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Featured Application: Interaction with domestic robots and appliances in smart infrastructure.

Abstract: The arising of domestic robots in smart infrastructure has raised demands for intuitive and
natural interaction between humans and robots. To address this problem, a wearable wrist-worn
camera (WwwCam) is proposed in this paper. With the capability of recognizing human hand
gestures in real-time, it enables services such as controlling mopping robots, mobile manipulators, or
appliances in smart-home scenarios. The recognition is based on finger segmentation and template
matching. Distance transformation algorithm is adopted and adapted to robustly segment fingers
from the hand. Based on fingers’ angles relative to the wrist, a finger angle prediction algorithm
and a template matching metric are proposed. All possible gesture types of the captured image are
first predicted, and then evaluated and compared to the template image to achieve the classification.
Unlike other template matching methods relying highly on large training set, this scheme possesses
high flexibility since it requires only one image as the template, and can classify gestures formed by
different combinations of fingers. In the experiment, it successfully recognized ten finger gestures
from number zero to nine defined by American Sign Language with an accuracy up to 99.38%.
Its performance was further demonstrated by manipulating a robot arm using the implemented
algorithms and WwwCam to transport and pile up wooden building blocks.

Keywords: smart infrastructure; hand gesture recognition; wearable wrist-worn camera; distance
transformation; finger angle prediction; template matching

1. Introduction

Smart infrastructure has become an attractive research field in recent years. It integrates
technologies of sensing, control, and Internet of Things (IoT) to provide a more secure, efficient,
and convenient living space for the residents. While energy management [1] and the IoT network [2]
are some of the research aspects, there is another growing trend of deploying domestic robots in smart
infrastructure to enhance the quality of living and working. Personal robots that do laundry or floor
cleaning would reduce the housework burden, and assistive mobile robots can help the elderly and
disabled to live with more ease and security [3]. To interact with these robots, a natural and intuitive
interface is needed for interpreting human’s intention. Hand gesture recognition is just the appropriate
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tool, as we naturally use our hands to convey information while communicating with others [4].
In previous research, hand gesture recognition has been applied to many smart-home applications,
including the control of appliances like lamp [5] and TV [6], interaction with computer games [7], and
robot control [8].

Hand gestures can be categorized into two types: static and dynamic gestures. The former is
generally defined by a static posture of the hand and fingers, and the latter is formed by the dynamic
movement of the hand and arm. Though non-wearable camera system can recognize both types
of gestures [9], it suffers from a restricted working region that the user has to stand in front of the
camera. In contrast, the problem can be solved by the thriving technology of wearable IoT [10]. Using
a wearable camera, the user can walk from room to room or even going outdoors, while keeping the
capability of sending gesture commands.

Using wearable camera for hand gesture recognition has many advantages over other types
of sensors such as surface electromyography (sEMG) and inertial sensors. Though sEMG sensors
can detect useful signals from muscle activities [11], there remain some open questions about its
sensitivity to different subjects and different mounting positions. Inertial sensors mounted around
user’s wrist [12] can obtain the posture and acceleration of the hand to recognize dynamic gestures.
However, when it comes to static gestures, a set of bulky sensors need to be placed at each finger [13]
to know the fingers’ bending condition. Whereas for the wearable camera, since both the hand and
background images can be captured by the camera, it is promising to achieve recognition of both static
and dynamic gestures. Moreover, through the analysis of background image, it also provides other
smart-home usages such as text tracking for the blind [14], diet monitoring of the elderly [15], and
recognizing daily activities [16] to ensure the security of the elderly who stay alone at home.

Several vision-based wearable systems have been developed in past years for hand gesture
recognition. Valty et al. [17] analyzed the goals and feasibility of using wrist-worn RGB camera.
Howard et al. [18] used infrared sensors beneath the wrist to detect whether a finger is bending.
Later, Kim et al. [19] utilized a combination of infrared LED and infrared camera beneath the wrist to
calculate the bending angle of each finger. However, placing a large device beneath the wrist can be
intrusive when people use a mouse on the table or stand straight where the underside of the wrist
naturally contacts with the table surface or leg. Lv et al. [20] directly placed a smartphone on the back
of the wrist, whose hardware is too cumbersome and the software only detects gestures formed by the
index finger and middle finger. Sajid et al. [21] used Google Glass on the head to recognize in-air hand
gestures, but the user has to look at their hands all the time, which is inconvenient. A more thorough
investigation on wearable cameras is needed to make it more user-friendly and convenient.

Many algorithms have been proposed to recognize hand gestures from the image. Some are
machine learning algorithms using the features of Gabor filters [22], Haar [23], HOG [24], and CNN [25],
or extracting features from the hand edge [26] or hand shape [7]. However, these features are not so
intuitive to represent the hand gestures formed by different fingers configurations. If the customer
wants to define a new class of gesture, such as pointing to the left or right using the index finger, many
new training images need to be collected to retrain the model. Other algorithms take fingers as the
features. The detection of fingers are based on ridge detection [27], convex hull [28], curvature [9],
drawing a circle on the hand centroid [29,30], or convex decomposition [31]. Nevertheless, the method
in [31] is time-consuming, and the rest [9,27–30] might have difficulties when handling distorted
fingers and images taken by the wearable camera. As for the subsequent classification, algorithms
in [27,30] are learning-based which require many training images for each class. Moreover, works
in [9,28,29] used rule classifiers and zero training image, thus they lacked some adaptiveness for
gestures with distortion and varying postures. Therefore, a balance should be kept between the
convenience and robustness.

The contribution of our work is threefold: a novel wearable camera system, an improvement
on finger segmentation, and the recognition of fingers based on single template image. To our best
knowledge, this is the first wearable camera system worn on the backside of the wrist for recognizing
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hand gestures (if the one using a smartphone [20] is not included). It is less intrusive than camera
systems beneath the wrist [19] and doesn’t require eye gaze as the one worn on the head [21]. We also
innovated on the algorithms. A two-phase distance transformation method is proposed to segment
fingers out of the palm. Then, the angles of the detected fingers with respect to the wrist are calculated.
For those fingers not in sight, all their possible positions are predicted based on the known fingers and
the template gesture. After that, these predicted gestures with a complete five fingers are compared to
the template, and the one with a minimal error is the recognition result.

The rest of the paper is arranged as follows: the architecture of the wearable hand gesture
recognition system is described in Section 2. The algorithms of finger detection, finger angle prediction,
and template matching are presented in Section 3 which are then evaluated on the dataset in Section 4.
Furthermore, an application of robot control is given in Section 5. Finally, we discuss and conclude our
work in Sections 6 and 7.

2. System Architecture

The architecture of the proposed hand gesture recognition system is shown in Figure 1.
The wearable wrist-worn RGB camera device, WwwCam, is worn on the backside of the user’s right
wrist to shoot images of the hand, which are then sent to the computer through Wi-Fi. The computer
recognizes the hand gesture and applies it to smart-home applications such as lighting a lamp,
switching TV channels, and controlling domestic robots. Gestures used in this system are static
gestures, which are defined by the status of each finger and can be inferred from a single image, such
as gesture “Five” with five spread fingers, and gesture “Nine” with three fingers, as shown in the two
small pictures in Figure 1.
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Figure 1. The pipeline of the proposed hand gesture recognition system using wearable wrist-worn
camera (WwwCam) for smart-home applications.

The configuration of WwwCam is displayed in Figure 2. An RGB monocular camera is fixed on
a holder and worn on the wrist through a flexible wristband. Due to the close distance between the
camera and the hand, the camera with a wide camera angle of 150◦ was selected so that the hand could
fall into the camera view. The camera is then connected to a Raspberry Pi Zero W through USB cable.
This Raspberry Pi is a powerful microcomputer with a BCM2835 chip of 1 GHz single-core CPU and a
BCM43438 chip for 2.4 GHz 802.11n wireless communication. There might be other options for the
microprocessing unit, such as Arduino. However, the clock frequency of the Arduino is usually less
than 0.1 GHz with limited capability for the processing of complex tasks such as image processing.
Moreover, the Raspberry Pi Zero W with a Linux operating system has drawn considerable interest
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from researchers, due to its well-developed drives for the peripheral modules like cameras, a Wi-Fi
module for various communications, as well as a relatively small size of 65 × 30 × 5.1 mm3. Therefore,
the Raspberry Pi was chosen as the processor of the device.
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We installed a Linux system called Raspbian on the Raspberry Pi and programmed on it using
Python. The program reads out the video streaming from the camera and transmits it to the laptop
through Wi-Fi by TCP protocol using the “socket” library. This process is a simulation of the
transmission of video from the wearable device to the computer in a smart-home using domestic Wi-Fi
environment. Then, on the laptop, a mathematical software, MATLAB, receives the video and runs the
hand gesture recognition algorithm.

The wearable device is supplied by a 5 V power bank with a capacity of 2200 mAh. The Raspberry
Pi consumes an average current of 0.30 A when reading and transmitting the video, and consumes
0.11 A at the idle state. Thus, when the user continuously uses it to send gesture commands, the
device could be running for more than five hours. Several approaches can be applied to further extend
the battery life, such as using the cell with a larger energy density, reducing the frequency of image
acquisition, and optimizing the software to keep the device in sleep mode when the user is not using it.

The wristband and the support of the camera are adjustable, so the camera can be set to the proper
position and orientation to have a good view of the hand— this is: when five fingers are stretched
out: (1) the middle finger is at about the middle of the figure; (2) the highest fingertip is above the 1/2
image height; and (3) the wrist is at the bottom of the image. A feasible position can be seen from
Figures 1 and 2.

3. Algorithm

In the proposed hand gesture recognition scheme, the recognition of static hand gestures is based
on the idea that if we find the fingers in the image and acquire their names, we know the gesture type.
Thus, we focused on improving the finger segmentation, and then proposed a simple but effective
finger angle prediction and a template matching metric to recognize each finger’s name.

The images in the dataset we used were first resized from the original size of 960 × 1280 pixels to
120× 160 pixels for more efficient computing. Then, the hand gesture recognition algorithm is achieved
in four steps. (1) First, the hand is segmented from the image by setting thresholds in YCbCr color
space; (2) finger regions are separated from the palm through a two-phase distance transformation.
Then, we locate each finger and calculate their angles with respect to the wrist; (3) all possible positions
of the remaining fingers are predicted; (4) among them, the one that is the most rational and similar to
the template is considered as the right case. Its corresponding gesture is the recognition result.
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3.1. Hand Segmentation

Many methods based on skin color have been proposed to detect hand, where the original
RGB image is often converted to another color space such as YCbCr, HSV, and UCS for further
processing [32]. Since this is not our focus, we chose the experimental environment with a background
color different from the skin, and adopted a simple method to segment hand region by thresholding
on the YCbCr color space. First, the image is converted using Equation (1) [33]. Then, for each pixel, if
all three of its color channels are between the corresponding lower and upper thresholds, this pixel
belongs to the hand and is marked as white. Otherwise, it is marked as black. Y

Cb
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+
1

256

 65.738 129.057 25.06
−37.945 −74.494 112.43
112.439 −94.154 −18.28
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After setting thresholds to obtain a binary image, we apply it with an erosion, dilation, and
filling holes operations to eliminate noises. Among the remaining connected components, the one that
contains the bottom middle point of the image is considered to be the hand. All subsequent operations
are done within this region of interest. The procedures of segmentation, thresholds, and outcome are
shown in Figure 3. Notice that the image we used has a small size of 120 × 160 pixels, so figures of the
hand shown in this paper might not look so smooth.
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Figure 3. (a) Original RGB image; (b) YCbCr images; (c) and the hand mask segmented by thresholding
in YCbCr color space.

3.2. Finger Detection

3.2.1. Segment Fingers

We proposed a two-phase distance transformation method to segment fingers. Distance
transformation (DT) of the Euclidean type calculates the Euclidean distance between a pixel and
its nearest boundary in linear time [34]. In previous studies [29,30], it was used to locate the palm
centroid for drawing a circle with a proper radius to separate fingers and palm. Here, we discovered
another of its property that it could retrain the shape of the palm by eliminating spindly fingers with a
performance better than circle-based segmentation.

In phase one, the edge of the hand mask is set as the boundary for the first DT. The resultant image
is shown in Figure 4a, where whiter pixels represent a further distance to the boundary. The radius
of the hand’s maximum inner circle R0, which equals to the largest distance value in DT image, is
used as a reference for following operations. Then, the region with a distance value larger than din is
found and named as the palm kernel which would be used for the second DT. This process could also
be comprehended as contracting the hand towards its inside to eliminate fingers while retaining the
shape of the palm. The value of the contraction distance din was set as R0/2.
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Figure 4. Results of two-phase distance transformation. In (a), the green line serves as the boundary
for the first distance transformation (DT). The blue line has a distance value of din. In (b), the blue line
becomes the second boundary to compute DT. The red line has a value of din and is used for separating
the palm and fingers. Moreover, the yellow line with a value of (din + dout) is used to exclude non-finger
regions. In (c–f), another five samples are displayed.

In phase two, the palm kernel is utilized as the second boundary for DT, displayed in Figure 4b.
After DT, the region with a distance value no greater than din is considered as the palm, which is
similar to expanding the palm kernel to its original shape. Further, the regions with a value larger than
(din + dout) are considered as the finger regions, where dout is set as R0/7 after experiment. The reason for
setting this expansion distance dout is twofold: (1) to exclude narrow regions that are not fingers, either
caused by noises or a not fully bent finger; and (2) to more robustly estimate the region width to determine
the number of fingers it contains. The results of several other gesture samples are shown in Figure 4c–f.

3.2.2. Calculate Finger Angles

In the palm region, the palm’s centroid point and the bottom middle point are denoted as Pc0 and
P0, respectively shown in Figure 5a. We established a coordinate system on the left bottom corner of
the image, so a pixel Pi can be represented as (Pix, Piy). Afterwards, we define the inclination angle of
two points <Pi, Pj> as follows:

< Pi, Pj > = atan 2
(

Pjy − Piy, Pjx − Pix
)

(2)
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numbers; (b) fingers in a region are separated and located by three points, including a finger point (red
circle) at middle, and two finger left and right points (red cross) at sides. In addition, left and right
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The orientation of the hand is then calculated as (<P0, Pc0>− π/2). In other parts of the algorithm,
this value is by default subtracted from all other angle values to amend the orientation problem.
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In each finger region, the left and right corners are defined as the points which are on the finger’s
edge, but one pixel away from the hand edge. Among these points, the one with the largest angle with
respect to P0 is considered as the left corner, while the one with the smallest angle is the right corner.
The distance between them is used to estimate the number of fingers in this region, which equals to:

ni = argmin
x

x·
(

Wi
x
− wave

)2
, x ∈ N∗ (3)

where ni is the number of fingers in the ith region, Wi is the width of the ith region, and wave is the
average width of a finger calculated from the template image. The total number of fingers in this
picture equals to N = ∑ni, which are indexed from left to right as 1–N.

Then, each finger is enlarged to the palm to obtain the whole finger region, as shown in Figure 5b.
They are expanded for four times, each time by three pixels. So, the total extended distance is twelve,
which is about twice as dout to ensure the expansion is complete.

The left and right corners are once again located. For the ith region, a number of (ni-1) finger
corners are uniformly inserted between the left and right corners. Then, between each pair of the
adjacent corners, a finger point is inserted, marked in red hollow circles in Figure 5b. All finger angles
are indexed from left to right as Pi, i = 1–N. The adjacent two corners at the left and right side of Pi are
called finger left point PLi and finger right point PRi. The angle of the ith finger is defined as A[i] which
equals to <P0, Pi>. The finger left and right angles AL[i] and AR[i] are defined in the same way. Until
now, each finger in the image is detected and described by three angles. The overall procedures are
described in Algorithm 1.

Algorithm 1 Finger detection

function Finger Angles = Finger detection (Hand Mask)
[Palm Kernel] ] = 1st Distance Transformation (Boundary = Edge of Hand Mask)
[Palm, Finger Regions] = 2rd Distance Transformation (Boundary = Palm Kernel)
[Left & Right Corners] ] = Find Corners (Finger Regions)
[Finger Number in Each Region] = Evaluate Distance (Left & Right Corners)
[Finger Regions]] = Enlarge Fingers to the Palm (Finger Regions)
[Left & Right Corners]] = Find Corners (Finger Regions)
[Finger Angles] = Calculate Finger Angles (Left & Right Corners, Finger Number)
[Boundary Angles] = Find the Left and Right Boundary Points (Edge of Hand Mask)

3.2.3. Find Boundaries

Before the next step, left and right boundary points are detected, which indicate a possible angle
range of five fingers, as shown in blue circles in Figure 5b. For the left boundary, the search starts
from the left bottom point of the hand contour and goes clockwise along the contour. When the slope
angle of the tangent line at some point is smaller than π/3, or the searching point reaches the leftmost
finger left corner, the search stops and the boundary point is found. The rule for the right boundary
is the same. To be more specific, the two endpoints of the tangent line are chosen to be five pixels
away, shown in baby blue color in the figure. The first, twenty points at the beginning of the search
are skipped over because they might contain confusing contour of the wrist. Finally, left and right
boundary angles ABL and ABR are calculated using the left and right boundary points.

3.3. Finger Angle Prediction

The proposed algorithm requires one template image for each person to implement the template
matching. The template is the gesture “Five”, as shown in Figure 6a, whose five stretched fingers are
detected and calculated using the method described above. The five types of fingers are indexed from
the thumb to the little finger as 1 to 5. For the ith finger, its finger angle is noted as AT[i], and the left
and right finger angles are ATL[i] and ATR[i] respectively, where i = 1–5.
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We represent a gesture using a five-element tuple Y. If the ith finger type exists in the gesture, Y[i]
equals 1, otherwise 0. For the template gesture, YT equals [1, 1, 1, 1, 1]. For an unknown gesture with
N fingers, Y could be M possible values corresponding to M different gestures, where M equals to:

M =
∏N

k=1(5− k + 1)

∏N
k=1 k

(4)

We denote the jth possible gesture as Yj. In order to compare Yj with YT to determine which
candidate is most similar to the template, we calculate the five finger angles of Yj, named as AEj[i],
AELj[i], AERj[i], j = 1–M, and i = 1–5. These five fingers are defined as extended fingers, where N of
them are already known, and the remaining (5-N) ones are predicted using the following method.

If Yj[i] equals 1, then this finger is already known. If Yj[i] equals 0, then this finger needs to
be hypothetically inserted near the known fingers. The insertion works as such: if several fingers
are inserted between two known fingers, they are uniformly distributed between the two. If several
fingers are added at the left of the leftmost finger, then the gap between each pair of fingers equals to the
corresponding one in the template gesture. So too does the case of inserting fingers to the right. Moreover,
for the left and right angles of an inserted finger with the ith index, the difference between them is equal
to the corresponding ith finger in the template. The detailed implementation is described in Algorithm 2.

Algorithm 2 Finger angle prediction.

function AE, AEL, AER = Finger prediction(A, AL, AR, AT, ATL, ATR, Y)

# A[N]: N known finger angles of the image.
# AT[5]: Five finger angles of the template gesture “Five”.
# Y[5]: Five binary elements reprensting a possible gesture of the image.
# AE[5]: Five extended finger angles under the case of Y[5].

# Step 1. Initialize known fingers
AE = [0, 0, 0, 0, 0]
IndexKnownFingers = find(Y[5] == 1) # e.g., Y=[0, 1, 0, 0, 1], return [2,5];
AE[IndexKnownFingers] = A

# Step 2. Predict fingers on the left
for i = min(IndexKnownFingers) - 1 to 1 step -1
AE[i] = AE[i + 1] + (AT[i] - AT[i + 1])

# Step 3. Predict fingers on the right
for i = max(IndexKnownFingers) + 1 to 5
AE[i] = AE[i - 1] + (AT[i] - AT[i - 1])

# Step 4. Predict fingers which are inserted between the two
for i = 1 to length (IndexKnownFingers) - 1
IndLeft = IndexKnownFingers[i]
IndRight = IndexKnownFingers[i + 1]
for j = IndLeft + 1 to IndRight - 1
AE[j] = AE[j - 1] + (AE[IndRight] - AE[IndLeft]) × (j - IndLeft) / (IndRight - IndLeft)

# Step 5. Calculate finger left and right angles
AEL[IndexKnownFingers] = AL
AER[IndexKnownFingers] = AR
for i = 1 to 5
if Y[i] == 0
AWidth = ATL[i] - ATR[i]
AEL[i] = AE[i] + AWidth/2
AER[i] = AE[i] - AWidth/2
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Three of the possible gestures and their extended finger angles are shown in Figure 6b–d, where
b,c are false predictions, and d is correct. Red lines indicate the detected fingers, and the oranges lines
are the predicted positions of the two unknown fingers.

For b, the two orange fingers are too away from the center and exceed the right boundary. Thus,
it is not a rational prediction. For c, a predicted finger is inserted between two known fingers, leading
to a too small angle gap. Based on these observations, four standards are brought forward to evaluate
a candidate gesture.
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Figure 6. (a) The template image of gesture “Five”. (b–d) Three possible gestures and their five
extended fingers, including three known ones (red) and two predicted ones (orange).

3.4. Template Matching

Heretofore, for a given image, we have found its N fingers and calculated its finger angles A[i],
AL[i], and AR[i], where i = 1–N. Based on these angles and the template’s finger angles AT, we have
predicted all the possible positions of the rest (5-N) fingers to form a set of complete hands with five
fingers and five extended angles AEj[i], where j corresponds to the jth possible gesture Yj, i = 1–5, and
j = 1–M. All notations are shown in Figure 7.
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Now we need to decide which gesture in {Yj} is most correct. Thus, we defined a metric L(Yj), also
known as cost function, to assess the dissimilarity between a candidate Yj and the template. Further,
we also add two terms to evaluate the rationality of the gesture Yj itself. Finally, the gesture with a
minimal error is considered to be the true case. The metric is given below:
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Y = argmin
Y∈{Yj}

L(Y), L(Y) = L1 + L2 + L3 + L4, j = 1, 2, . . . , M (5)

L1 =
5

∑
i=1
|AE[i]− AT [i]| (6)

L2 =
4

∑
1
|(AE[i]− AE[i + 1])− (AT [i]− AT [i + 1])|ExpL2 , ExpL2 = 2 (7)

L3 =
4

∑
i=1

B[i]×max(0, AEL[i + 1]− AER[i])
ExpL3 , ExpL3 = 4 (8)

L4 = In f ×


(
Yj[5] == 0, AR[N] ≤ ABR + 5

)
Or
(
Yj[5] == 1, AR[N] > ABR + 5

)
Or
(
Yj[1] == 0, Yj[2] == 0, AL[1] ≥ ABL − 5

)
 (9)

The cost value consists of four parts:
L1 is the dissimilarity of finger angles between the extended fingers and the template. It is the

primary term for matching two gestures.
L2 is the dissimilarity of the differential of finger angles. The angle interval between two adjacent

fingers is supposed to remain constant. When a predicted finger is mistakenly inserted between two
adjacent fingers, L2 will be very large. After the experiment, we set the exponent of this equation ExpL2 = 2.

L3 is the penalty for two adjacent fingers who stay too close to each other. If the right corner of
the ith finger is on the right of the left corner of the (i + 1)th finger, then a large penalty is produced.
This term is only considered for those fingers inserted between the known two fingers. In the equation,
B[i] equals 1 if the ith finger is inserted between the two. Otherwise, B[i] equals 0. Since L3 is a penalty,
its exponent ExpL3 should be larger than L1 and L2 which is set to 4.

L4 is the penalty when some fingers are outside the boundary. Under the right circumstances, the
right boundary must be on the right of the little finger, and the left boundary must be on the left of
the index finger. Considering that the detection of boundary points is not very accurate, three looser
criteria are applied here: (1) if the Nth finger is not the little finger, then its right angle AR[N] should be
on the left of (larger than) the right boundary ABR; (2) if the Nth finger is the little finger, then its right
angle AR[N] should be near the right boundary ABR; (3) if the 1st finger is neither the thumb nor the
index finger, then its left angle should be on the right of (smaller than) the left boundary ABL. In the
calculation, a tolerance of 5◦ is considered, as shown in Equation (9). For gestures not satisfying either
of these three criteria, a large penalty Inf of 99,999 is imposed.

After adding up the above four terms for each candidate gesture, the one with a minimal error is
the classification result. Under this approach of finger angle prediction and template matching, instead
of a large training set containing all target gestures, it takes only one gesture “Five” as the training
set to recognize all gestures formed by different combinations of fingers. In theory, a total number
of 25 = 32 gestures can be recognized. It is a great advantage of the proposed algorithm that newly
defined gestures can be easily added to the gesture library to serve as new commands.

4. Experiments and Results

4.1. Dataset

Ten people were recruited for the experiment. Before the experiment, the approval of the Ethics
Committee of the 117th Hospital of PLA has been obtained and all subjects have signed a consent form.
Then, each participator performed the required ten types of gestures one by one, and then repeated
this process for ten times. During the experiment, the wristband of the device was fastened to the
forearm of each test subject to ensure that the camera position was kept unchanged. With 100 images
from each subject, there are totally 1000 images in the final dataset. The ten types of gestures from ten
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different subjects are shown in Figure 8, which are labeled from zero to nine according to American
Sign Language.
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4.2. Performance Evaluation

All experiments were performed using Matlab R2016a on a laptop with an Intel CoreTM i7-6500U
CPU of 2.50 GHz with 8 GB of RAM. We evaluated the performance of the algorithm on the dataset
concerning recognition accuracy and time cost. In addition, we analyzed the factors that might affect
the recognition and compared our finger segmentation method with previous ones.

4.2.1. Recognition Accuracy

For each person, one image containing gesture “Five” was used as the template for identifying all
the 100 images from this person. Notice there were ten images of gesture “Five”. Thus, we applied
a cross-validation method by repeating the recognition for ten times, each time using a different
gesture “Five” as the template, and then calculated the mean accuracy. One thing to mention that
some experimenters found it hard to unbend the ring finger when making the gesture “Eight”, thus
we deem both Y = [0, 1, 0, 0, 1] and Y = [0, 1, 0, 1, 1] to be “Eight”.

The result is shown in Table 1, including the confusion matrix, accuracy, and time cost of each
gesture. Our algorithm achieves a high accuracy of 99.38%, where there is no classification mistake
for half of the gesture types including gesture “Zero”, “One”, “Four”, “Five”, and “Nine”. Wrong
samples are mainly from gestures with three fingers. The two gestures with most mistaken times
are gesture “Three” and “Six”, whose number of fingers are the same and finger angles are near.
The misclassifications are mostly due to the variation of hand and fingers’ posture. When a finger
is not totally straight, such as the gesture “Eight” in Figure 8, its length in the camera view turns
smaller. Also, when a finger gets too close to the camera, its width increases which may result in a false
estimation of the finger number in the region. Another major reason is the swing of the hand. Left and
right swings bring error to the estimation of hand’s direction, while the forward and backward swing
changes the angle gap between fingers.
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Table 1. Confusion matrix and the time cost of the recognition. Numbers on the diagonal indicate the
recognition accuracy of each gesture type.

True Label
Recognized Labels (%)

Time(s)
0 1 2 3 4 5 6 7 8 9 Others

0 100 0 0 0 0 0 0 0 0 0 0 0.016
1 0 100 0 0 0 0 0 0 0 0 0 0.027
2 0 0 99.5 0 0 0 0 0 0 0 0.5 0.033
3 0 0 0 97.2 0 0 1.3 0 0 0 1.5 0.038
4 0 0 0 0 100 0 0 0 0 0 0 0.043
5 0 0 0 0 0 100 0 0 0 0 0 0.048
6 0 0 0 0.9 0 0 99.1 0 0 0 0 0.038
7 0 0 0 0 0 0 0.9 99.0 0 0 0.1 0.038
8 0 0 0 0 0.2 0 0 0 99.0 0 0.8 0.037
9 0 0 0 0 0 0 0 0 0 100 0 0.038

Mean accuracy and time cost: 99.38 0.035

4.2.2. Time Efficiency

The time cost for each gesture is displayed in Table 1. The average time consumption is 0.035 s,
which is fast enough to run in real-time. Gesture “Zero” spends the least time of 0.016 s, while gesture
“Five” costs the longest time of 0.048 s. The difference is due to the number of fingers in each gesture,
as we need to process and analyze properties of each finger region including checking connectivity,
dilating finger regions, looking for finger corners, etc.

4.2.3. Analysis of Cost Function

For the four terms of the cost function, their contribution to the recognition accuracy is evaluated
by incrementally taking each term into consideration. The result is displayed in Table 2. With two
simple rules of L1 and L2 which measure the dissimilarity of fingers’ positions and intervals, the
template matching method achieves high accuracy of 96.87%. After adding the penalty L4, which
involves some requirements on the boundary, the accuracy rises to 99.35%. The effect of L3 is not so
predominant because its principle of punishing the overlap of adjacent fingers is theoretically similar
to L2. On the whole, L1 and L2 are measurements of the dissimilarity between the candidate and the
template, while L3 and L4 are the standards of the rationality of the predicted gesture. All four terms
have their significance and have positively boosted the recognition.

Table 2. Evaluation of the effectiveness of the four terms in the cost function. The “
√

” means taking
the corresponding term into account, while “×” means not.

L1 L2 L3 L4 Accuracy
√

x x x 85.31%√ √
x x 96.87%√

x
√

x 89.53%√
x x

√
88.09%√ √ √

x 96.93%√ √
x

√
99.35%√ √ √ √
99.38%

4.2.4. Sensitivity to Parameters’ Variation

To demonstrate the robustness, as well as provide an integrated understanding, we analyzed
our model’s sensitivity to its three primary parameters, including contraction distance din, expansion
distance dout, and the exponent of the second term in cost function, ExpL2. The result is displayed in
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Figure 9, where we can see that the mean accuracy is quite stable when the parameters change. A
detailed analysis is given below.
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The contraction distance din is used to eliminate fingers, meanwhile reserving the shape of the
palm. It serves as the key in our two-phase DT method. As seen in Figure 9a, when it changes rapidly
from 0.3R0 to 0.6R0, the accuracy remains almost the same—above 97%. This is a great advantage
of our algorithm, since the methods based on drawing a circle depends on a carefully selected circle
radius. Another parameter in our model is the expansion distance dout, which is used to exclude
non-finger regions that are outside the palm with a too short length. With a proper din of 0.4R0 or
0.5R0, the varying of dout from 1/9 to 1/5 of R0 does not affect the result much, as the accuracy always
stays above 98%.

Figure 9b shows the sensitivity of our template matching model. There are four terms in the cost
function. Since the third and fourth are large penalties, we only varied the relative proportion of L1

and L2. We kept the exponent of L1 as 1, and then varied ExpL2 from 0.5 to 3. The resultant accuracies
are all above 97%, and reach the peak when ExpL2 equals 2. It again demonstrates the effectiveness of
our model, and also indicate that angle gap between two fingers serves as an important feature for this
angle-based matching method.

4.2.5. Analysis of Using a Different Template

In the proposed method, the gesture “Five” serves as the template for recognizing all the ten
gestures. To evaluate its effectiveness on the recognition accuracy, we tested the situation of recognizing
a person’s gestures using the template from another person. In other words, the ith gesture “Five” of
the jth person was used as the template to recognize hand gestures of the other nine subjects, and this
process was repeated for all i = 1–10 and j = 1–10. The result of the average recognition accuracy of
each subject is shown in Table 3 Accuracy B. The accuracy of using a person’s own template image is
also displayed in Table 3 Accuracy A for comparison.

Table 3. Gesture recognition accuracy of each person when (A) using a person’s own template image
and (B) using a different person’s template.

Person Index 0 1 2 3 4 5 6 7 8 9 Average

Accuracy A (%) 100 98.1 100 99.9 96.8 99.5 100 100 100 99.5 99.38
Accuracy B (%) 94.5 96.5 90.9 93.8 83.1 93.0 97.6 93.3 95.7 75.5 91.39
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The average recognition accuracy drops from 99.38% to 91.39% after using a different person’s
template. This is due to the differences between the template images, specifically the different finger
angles and widths caused by different camera positions and hand configurations between subjects.
It indicates that the proposed algorithm relies heavily on the right template. Accordingly, after the
user wears this device, one template image needs to be taken by the camera. In this way, the template
will fit and be applicable to the following recognition. It should be noted that this is a straightforward
process, because the user only needs to spread out his/her five fingers to perform a ”Five” gesture.

4.2.6. Analysis of Different Camera Postures

For practical usage, the posture of the wearable device may differ between different subjects and
differ from time to time. In Figure 10, we display pictures taken from different postures of the camera
to show how the outlook of the hand changes accordingly.
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Figure 10. (a) The camera posture with respect to θ and ϕ. (b–f) Different pictures of the hand taken
by the wearable camera under different parameters of θ and ϕ.

The parameter θ is the angle between the camera axis and the axis of the forearm. As shown in
Figure 10b–d, when θ gets larger, the hand becomes bigger in the image. Considering the movement
of the hand of flipping up and down, a proper value for θ is around 20◦. The user can adjust the
support of the camera to set this angle during the first usage and keep it unchanged in later times.
The parameter ϕ is the orientation of the camera around the axis of the forearm. It changes when the
device rotates around the wrist. Figure 10e,f show the hands when ϕ equals to 25◦, where the little
finger or the thumb is becoming too distant. The best value for ϕwould be zero.

The proposed algorithm is featured with a robust processing capability to deal with the variations
of the camera posture. As shown in Figure 8, each of the ten hands from the ten subjects has a varied
relative position with respect to the camera. For example, the gesture “Five” is at a relatively low
position in the image while the gesture “Eight” is relatively high. Moreover, the hand of gesture “Two”
is inclined to the left, while the gesture “Six” is inclined to the right. In spite of these variations, the
recognition accuracy of each subject is still above 96% (see Table 3 Accuracy A). This advantage of the
algorithm is ascribed to the additional knowledge provided by the template image, which is taken
after the device is worn.

4.2.7. Comparison of Finger Segmentation

We compared our finger segmentation method with the previous two, as shown in Figure 11.
Since the quantitative analysis of the performance of finger segmentation was not made in those two
studies, the comparison is conducted visually by showing the processing result in the form of pictures.
Overall, our segmentation method shown in Figure 11b outperforms the other two in c,d.

Figure 11b displays the result of our proposed two-phase distance transformation. The blue line is
the palm kernel when din = 0.5R0. The red line is expanded from the blue line to achieve segmentation.
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Figure 11c presents the drawing circle method employed in [30]. The white circle is the maximum
inner circle with a radius R0. Then, another three circles with a radius of 1.1R0, 1.2R0, and 1.3R0 are
drawn. However, none of them can provide a proper segmentation.

Figure 11d tests the method in [29]. Red circle has a radius of 1.2R0. Each yellow line connects a
point on the circle and its nearest neighbor on the hand contour, and then fingers are recognized as the
regions outside these yellow lines. This method works better than simply drawing a circle, but it still
depends largely on an appropriate radius of the circle which deteriorates its ability to generalize.
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5. Application

The proposed wearable camera has many interesting applications. For example, for a user at
home, he or she can perform fingerspelling digits to remotely switch TV channels at will. When the
TV has a video-on-demand service, the use of fingerspelling alphabets, such as “O” for “OK” and “B”
for “Back”, becomes an intuitive way to select the menu item. To demonstrate the practicability of the
device, here we applied it to a more complex task of operating an assistive robotic arm to transport
small wooden building blocks. This simulates the scenario for a disabled person using his/her hand
gestures to command an assistive robot to fetch objects (see Figure 12). The video demo can be found
at the link in the Supplementary Materials.

For the simplicity and intuitiveness of the control commands, three old gestures and five new
gestures were used, namely “None”, “Grab/Drop”, “Up” & “Down”, “Front” & “Back”, and “Left”
& “Right”, shown in Figure 12e. The user performed these gestures with his right hand to control
the robotic gripper to move towards the desired direction, as well as grab/release building blocks.
In the video demo, we successfully transported two red blocks from on the table to the top of two
yellow blocks. A snapshot of the video is shown in Figure 12a–d. The detailed implementation is
described below.

• Gestures recognition

The recognition algorithm is slightly modified for the new set of gestures. Among the eight
gestures, the ones formed by different fingers were recognized by the steps described in the main
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article. The remaining ones were classified by the following approach: “Grab/Drop” and “Front” are
distinguished by looking at the number of fingers in each region. “None” and “Down” are separated
by the height of the palm centroid. “Left” and “Right” are differentiated by checking the direction of
the finger, which was calculated by drawing a line between finger point and fingertip. Fingertip is the
point on the intersection of hand contour and finger contour, and has a maximal sum of the distance to
the two finger corners. Before recognition, we took one picture for each gesture to obtain the margin of
different heights and the margin of different finger directions, and used the two margins to achieve the
above classification.

• Control of robot arm

The robot has five degrees of freedom on its arm and one degree on its gripper. We adopted
Resolved-Rate Motion Control [35] (pp. 180–186) to drive the gripper towards the direction of the
front, back, up, and down. The linear speed was set at a moderate level of 0.04 m/s so that the user
could give the right command in time. Moreover, the left and right rotation of the body of the robot
arm was achieved by the bottom servo motor at an angular velocity of 0.2 rad/s. Moreover, since the
frame rate of the video might drop to 8 frames per second under poor lighting conditions, we set the
frame rate and control frequency as 8 per second, which was still fast enough for real-time control.
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6. Discussion

The proposed finger angle prediction and matching method is based on the intuitive features of
the fingers, which brings the advantage that only very few training images (one for each person) are
needed. In general, for machine learning algorithms, there should be training examples for each class,
and they ought to be comprehensive and cover all circumstances to make the model robust. When
adding a new class, new training images of this class need to be gathered. In the proposed method,
however, by manually selecting and processing the specific features (fingers) for the specific target
(hand gestures), the number of the required training image is reduced to only one. For the gesture
“Back” and “Front” in the application section, they were recognized without the need of a new training
set, but only based on the template of gesture “Five”.

There are also some drawbacks to the current work. After the user wears the device, the camera
needs to first take a picture of the hand in order to utilize more knowledge about the camera posture
and hand configuration. Further, the color thresholding method we used to segment the hand is
sensitive to the variation of lights and background colors. More complex and robust methods should
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be adopted. The estimation of the hand’s orientation and the left and right boundaries needs refinement
as well. Future work might exploit the feature of hand shape and fuse it into our current scheme to
improve the performance.

7. Conclusions

In this paper, a wearable device for hand gesture recognition has been developed which is based
on an RGB camera worn on the backside of the user’s wrist. A two-phase distance transformation
algorithm is presented to separate fingers and palm in the image. Then, a novel finger angle prediction
algorithm and a template matching metric are proposed. Based on the detected fingers, possible
positions of the other unknown fingers are predicted to form a presumed completed hand with five
fingers, which were then compared to the template image of gesture “Five” to measure the dissimilarity.
The predicted gesture with a minimum error is the recognition result. The efficacy of the algorithm
was then verified on the dataset comprised of ten types of gestures and one thousand images. High
mean accuracy of 99.38% and fast recognition speed of 0.035 s on average for hand gesture recognition
were achieved. The real-time demo of controlling a robot arm to transport and pile up building blocks
further proved the applicability of the proposed system for applications in smart infrastructure.

Supplementary Materials: The image set and the video are available online at www.mdpi.com/8/3/369/s1.
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