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Featured Application: Considered technique allows the segmentation of histological images
by means of semisupervised learning using Histogram-based Autoencoder Neural Networks.
Data analysis applying fractal estimators is proposed for the evaluation of the method-induced
errors of autopsy lung images.

Abstract: The designing of Computer-Aided Diagnosis (CADx) is necessary to improve patient
condition analysis and reduce human error. HistAENN (Histogram-based Autoencoder Neural
Network, the first hierarchy level) and the fractal-based estimator (the second hierarchy level) are
assumed for segmentation and image analysis, respectively. The aim of the study is to investigate
how to select or preselect algorithms at the second hierarchy level algorithm using small data
sets and the semisupervised training principle. Method-induced errors are evaluated using the
Monte Carlo test and an overlapping table is proposed for the rejection or tentative acceptance
of particular segmentation and fractal analysis algorithms. This study uses lung histological
slides and the results show that 2D box-counting substantially outweighs lacunarity for considered
configurations. These findings also suggest that the proposed method is applicable for further
designing of classification algorithms, which is essential for researchers, software developers,
and forensic pathologist communities.

Keywords: method-induced errors; fractals; lacunarity; multi-parameter box-counting; autoencoders;
convolutional neural networks; image segmentation; microscopic lung images

1. Introduction

The digital analysis of medical microscopic images is very important from an application point
of view. The designing of such systems is necessary for improving patient condition analysis and
to reducing human errors. Advances in image acquisition of microscopic slides have improved
the performance of CADx (Computer-Aided Diagnosis) [1,2]. CADx systems are large data systems,
because microscopic slides are very large images and many of them are processed in a typical workflow.
A typical microscope slide is approximately 75× 26 mm and submicrometer resolution can be achieved
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using optical scanners. In most cases, the biological content does not occupy the entire slide, but image
size is still large enough.

The problem of image size is important, but automated analysis is much more significant. Large
data sets require fully automated or computer-assisted processing (Human in The Loop). The extraction
of important parameters for medical analysis of a patient is a very complicated task. The essential
problem is complexity of visible structures and their variability in different patients. The designing of
CADx systems is seemingly one of the most challenging tasks for researchers nowadays.

Reliable CADx systems are available for the morphologically simplest biological structures.
A good example is the use of liquid cytology with removed artefacts instead of traditional pap smear
in cervical cancer screening, which leads to clearer background of obtained cytological images and
therefore enables preliminary computer interpretation of cytology for example with Focal Point BS,
Burlington, NC, [3]. Automated microscopy system Cellavision DM96 is also used for the examination
of peripheral blood smears essential in hematological diagnosis [4,5].

A typical CADx system is based on a data classification system with numerous application-
oriented complex algorithms. One of them is the estimation of a type of microscopic structure and the
determination of malignancy. This could be achieved by analyzing microscopic structures, which are
tissue dependent. The analysis of lung microscopic slides shows the importance of fractal structures
for classification purposes. Quantitative analysis of the fractal dimension seems to be a promising
method, but the segmentation of an acquired image is needed. Additional image analysis algorithms
as well as a large data set are required for the design of CADx systems.

Two main approaches could be applied for the design of a CADx system. The first one is the
black-box approach using machine learning methods, where overall process is based on training using
a large data set. The primary drawback of this approach is the need for a very large data set with
man-made segmentation. The secondary drawback is the lack of knowledge about obtained data
processing details, therefore such a system is a black box and determination of reliability of such a
CADx system is questionable. The second approach is the hierarchical system which is much more
promising, because particular parts of the system could be tested independently, thus the determination
of reliability of such a CADx system is possible. The hierarchical system allows the reduction of the
data set, because increased control of particular algorithms is possible.

This work uses hierarchical design. The first hierarchy level is based on segmentation using
dedicated HistAENN (Histogram-based Autoencoder Neural Network) and semisupervised learning
principle. The second hierarchy level is the fractal-based estimator for complex structure analysis.

The field of research has a broad spectrum of application, and therefore the contribution is listed
in a few main points:

• This work assumes hierarchical design using autoencoder neural network (the first hierarchy
level) and the fractal-based estimator for complex structure analysis (the second hierarchy level)
of segmented images and shows how to select or preselect algorithms in the second hierarchy
level algorithm using small data sets and the semisupervised training principle. The choice of the
best algorithm can be automated. Manual segmentation of entire images, required for supervised
learning for creating training pairs, is not required in this case. It is the main contribution of
this paper.

• This paper demonstrates a different approach to the design of image segmentation algorithms,
because in majority of papers’ single results of neural networks are provided. There are numerous
reasons why single results are provided, such as learning time, but it leads to false final conclusions
about the architecture of the neural network. Neural network should be learned multiple times,
because such empirical verification leads to different non-optimal networks, and the distribution
for most quality parameters is achieved. Single learning gives a single value of neural network
quality parameters, so the comparison of two different neural network architectures leads to
significant errors.
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• This paper addresses the problem of lung autopsy microscopic image analysis that is completely
different from examination of regular histological slides of lung tissue. The issue of result
variability due to the selection of image segmentation, and image analysis algorithms are
discussed. The outcome has good potential for further designing of classification algorithms,
which is essential not only for researchers and software developers but also for the forensic
pathologist community. Moreover, methods described and discussed in this paper are appropriate
for different types of digital images.

• The segmentation algorithm with the use of machine learning approach and comparison of results
for two fractal-based algorithms—2D box-counting and fractals related lacunarity—are discussed
in this paper. Binary images from the classification algorithm should be achieved, but the inherited
properties of histological slides do not allow the discovery of an exact solution. The segmentation
algorithm introduces errors and could be considered as noise. Segmented images are processed
by fractal algorithms and input data including noise influence on the final variability of estimated
fractal descriptors. Low variability of the system is especially important for semisupervised
learning, because this type of learning is preferred for the processing of large images with some
control of this process by specialists (patomorphologists or cytomorphologists.

• Method-induced errors could be estimated using the Monte Carlo approach. This work uses
100 HistAENNs trained for every image for the determination of algorithm influence on
results. Overlapping tables could be achieved and analyzed for the determination of variability.
The selection of a possibly more acceptable algorithm (e.g., fractal) and the selection of parameters
for particular algorithm could be attained. The analysis of variability which may be applied
for data sets with very raw manual segmentation is most important. Moreover, providing the
expected classification results for the selection of segmentation and fractal analysis algorithms is
not necessary.

• This paper shows the viability of the designing of segmentation algorithms with the use of
neural networks if the appropriate rotational invariance algorithm is applied. It is possible by
the application of the Sliding Window Local Histogram (SWLH) to achieve desired invariance.
The training of such rotational invariance inside much deeper and larger CNN (Convolutional
Neural Network [6–8]) is feasible, but SWLH that is a part of HistAENN simplifies training.
SWLH reduces the size of the neural network as well as training time, so Monte Carlo tests are
possible with a few days of processing.

Additional estimators are necessary for proper classification if the fractal estimators are not
sufficient [9]. Such additional estimators and classification parts of system are not dealt with in
this paper.

The related works are introduced in Section 2. A brief introduction to lung tissue as well as image
acquisition parameters is presented in Section 3. Image complexity and variability of structures are
presented using example images. Semisupervised learning and analysis of method-induced errors are
considered in Section 4. Quantitative analysis of variability of estimators is considered in Section 4.1.
Manual Segmentation Techniques in Semisupervised Learning are considered in Section 4.2. The first
hierarchy level uses proposed HistAENN architecture (Section 4.3) that is trained using developed
HistAENNseg software (Section 4.4). The second hierarchy level is based on the fractal estimator that is
promising as one of the descriptors for lung structures observed in microscopic images. Box-counting
and lacunarity are considered in Section 4.5 as fractal estimators with the multi-parameter output.
Results based on Monte Carlo tests [10,11], related to variability, can be found in Section 5. Discussions
of selected solutions are provided in Section 6.1 (All-in-One and Hierarchical Segmentation), Section 6.2
(Selection of Learning Principles), and Section 6.3 (Invariant Image Representation). Discussion of
obtained numerical results that leads to the selection of a better fractal-based image analysis algorithm
is presented in Section 6.4. Final conclusions and further work are provided in Section 7.
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2. Related Works

Semisupervised learning of neural networks (including CNNs) and other pattern recognition
algorithms are recognized as the most promising techniques for large data sets due to the limited
number of labels [12–15]. Fractal analysis is used very often for analysis of microscopic structures
in medical images [16]. The application of fractal geometry for automated segmentation of lung
parenchyma image sequences is discussed in [17]. The problem of variability of fractal estimators is
well known and is described in numerous works [9,18]. The bias problem is not relevant if the same
algorithm is used.

The analysis of variability is possible using numerical tests. Two variants are possible using
the Monte Carlo approach. The best variant is based on the synthetically generated large data sets
of known properties (e.g., fractal dimension). This variant allows testing of the variability for a
particular system. It is robust, but limited, because it is impossible to generate microscopic images of a
lung. A typical augmentation process used during neural network training cannot be used, because
augmentation could change the structure of images and influence values of fractal estimators. Another
variant of the Monte Carlo approach is used in this paper. The source of noise is the learning process
itself, because the starting parameters and order of training samples influence the achieved neural
network and segmentation results. This is a source of noise for variation testing of system (neural
network with fractal estimator). Uncertainty in deep convolutional encoder–decoder architectures
using the Monte Carlo approach is considered in [19,20].

Method-induced errors are considered in numerous works, and two techniques are possible:
analysis of direct distributions or mean and standard deviation pairs, the latter being more convenient.
In both cases, multi-parameter estimation is used for an arbitrary set of scales. Standard deviation
and mean are considered, for example in [18,21,22]. Average fit error is considered in [23]. Coefficient
of variation, as well as standard deviation and mean, are used in [9]. Standard deviation and mean
for 2D and 3D box-counting are considered in [24]. Method-induced error analysis using the Monte
Carlo test could be regarded as a kind of software testing, especially to achieve high reliability [25,26].
The Monte Carlo test is time-consuming, so adaptive techniques [27], including Markov Chain Monte
Carlo are used [28].

Overlapping tables are used for quantitative comparison of fractal algorithms. This = allows
the overlapping of empirical distribution analysis. It is the adjacency matrix for undirected graphs
in graph theory. Numerous measurement criteria are available for the analysis of adjacency matrix,
especially in the context of ecological niche analysis [29]. Niche overlaps are usually considered to be a
2D overlapping problem [30] and in this work 3D overlapping is considered.

Rotational invariance is considered, and it is important for image classification purposes.
Numerous techniques for rotational invariance of overall image are proposed [31–35]. Multiple
images with specific rotation of faces are used in [31]. Similar input technique is used in [32] for
multiple parallel CNNs and their outputs are processed by dense layers which are the data fusion parts
of system. An additional rotational invariant layer is applied in [33,34]. Two techniques to encode
rotational invariance are considered in [35] by applying rotation to the input images and rotations to
the convolutional filter. Rotational invariance for small-scale areas are considered in this paper as a
simpler solution.

Advances in image segmentation algorithms offer some alternatives to machine learning-based
segmentation. The most important are turbopixel/superpixel segmentation methods [36,37], watershed
segmentation methods [38,39], and active contour methods [40,41].

3. Data

Histopathological examination of tissues is useful in undiagnosed and suspected cases to confirm
the diagnosis. The involvement of lung is observed in infectious and malignant conditions and cases of
cardiovascular events and lung autopsy is indispensable in forensic medicine, because this examination
may often provide the information about the cause of death [42].
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The morphology of lung tissue is shown in Figure 1 and it is remarkable that alveolar septa
are fractal in structure and therefore are essential for the segmentation task. Various morphological
changes are observed in autopsy lungs. Lung pathological findings contain cases of pneumonia,
emphysema, tuberculosis, and malignant lesions [43].

The fundamental basis of fractals and analysis of fractal dimension and associated measurements,
such as lacunarity (texture) for lung are considered in [44]. In [45] most commonly observed examples
of terminal changes in lung at autopsy are pulmonary edema and changes due to cardiac causes and
pneumonia whereas acute respiratory distress syndrome and mycotic abscess and metastatic lung
cancer were observed as rare findings. Normal morphology of lung tissue is also observed in autopsy
lung [42]. It is reported that in cases of autopsy lung autolytic changes are often observed which
are also found in other types of tissues. Moreover, for some cases, histology is unremarkable [46,47],
making the segmentation of lung autopsy histological slides is a challenging task due to the presence
of autolytic changes of different grading causing indistinct tissue structure. Various morphological
findings connected with age, coexistence of additional diseases, and hormonal stage of the patient are
also significant and influence lung tissue. The examples of histological findings in autopsy lungs are
shown in Figure 2. Very often, more than two changes are found in one histological slide, so this is
another reason digital classification is a challenging task.

air space 
of alveolus

alveolar septum

red cells in lumen
of blood vessel

Figure 1. Example of lung tissue.

Eight colors were used for the segmentation due to the presence of various morphological
structures, dependent on the state of the patient, additional diseases, age etc. It has been observed that
medical images have very complex morphological structure due to many diagnostic issues. Four colors
were used for the estimation of fractal dimension. Therefore, the fractal dimension is estimated in
some individuals from pneumocytes of alveolar septa. The structure of the fractal is created not only
by pneumocytes, but also in cases of congestion is created additionally by erythrocytes present or
neutrophils and macrophages if present in alveolar septa in an inflammation state for example. This
is the reason more than one color is included in fractal dimension analysis; furthermore, in some
images only one color is presented in septa, and in other cases even four colors connected with
morphological structures are present. Four additional colors were used in segmentation for further
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purposes. This issue is strongly-based in the area of medical analysis which is not included in our
present analysis, and outside of the paper scope.

 a)  b) 

 c)  d) 

Figure 2. Examples of lung autopsy images ((a) emphysema, (b) edema, (c) autolysis, (d) blood cells in
alveoli and congestion).

Experimental evaluation of box-counting and lacunarity is based on parts of 52 autopsy images
stained with Hematoxyline–Eosine. They are acquired using 3DHistech Panoramic MIDI scanner with
Hitachi HV-F22CL camera. The pixel size is about 0.234 µm and virtual slide (MRXS format) uses JPEG
compression with compression factor 60. The input images from slide scanner are RGB, but we tested
grayscale variant, because many features are visible without color. Color could improve results but
using a grayscale image is interesting from the research point of view. The inputs in this work are TIFF
images with 6000× 6000 resolution. They are extracted from MRXS virtual slides using OpenSlide
Viewer v.3.4.1 [48] and VIPS v.8.4.5 [49].

4. Methods

The analysis of method-induced errors allows the comparison of the algorithm. Multiple tests are
required for the determination of variability of results and the most important fact is that the overall
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process could be automated if quantitative algorithm quality criterion is defined. Method-induced
errors could be estimated for complex systems or particular parts of such a system.

4.1. Variability of Estimators

The problem of variability is very complex from different points of view. Single segmentation and
corresponding fractal-based estimation results are insufficient for the variability analysis.

Low variability (small method-induced errors) is required for the user. Semisupervised learning
is applied for every image by the user, so the user expects good classification, therefore the proper
value of fractal dimension (FD) for classification algorithm should be delivered. Segmented image
could be visualized for the user’s acceptance or rejection of classifier results. Low variability of system
means also that the number of tests and trials is very low for the user.

Variability testing is possible by multiple repetitions of training and estimation of fractal
parameters (a kind of Monte Carlo test). This process allows estimation of some empirical distribution
which is valuable for the analysis of variability. This process could be repeated for the same input
image. Neural network learning process is sophisticated, so achieving a global minimum is not usually
possible. Multiple runs of the training algorithm will deliver similar but not identical segmentation
algorithms. The small data set used in the second phase of a learning of classifier does not guarantee
correct convergence but testing of this convergence is needed.

The distributions of FD or lacunarity, obtained by multiple tests of the same input image and
particular segmentation provided by the user, are the results of Monte Carlo tests. Different images
can have similar distributions. Images with the same image content are expected to deliver similar
distributions. The question is, how can a pathomorphologist use distributions from a Monte Carlo test
without a large database or precise classification?

The solution for the abovementioned problems is as follows. The hypothesis about the possible
correct structure of neural network and fractal estimator could be checked with a Monte Carlo test,
with a decision rule defined as an acceptance by the lack of reasons for the rejection. The rejection of
this hypothesis and rejection of a particular system configuration is possible in cases of significant
overlapping of all distributions. Two different images with different content should be with two
different distributions without overlapping or with very low probability of overlapping. The testing of
all distribution pairs provides the quality coefficient.

Analysis of bounding boxes defined by means and standard deviations could be proposed as
criteria for possible rejection or acceptance of the hypothesis. Three selected mean values define the
center of box and standard deviations define nearest distances between center and particular box faces.

The lack of significant overlapping for two images, in the standard deviation sense, means that
there are box pairs related to two different images without common content even if the learning
process is repeated multiple times. Overlapping occurs if there is a common content. Comparison
of all pairs/boxes gives an overlapping table OT. This table is diagonally symmetrical, but diagonal
results are not used. All possible pairs are tested, and the following formula shows how this table is
filled with logical ‘0’ or ‘1’ values:

OT(x, y) = Bx ∩ By, (1)

where x and y are indexes of boxes Bx and By. The minimal number of comparisons in OT is defined
by the formula:

Tn =
P(P− 1)

2
, (2)

where P is the number of images (P = 52 in this work). The density of overlapping D is the assumed
criteria of analysis, so sum of logic ‘0’ values could be calculated using values below or above diagonal:

D =
P

∑
x=2

x−1

∑
y=1
¬OT(x, y). (3)
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Relative overlapping Q% is defined by formula:

Q% =
Q
TP
· 100%. (4)

and it is a scalar indicator of the system quality that is related to method-induced errors. Minimal
value (zero) is the best case (acceptance) and maximal value is 100% (full rejection).

It should be noted that classification assignment is not considered in this technique. Significant
overlapping of distributions is the source of strong rejection of the system. This is not a proof that
such system will function. Lack of significant overlapping suggests the ability of classification for
achieved parameters from a particular system. Partial overlapping of distribution shows that the
system requires additional image descriptors for the correct classification. Such additional tests are not
considered in this work.

The value of Q% could be used for the comparison of different algorithms or system configurations.
The variability analysis could be based on testing of standard deviation and mean. An alternative
approach is possible with the use of distributions directly.

4.2. Manual Segmentation Techniques in Semisupervised Learning

Semisupervised learning assumes labeling of a small part of an image. There are three possible
methods of labeling (Figure 3) for small areas depicted as a white line. The first one assumes labeling
of the inner part of an object (Figure 3a) far from region edges. The second one assumes labeling of
region boundaries (edges). This method requires finding edges between each possible pair of objects
of different classes (Figure 3b). The third one requires near-to-edge labeling of objects without edges
crossing (Figure 3c). The first and the third methods were used jointly in this paper.

a) b) c)

true
edge

edge
region

optimal
discriminant

non-optimal
discriminant

examples

true
edge

edge
region

optimal
discriminant

non-optimal
discriminant

examples

true
edge

edge
region

x

p(x)

x

p(x)

x

p(x)

marked
in GUI

area used
for training

Figure 3. Examples of manual labeling, achieved distribution and possible regions discriminations
((a) inner regions labeling, (b) regions edge labeling, (c) near-to-edge labeling).

Manual selection, depicted as a color curve, allows the local selection of surrounding pixels around
such a curve which are depicted as fat white curves corresponding to particular selection. White and
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color curves allow the extraction of image parts, so small image pieces with fixed window size could
be processed directly during training or are an input image for other parametric or non-parametric
estimators. Single- or multi-dimensional distribution for particular selections are achieved in all the
abovementioned cases (they are also shown in Figure 3):

• The inner part of region labeling is straightforward for the user but leads to numerous problems.
Separation between two regions could be significant and both distributions do not overlap
(Figure 3a). There are numerous possible discriminants which could be achieved during the
training of a classifier using typical neural network training algorithms. Optimal discriminant is
between both distributions and it is usually not achieved.

• Edge region distribution is between both distributions (Figure 3b), because it partially shares
properties of both regions. Movement of the selection from one to the other region leads to smooth
transition of one to the other distribution with intermediate cases shown in Figure 3b.

• The near-to-edge selection uses previously mentioned properties of distributions to achieve
better discrimination. Both selections in this method overlap and both distributions overlap
too. This means that the distance between them is much smaller compared to the first method
(Figure 3a), but full overlapping is not achieved as in the distribution shown in Figure 3b.
The application of typical neural network training algorithms leads to positioning of the
discriminant between both overlapped distributions. There is no gap between them, thus an
optimal or very close to optimal solution is achieved.

The first and the third method should be used together, because they are related to different
distributions. The first method is not feasible for near-to-edge regions and the third could fail in
inner-region areas. Combining them allows efficient training in the semisupervised approach. Manual
segmentation rules are rather simple for users if the GUI is correctly designed. User actions are related
to the segmentation using color curves as in Figure 3 and white regions are not depicted in any way.
Single pixels of the selection curve depicted in GUI define the center of the window, used for the
extraction of the pixels. It is not necessary to select from both sides of edges in the same image part
area. Two different image part areas could be successfully used for the selection of classes.

Proposed inner-region and near-to-edge labeling could be applied for sharp and fuzzy edges,
which is very important for the processing of histological images. It should be noted that segmentation
using strict assignment of objects to particular classes leads to segmentation errors. The difference
between classes is sharp, but edges between objects in the image are fuzzy. This is a result of acquisition
errors during the scanning, slide preparation errors or numerous stereology effects [50]. Thick section
could contain entire microscopic objects or pieces of microscopic objects. Slides are three-dimensional
with some volumetric transparency, but a two-dimensional image is obtained by slide scanner [50].

4.3. Architecture of HistAENN and Two-Step Learning

A local histogram with low number of bins (SWLH) is applied for image preprocessing
and the window size is 21 × 21 pixels. This preprocessing is responsible for local rotational
invariance. The architecture of applied neural network is variable with two phases and corresponding
configurations (Figure 4).

During the first phase, HistAENN works as an autoencoder [8,51,52] with input vectors
(histograms) and exactly the same output vectors. A bottleneck in the inner part of an autoencoder
(FC10 together with RELU10) forces data clustering. Two parts of an autoencoder are achieved after
training: encoder and decoder, which correspond to the input-to-bottleneck and bottleneck-to-output
parts of neural network. This phase uses 100,000 random fragments of the image for training, so this
autoencoder is obtained by unsupervised learning.

The encoder is reused in the second phase with fixed weights. The outputs of the encoder are
connected to the new neural network which is a classifier. Inputs are vectors (histograms), as in the
previous phase. The classifier uses N independent outputs which are assigned to particular classes.
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The position of maximal value from the output vector is a recognized class number. Every position of
the sliding window corresponds to a single output class number.

Desired outputs are manually assigned labels by the user before training HistAENN, so the
number of training pairs is much smaller (e.g., 500 for each class) compared to the number of training
cases in the first phase. This phase uses the supervised learning principle.

A typical testing using an additional data set is not used during both phases. It is intentional,
because the segmented image is evaluated by a human. Test cases could deliver quality information to
the user, but this is not discussed in this paper. This paper is related to the automatic evaluation of
variability of HistAENNs and fractal estimators. The application of test cases leads to the rejection
of badly fitted HistAENNs. The acceptance of such HistAENNs is required for the increasing of
variability range.

SWLH
(20

bins)

FC
10

RELU
10

FC
20

RELU
20

Encoder Decision

FC
8

OUT
8

Max

IN
21x21

SWLH
(20

bins)

FC
10

RELU
10

FC
20

Encoder Decoder

IN
21x21

OUT
(20

bins)

a)

b)

Figure 4. Scheme of HistAENN architecture for both training phases (RELU—REctified Linear Unit
Layer, FC—Full Connection Layer) ((a) autoencoder phase, (b) classifier phase).

The processing of entire image begins after the end of the second phase of training. The obtained
segmentation could be accepted by the user or not, because it is semisupervised learning with a Human
in The Loop. We observed that additional iterations are not so frequent, and they are related in most
cases to human labeling errors.

4.4. HistAENNseg—Image Segmentation Software

Manual segmentation techniques and semisupervised learning were implemented in developed
software (HistAENNseg). Qt library v.5.5.1 is used for GUI implementation. User activities and GUI
are reduced to the desired minimum and manual labeling process requires mouse or graphical tablet
(Figure 5) actions. Labels are related to the desired classes. The selection of hundreds up to a few
thousand pixels for every class is typically sufficient. The selection should be based on boundary
regions between two classes (Figure 3). The selection of regions is possible in the left window. The right
window shows achieved segmentation results, with colors assigned to the particular classes which are
mixed with original input grayscale image.
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Figure 5. Exemplary view of HistAENNseg.

Further fractal analysis is based on a binary image, so for the particular image some classes
are merged following segmentation. Image resolution for the fractal analysis is reduced four times,
because fractal estimation is costly without optimal code for GPU. Additional processing [53] using
dilation (disk diameter 1), erosion (disk diameter 4) and removal of an island with the area size of less
than 8 pixels area is applied for local artefact filtering.

There are a lot of machine learning frameworks with the support of CNNs. This software uses
dlib v.19.10 [54] and NVidia cuDNN library v.7.0.5 [55] for CUDA v.9.1. The selection of dlib was
prompted by C++11 [56] direct support of CPU parallel processing and stable memory management of
GPU. Overall software was developed and runs on Debian 9. MATLAB is used [53] for the further
fractal analysis of labeled output images.

4.5. Fractal-Based Analysis of Microscopic Lung Images

Fractal estimators are frequently used indicators of the complexity in binary and grayscale
images [57–59]. Different fractal and similar estimators are proposed i.e., box-counting [57],
lacunarity [60], variogram [61,62], TPM (Triangular Prism Method) [63,64], SIM (Slit Island
Method) [65], APR (Area Perimeter Relation) [66] and others.

The difference between conventional fractal and multi-parameter fractal techniques is in the
number of obtained parameters [67,68]. Classical fractal estimators assume single output scalar
value-estimated FD. This value is related to the slope of linear function of Richardson’s plot [65,69].
This plot uses a logarithmic axis and typically the linear function in this plot is observed for synthetic
fractals. The FD could be a function of scale. Vectors with scale-dependent FD is the output of
multi-parameter estimators. The scale range and number of scales should be selected to obtain a
smooth Richardson’s curve.

FD value could be calculated for non-fractal objects without relation to object structure.
This phenomenon is known as a “fractal rabbit” [69]. Image analysis applications accept “fractal
rabbits” if the achieved FD values are useful for a particular application.

Two well-known algorithms are considered in this paper—2D box-counting and 2D lacunarity.
Both algorithms use the sliding window approach for binary images and holes are analyzed by
box-counting and lacunarity in this work.
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Box-counting allows the estimation of FD using the following formula:

D(r) =
log Nr

log 1/r
(5)

and the FD can be estimated from the least squares linear fit of log Nr against log 1/r, where Nr is the
number of boxes of side length r required to cover the set.

Two extensions of box-counting output are also used, because FD could be a function of r.
Vectors with the local FDs for multi-parameter box-counting algorithm could be obtained using the
following formula:

FDlocal(ri, ri+1) =
log

Nri+1
Nri

log ri+1
ri

, (6)

for neighborhood measurements ri and ri+1.
Another possibility is based on the estimation of FDs for selected regions from nonlinear

Richardson’s plot. Local FDs are obtained as the results and correspond to region boundaries [69].
There is some redundancy in full vector, but the vector length is fixed which is important for the

simplification of classifier design. Regions-based approach uses variable-length vector with FDs and
boundaries pairs.

Lacunarity is not exactly the fractal algorithm in the strict sense, because FD is not estimated
and the results of lacunarity depend on texture [60]. Fractal textures give a unique response to the
lacunarity algorithm. Lacunarity estimation Λ(r) uses the following formulas [60]:

Q(s, r) =
n(s, r)

∑ n(., .)
, (7)

Z1(r) = ∑ sQ(s, r), (8)

Z2(r) = ∑ s2Q(s, r), (9)

Λ(r) =
Z2(r)
Z2

1(r)
, (10)

where r is the sliding window height and width, Z1 and Z2 are moments of distribution Q. The table n
is the counting table that is addressed by r and number of counted pixels s with the specific value (‘0’s
or ‘1’s for binary image). The distribution Q is achieved from n by normalization.

5. Results

There are 100 HistAENNs trained using the same single labeling for every image with random
starting weights. Both training phases use the SGD (Stochastic Gradient Descent) algorithm [70,71]
and 10,000 training steps. The labeling process is controlled by a human using additional training
steps before the Monte Carlo test and iteratively corrected if the segmentation results are insufficient.
It is expected from the user’s perspective that similar results should be achieved if single segmentation
is visually checked.

Example results for box-counting and lacunarity are shown in Figures 6 and 7 respectively.
All Monte Carlo results (Richardson’s and lacunarity plots) are shown, for illustrative purposes
for a single image as a set of 100 overlapping curves. Raw discrete distributions derived from
these distributions are shown as vertical lines with grayscale coding. Direct analysis of such raw
distributions is possible, but it leads to a very large set of parameters. The reductive approach is
possible by simplification, so only mean and standard deviation are used. Mean values and standard
deviations are depicted for particular r values as a continuous line (red) and vertical lines (black),
respectively. More precise visualization with median and range is possible, with the use of box and
whisker plot. Furthermore, local FDs are shown for box-counting.
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NVIDIA Titan X (Maxwell) GPU card was used for training of HistAENNs. Calculations of local
histograms (SWLH) were on the CPU. It is possible to process SWLH on GPU, but it will be considered
in further versions of HistAENNseg software, because the integration with dlib is necessary.
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Figure 6. Exemplary results for box-counting analysis for single image (standard deviations are shown
as a vertical line in left figures; raw distributions are shown in right figures).
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Figure 7. Exemplary results for lacunarity analysis for single image (standard deviations are shown as
a vertical line in left figures; raw distributions are shown in right figures).
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Multi-parameter box-counting and lacunarity are selected for the analysis of method-induced
errors. There are about 19 and 20 results for both algorithms, respectively, so the analysis in this
high-dimensional space is difficult and unnecessary. Smooth curves are obtained for every image to
avoid sampling problems. A few parameters are sufficient for the analysis. The problem depends
on their selection and their equidistant selection is the direct solution, so three values out of four
are tested.

Four cases of multi-parameter box-counting and lacunarity are calculated for the configurations
and are shown in Table 1.

Table 1. Configuration of multi-parameter methods and obtained results.

Case Type Scales List Q%

1 box-counting −2.5649,−1.9459, 0 7.24
2 box-counting −2.9444,−2.5649,−1.9459 14.10
3 lacunarity 0.8451, 1.1361, 1.3010 67.72
4 lacunarity 0, 0.8451, 1.1461 73.30

Overlapping table is shown graphically in Figure 8.

a) b)

c) d)

Figure 8. Examples of overlapping: (a) box-counting (Case 1), (b) box-counting (Case 2), (c) lacunarity
case (Case 3), (d) lacunarity (Case 4). Black is for overlapping.
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6. Discussion

6.1. All-in-One and Hierarchical Segmentations

There are numerous image segmentation [72] and classification [73] algorithms. Machine learning
techniques are especially important because the segmentation by training is possible. An alternative
approach based on the analysis of images and design of entire segmentation algorithm manually,
by long trial and error sequences, is very difficult for complex image content. Parallel processing
is possible for machine learning, so different configurations of machine learning algorithms may be
automatically trained and tested for the optimization of segmentation performance.

Two main approaches are applied for the design of image segmentation systems using machine
learning algorithms:

• All-in-One approach, where a single machine learning algorithm is used for overall image
processing. Such an approach could also be used for the final classification purposes, so the
input is the image and the output is the recognized class.

• Hierarchical approach, with well-defined processing stages where some of them could be machine
learning-based and others could be typical image processing algorithms, such as filters.

The solution proposed in this paper for the segmentation of autopsy lung images uses the
hierarchical approach with the HistAENN and additional preprocessing.

6.2. Selection of Learning Principles

The learning of the classifier for the segmentation purposes is a very challenging task. The first
problem is related to the selected: supervised, semisupervised, or unsupervised variant [74,75].
This selection is non-trivial, influencing the possibilities of the final system and user experience during
regular work:

• Supervised learning requires input and output image pairs. The input image from each pair
is available directly, but the desired output image should be manually segmented. Large slide
images and their large data set lead to extremely high costs of design. The advantage is the
possibility of designing a fully automatic CADx system.

• Unsupervised learning requires input images only, so the problem of manual segmentation of
desired output images is avoided. This approach is based on automatic clustering. The number of
classes could be arbitrarily selected or could be estimated automatically [76,77]. Unsupervised
learning could be applied for well separated classes directly, but in most cases requires manual
fitting of algorithms for a particular data set. This additional effort depends on the image content.

• Semisupervised learning is a promising solution for cost reduction of manual segmentation.
This process assumes labeling of very small parts of images that belong to the specific classes.
Semisupervised learning could be used for CADx system development or as a CADx working
principle. In the latter case, semisupervised learning is used by patomorphologists during the
analysis of a particular image. Obtained results are checked and corrected iteratively (Human in
The Loop) for segmentation improving to the desired level. A very significant advantage of this
learning principle is the possibility of an image segmentation system design without access to all
possible image variants.

Semisupervised principle is selected in the present paper.

6.3. Invariant Image Representation and Neural Networks

One of the most important problems of neural network-based system is the selection of
architecture of the neural network. The invariance of input image on the scale, rotation, skew, and other
image transformations is crucial for the correct processing of real images. Sometimes a physical relation
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of objects and acquisition system (camera) guarantees fixed relation for some of the transformations.
The system should be non-sensitive to the object transformations. There are two possible approaches
for achieving this extremely important property:

• Invariant transformations guaranteed by machine learning,
• Invariant transformations guaranteed by preprocessing algorithms.

The first approach may be achieved by neural network, using augmentation of data with different
combinations of scale, rotation, skews, and other transformations. Data augmentation requires a
great deal of additional computation power for the preparation of augmented images and learning
time is also significantly increased. Moreover, the achieving of input image invariance requires
additional layers.

An alternative approach is used in hierarchical systems, which are designed with the
knowledge about possible image transformations, when object-to-acquisition system relations could be
estimated. Preprocessing algorithms could be applied for achieving image transformation invariance.
Such algorithms use image features as control points for the desired transformation. Achieved
compensation reduces learning cost, which is the main advantage of this approach. It is important
for users of the system, because the selected segmentation is based on semisupervised learning
(one particular image, one learning process). The drawback is the lack of feature points in microscopic
lung images, due to isotropy, so rotational invariance should be achieved without control points.

The problem of rotational invariance is addressed in this work by the conversion of input image
part from particular sliding window position to another space. This technique is very often applied for
images or non-image input data. Statistical parameters, such as mean, standard deviation, etc. are
independent of the data order, so desired rotational invariance may be achieved. Some researchers
use tens of these parameters for input data preprocessing, instead of directly processing a part of
the image.

The selection of parameters is not trivial. Another difficulty is the correlation of multiple statistical
parameters used at the same time. Mean and standard deviations are not correlated, but for example
mean and median values could share some properties. Output results may depend on one parameter
or multiple parameters with some weights. Another problem lies in the possibility of interpolation,
not the approximation (data generalization) due to redundant preprocessing parameters.

Non-parametric statistical approach is selected in this paper (SWLH). Histograms preserve
information about the distribution using a set of values using a less reductive approach. Details about
distribution, including modal properties, are preserved that could be important for segmentation
purposes. Different image classes could be very often described by different distributions, due to
differences in local brightness and contrast. Edge regions are their mixture. The hypothesis concerning
a possibility of preprocessing of input image by the SWLH is also empirically tested in this work.

6.4. Selection of Fractal Descriptors for Image Analysis

The proposed technique demonstrates the possibility of the evaluation of the system with the
neural network and fractal descriptors. The achieved method-induced errors may be evaluated
graphically (Figure 8) or using relative overlapping for different configurations (Table 1, Q% column).

This work is related to fixed configuration of HistAENN (Figure 4) and a few variants of
the parameter selection from fractal descriptors (Table 1). It should be noted that it is possible
to test different configurations. Such optimization is valuable in the search for an optimal
system configuration.

The selection of scales for box-counting and lacunarity is important for computational cost
reduction (Table 1). This work uses arbitrary selected scales, and a further option is the application of
the non-gradient optimization algorithm.

Multi-parameter box-counting changes the quality of parameter selection twofold (Table 1, Case 1
and Case 2). The best is Case 1 and the maximal box width is 52 pixels of the input image that
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corresponds to the −2.5649 value. The minimal box width is 4 pixels. Case 2 uses different ranges for
boxes (maximal box width is 76 and the minimal is 28 pixels).

Achieved results show advantages of box-counting over lacunarity. Relative overlapping is much
lower for box-counting and this algorithm could be selected as estimator for the designed system.
Lacunarity gives significant overlapping in more than in 2/3 cases (Table 1, Case 3 and Case 4),
and should be rejected.

Increased overlapping (Figure 8) in some cases may be seen. This is depicted as a series of black
pixels in vertical or horizontal directions. It means that there are some input images with very high
values of standard deviation in the Monte Carlo test and the bounding box overlaps many others.
The application of multi-parameter box-counting classification system is not possible for these images,
and some other image descriptors are needed for classification improvement. The image of overlapping
for multi-parameter lacunarity is filled with many black pixel series and significant overlapping could
be detected visually.

7. Final Conclusions and Further Work

The design and performance of CADx systems is a time-consuming task with a high cost of
development. An early rejection or acceptance of the considered configuration of neural networks and
other algorithms is essential, because there are many factors that influence the optimal configuration.
A hierarchical approach is especially important, because the system could be developed step by step.

A Monte Carlo test is a useful tool for unbiased testing of algorithms if synthetically generated
data are available. Images as an empirical source of test data for the determination of system quality
are used in this work. The analysis of results could be based on graphical analysis of overlapping
tables or in quantitative form using the relative overlapping formula. The main difficulty with the
Monte Carlo approach is the computation cost, but computer clusters could be applied for processing.

Full classification systems are not discussed in this paper. Considered box-counting is not
sufficient as only one technique for the classification purposes, because there are some cases of
overlapping in particular images and additional parameters are necessary. The design of classification
systems will be considered in further work.

The present paper shows the possibility of the analysis of complex systems. A final system
without this analysis is a black box and the proposed method allows us to regard this system as a
grey box.
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