) and general project (grant number 51470808 and 51270804) of Natural Science Foundation of China. The authors would like to acknowledge for these financial supports.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kang, J.; Mori, Y. Evaluation of a Simplified Method to Estimate the Peak Inter-Story Drift Ratio of Steel Frames with Hysteretic Dampers. *Appl. Sci.* 2017, 7, 449. [CrossRef]
2. Lin, W.; Song, G.; Chen, S. PTMD Control on a Benchmark TV Tower under Earthquake and Wind Load Excitations. *Appl. Sci.* 2017, 7, 425. [CrossRef]