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Abstract: We theoretically study the mechanism of the all-optical magnetic switching by combining
the Rashba effect and stimulated Raman scattering. In hydrogenlike systems, we show that
the Rashba effect splits the energy band and stimulated Raman scattering transits the electrons
between the lambda three-level system and controls the spin states to reverse the orientation of
magnetization. The dynamics of electrons are described with the Lindblad equation in a few hundreds
of femtoseconds. We further investigate the influence of laser intensity and wavelength on the
probability of spin-flip in a ferromagnetic material, CoPt.
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1. Introduction

It has been reported that circularly polarized femtosecond laser pulses can deterministically
switch the orientations of magnetization of certain materials [1–5], including rare-earth transition
metal alloys [3,6], CoPt [7–9], and their multilayer films [10]. However, the fundamental mechanism
remains an open question that impedes the further development of study.

All-optical magnetic switching is phenomenologically explained as a combination of effects
derived from the inverse Faraday effect (IFE) [11–13] and heat described as the two-temperature
model [5,14–18], and all can be treated as effective magnetic fields [5,19–21]. However, in a microscopic
scale, the origin of IFE and the interaction between laser pulses and magnetic materials is only studied
in few publications [12,22]. The early attempt carried out by Pitaevskii et al. [11] in 1961 theoretically
predicted the existence of IFE in the frame of a thermodynamic potential. The first experimental
observation of IFE was published by Ziel et al. [13] in 1965; Pershan et al. [12] explained the origin
of the IFE from the view of quantum mechanics, and gave a quantitative expression for the IFE field.
However, the derived effective Hamiltonian and standard magnetic field by Pershan, M(t) ∝ E(t) ∗ E∗(t),
is not applicable for sub-picosecond and high-intensity laser scenarios, because the research assumed
that the variation of the pulse amplitude is negligible during the magnetization switching process.
The two-temperature model is proposed to reconcile the contradiction between the time scale and the
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magnitude of magnetic field [4]. However, heat alone can only demagnetize the magnetic materials [23],
if the material is not an anti-ferromagnetic system.

To suitably fit the study for the process of ultra-fast magnetization reversal, IFE derived by
stimulated Raman scattering (SRS) was proposed by Popova [24,25] who deduced the effective
magnetic field from the second order of the time-dependent Hamiltonian. In her study, SRS stimulates
the electron transition and changes the spin state, which is helicity dependent, in magnetic materials.
Instead of the Schrodinger picture, we are going to use the density matrix formalism to describe the
transitions which allows introducing the decay rate easily.

In recent studies, the Rashba effect [26–28] is engineered to be coupled to laser schemes [29–31].
The circularly polarized laser-induced Rashba effect produces an effective magnetic field on CoPt [31].
The effective field is opposite to the magnetization direction; however, the magnitude of the effective
field is helicity dependent. For left-handed circularly polarized light and magnetization along the
z direction that is normal to the sample, the effective field is much greater than the right-handed
circularly polarized laser-induced effective field. During the oscillation of electronic dipole transition,
the angular moment should obey conservation law, which forbids the transitions with spin flips.
The effective field induced by the Rashba effect contributes to the angular moment injection of the
three-level system during the transitions, besides the function of splitting the energy band.

According to Pitaevskii and Pershan et al., the inverse Faraday field consists of two processes:
(1) the light is directly interacted with magnetic materials, and (2) this interaction produces a
quasi-stationary relaxed state, which leads to the birth of magnetization in the sample. In this paper,
SRS is discussed both qualitatively and quantitatively in the transient process, which corresponds
to the direct interaction of light with materials. The Rashba effect, the sub-picosecond time scale
process [32], is treated as the builder of the quasi-stationary state.

Here, we utilize the ab initio theorem with the two effects mentioned above to get the
insight of transient process of magnetization switching on a femtosecond scale. The Rashba
effect-induced fine structure is spin-dependent, so the sub-bands are exclusive for spin-up or
spin-down. More importantly, the effective field supplies a tunnel to flip spins at an excited state.
The laser drives electrons to oscillate between the two sub-bands and virtual excited state, and all of
the three constitute a Λ three-level system. In these transitions, spin-up may transform to spin-down,
and all the oscillation will be described in the Rabi model [33–35]. We specify the simulation on CoPt
which is commonly investigated by previous studies [8,12,31]. The final probability of spin state is
controllable with the intensity and wavelength of laser.

2. Interaction of Light and Medium

In consideration of the result of Qaiumzadeh et al. [31], the laser-induced Rashba effect is
treated as an effective magnetic field. As shown in Figure 1, the sub-bands |1> and |3> split by
the effective field and the virtual state |2> constitute the Λ three-level system. For the femtosecond
laser, the monochromaticity is relatively poor. ωe andωr correspond to different wavelengths included
in the femtosecond laser. ∆e (∆r) is the mismatch of the energy of the incident photos,ωe (ωr), and the
energy gap between |1> and |2>,ω12 (|3> and |2>,ω23).
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Figure 1. The schematic diagram of a Λ three-level system. The ground state is split into two fine
energy bands, caused by the Rashba effect, in the ming blue background. |1> and |3> are spin-up or
-down, respectively. |e> is a virtual state in the stimulated Raman scattering process, Γ1 and Γ2 are the
decay rates.

The dynamics of electrons shown in Figure 1 describe the process of SRS [36,37]. Electrons are
originally steady at state |1> with spin-up. After the incidence of laser, electrons are stimulated to
virtual state |2>. Meanwhile, the incident laser, including the frequency ωr that is approximate to
ω23, stimulates electrons radiating to state |3>. Therefore, SRS transfers electrons between different
energy bands; the Rashba effect-induced effective field gives states |1> and |3> with specific spin
states. More importantly, the effective field does not only maintain the quasi-stationary state, but also
break the transition forbidden for spin-flip.

We are going to use the Rabi model to describe the process of SRS instead of the form of nonlinear
polarization, because the distribution of laser in the spatial domain is neglected. However, in the
framework of the Rabi model without decay, electrons will remain on the virtual state, because of the
sudden stop of the laser. Therefore, we investigate the transition in a three-level system by the Lindblad
equation, which is easy to describe how a density operator evolves in an open system with decay.
Diagonal elements of the density matrix represent the probability of electrons occupying the state:

.
ρ= −i[H, ρ] + L(ρ) (1)

L(ρ) = CρC∗ − 1
2
(C∗Cρ + ρC∗C) (2)

where the first term of the right-hand side of Equation (1) is the Liouville-von Neumann equation [33],
describing the unitary evolution of the density operator; ρ is the density matrix of the three-level
system and

.
ρ represents the elements of density matrix take a derivative of time; H is a 3 × 3 matrix

expression of Hamiltonian and the elements of the matrix are written asωnm; C describes the decay
of electrons to ground state; C* is the transpose of C. We choose specific time-dependent phases to
simplify the diagonal elements of H, and define the elements as:

W11 = 0, W22 = }∆1 = }∆e,
W33 = }∆2 = }(∆e − ∆r)

(3)

∆e = ω12 −ωe, ∆r = ω23 −ωr (4)

where ω12 and ω23 are the angular frequencies corresponding to the difference of energy of states |2>,
|1> and |2>, |3>, respectively;ωe andωr are the angular frequencies of incident femtosecond laser.

The off-diagonal elements of interaction Hamiltonian is considered as electric dipole transitions,
dnm, for which an atomic dipole moment is affected by a classical electric field, Enm(t). Enm(t) is the
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envelope of a Gaussian laser. Parameters followed by the subscript of nm represent that they are
related with the interaction between states |n> and |m>.

Wnm =
1
2

dnm · Enm(t), (n 6= m) (5)

Therefore, the complete Hamiltonian is:

H =

 0 W12 0
W∗12 ∆1 W23

0 W∗23 ∆2

 (6)

For L(ρ), C is determined by decay rates γ1 and γ3:

C =

 0
√

γ1 0
0 0 0
0
√

γ3 0

 (7)

In the simulation, the time scale of incident laser is about 100 fs, which means the spectrum is
extended. According to the uncertainty principle, ∆t·∆ν ≥ 0.441; for the Gaussian pulse, frequency
bandwidth, ∆ν, is at least 4.4 × 1014 Hz. As shown in Figure 3a, it is possible that ω12 and ω23

are contained in one laser beam. ω12 and ω23 are defined by ω12 = ω0 − ∆ω, and ω23 = ω0 + ∆ω,
respectively. ω0 represents the energy difference between the initial ground state of material and the
virtual state. ∆ω is determined by the strength of the Rashba effect-induced effective field. ∆ω = αR·p,
where αR is the Rashba coefficient and p is the momentum of electrons, which is tunable by adjusting
the materials and structure. We choose the frequencies thatω23 =ωr, andω12 =ωe which is the most
sensitive and predigests the computational complexity. The Rashba effect-induced band split, 2∆ω,
may variate with the intensity of incident light, but the broad spectrum of femtosecond laser insures
the self-adaption, maintainingω23 =ωr, andω12 =ωe. The Hamiltonian is evolved to:

H =

 0 W12 0
W∗12 0 W23

0 W∗23 0

 (8)

Substituting Equations (7) and (8) into Equations (1) and (2), the evolution of density matrix can
be easily observed. The Hermitian Hamiltonian and Lindbladian terms guarantee the density matrix
maintaining Hermitian in the duration of the laser interaction.

3. Discussion

3.1. Initial State of Material

Following the previous researches [7,25,31], we specify our investigation to ferromagnetic material
CoPt, on which all-optical switching is dependent on the helicity of polarization. We attribute the
helicity dependence to the Rashba effect-induced effective field [31] and the transition rules of SRS [25].
In the experiment, the material is pre-magnetized. However, considering the high intensity of laser,
the temperature of electrons reaches the Curie temperature before the dramatic electron oscillations.
Here, we briefly introduce the two-temperature model to demonstrate the ultrafast soar of electron
temperature. The process is described by the two coupled equations:

Ce(Te)
dTe
dt = −G·(Te − Tp) + P,

dTp
dt = G·(Te − Tp)/Cp − (Tp − T0)·s

(9)
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where Te and Tp represent the electron and phonon temperature, respectively; Ce(Te) and Cp are the
specific heats of the electron and phonon, respectively; Ce(Te) is proportional to Te, and Ce(Te) = C0·Te;
C0 is the coefficient that does not relate to temperature; P is the pump power of the pulse, which
follows the Gaussian distribution in intensity vs time. Additionally, we ignore the penetration loss
for less than 20-nm-thickness thin films; G and s are the electron-phonon coupling constant and the
heat sink coupling constant, respectively. The main parameters of the two-temperature model and the
corresponding typical values are listed in our previous work [17].

The multilayer CoPt structure was firstly discovered the phenomenon of all-optical switching,
but the Curie temperature, Tc, is not mentioned in the original paper [7]. We find that the Curie
temperature is varied from the thickness of Co and Pt layers, but the Curie temperature is generally
less than 500 K. [38,39] Figure 2 shows the temperature fluctuation of electrons and lattice in 1
ps. When electrons near the Curie temperature before the intensity of laser reaches highest, the
magnetization disappears. Therefore, even though the magnetic material is pre-magnetized in the
experiment, we initialize our simulation system with the balance state of spin-up and spin-down.
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Figure 2. Two-temperature model for electrons and lattice. It can be seen that the temperature of
electrons dramatically rises to Tc of 500 K from room temperature of 300K within 150 fs.

3.2. Spin State Transition

ω0 is the intrinsic property of materials, but ∆ω is determined by the intensity of laser.
By controlling ∆ω and the difference between the center frequencies of femtosecond laser ω and
ω0, the distributions of final spin states are various. Here, Figure 3a shows a specific relation between
ω,ω0 and ∆ω (ω12 =ω0 − ∆ω,ω23 =ω0 + ∆ω) and the electric field of laser, E12 = 2E23, whereω12

equals to the center frequency of the incident laser.
We ignore the difference of electric dipoles d12 = d23, because ∆ω is much less thanω0; decay rates

γ1 = γ3 = 0.01, which can be neglected during the interaction between laser and materials. The pick
intensity of electric field, E12, is ~109 V/m. The pulse width τ of the simulation in Figure 3 is 100 fs
and the peak of the laser is reached at 2τ. In this model, the effective field induced by the Rashba effect
breaks the transition forbidden with spin-flip, but the influence to the transition between |2> and |3>
is not discussed. Instead, the magnitude of electric filed directly determines the speed of the transition.

Figure 3a shows the relationship between the incident laser and the energy gap ofω12 andω23.
The full line describes the distribution of frequency versus the electric field. The intersections of
vertical imaginary lines and the profile of the laser are corresponding to the magnitude of electric
field for the interaction of laser and material. In Figure 3b, the intensity of electric dipole transition,
ω12 and ω23 are 1.4 eV and 0.7 eV, respectively. ρ1 and ρ3 are the probabilities of spin state at |1>
and |3>, respectively; initially, ρ1 = ρ3 = 0.5. The results in Figure 3b can be qualitatively explained
by the fact that more electrons at state |1> are excited by higher intensity of laser than those at state
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|3>, which maintains the population density at state |2>, while more electrons stimulated radiate
to state |3>. The separate dynamics of the three states are ignored, but the process of magnetization
is shown in Figure 3b, because the difference of the probability of spin-up and -down, ∆ρ = ρ3 − ρ1,
reflects the magnetization of the sample. The final state of ∆ρ is steady at about 0.11, which indicates a
determinate all-optical magnetic switching.

Because of the equality of γ1 and γ3 which are assigned previously, electrons decay to |1> and
|3> with the same speed. ∆ρ keeps constant after about 300 fs when there are electrons that remain
staying at the virtual state. However, the decay rate should be considered with the surrounding areas.
The direction of the magnetization of material after the interaction of laser affects the tendency to
decaying to spin-up or -down. ∆ρ should be greater than the result displayed in Figure 3b, but we still
assume that γ1 equals to γ3 in the following simulations, which does not significantly affect the final
probability ∆ρ.
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Figure 3. (a) The frequency spectrum of the femtosecond laser compared with the energy gap between
|1> and |e> (ω12), |g> and |e> (ω0), |3> and |e> (ω23). The intensity of electronic filed ω12 is
twice that of ω23. (b) Dependence of ρ3 − ρ1 on time. ρ3 − ρ1 represents the occupation probability
difference between states |1> (spin-up) and |3> (spin-down). The spin determines the orientation
of magnetization.

We further investigate the effect of the variation of the pulse width and the intensity of laser to
the final state of ∆ρ. In Figure 4, the intensity variation is reflected by ω12. The summation of ω12

and ω23 is constant to be 2.1 eV and ω12 varies from 1.05 to 1.6 eV. τ represents the pulse width of
laser; the peak of the intensity of laser is reached at 2τ; the simulation time is set as 6τ. ∆ρ oscillates
whenω12 increases, but the tendency of ∆ρ is increased. The amplitude of the oscillation decreases
with the augment of the pulse width τ. ∆ρ is approximately proportional to ω12 when the pulse
width increases to 300 fs. Because of the short pulse width, the oscillation of electrons suddenly stops
before the oscillation reaches equilibrium, whereas the envelop of the electric field with a long pulse
width changes gradually so that electron oscillation can follow the variation of electric field. Therefore,
the determination of the final spin state resulting from the duration of laser is not important when the
pulse width is greater than 100 fs.
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Figure 4. ∆ρ, the probability difference of states |3> and |1>, varies withω12 and pulse width. When
the pulse width is less than 100 fs and ω12 increases, ∆ρ increases with dramatic fluctuation. When the
pulse width is larger than 100 fs,ω12 = 1.6, andω23 = 0.5, ∆ρ approximately stabilizes at 0.28.

The wavelength and intensity-related spin-flip supplies a channel to control the final state of the
magnetization. It is obvious that the spin states keep balanced when E12 = E23 in Figure 4. When the
sum ofω12 andω23 is still 2.1 eV andω12 decreases from 1.05 to 0.5 eV, ∆ρwill be odd symmetric to
the flat of W12 = 1.05 in Figure 4. Therefore, by adjusting the distribution of the relative intensities that
correspond toω12 andω23, the area where the magnetization is reversed can be smaller than that of
the incident laser.

4. Conclusions

All-optical magnetic switching is a sophisticated process that merges multi-effects influencing
the spin state at different time scales and dominating at different times. We ignore the influence of
magnetism and only investigate the first 6τ, when the interaction of laser and material preponderates.
The heat breaks the initial state to the demagnetization and energy barrier for spin-flip. The Rashba
effect splits the ground state to fine energy bands which are spin-dependent and keeps the angular
moment conservation. SRS is treated as an adiabatic passage that transits electrons between spin-up
and -down and the intermedia virtual excited state.

We utilize the framework of Rabi oscillation with the Lindblad equation to describe the process of
electron transition and the dynamic of magnetization. The magnetization reflected by the difference of
spin-up and -down is manipulated by the intensity of laser corresponding to a specific wavelength
and a definite magnetization reversal is realized. After the pulse width is greater than 100 fs, the final
state of the magnetization is approximately proportional toω12.

The model may be rough, but it reflects the dynamic of magnetization reversal. The discovery of
the wavelength and intensity-sensitive magnetization reversal supplies a possible way to reduce the
area of recorded size with the far field laser in the future. The next step of our investigation will focus
on the combination of the process of SRS and traditional magnetism, because traditional magnetism
supplies a complete theory to describe the dynamic of magnetization in a longer time scale.
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