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Abstract: High-rise residential buildings are constructed in countries with high population density
in response to the need to utilize small development areas. As many high-rise buildings are being
constructed, issues of floor impact sound tend to occur in buildings. In general, resilient materials
are implemented between the slab and the finishing mortar to control the floor impact sound.
Various mechanical properties of resilient materials can affect the floor impact sound. To investigate
the impact sound reduction capacity, various experimental tests were conducted. The test results show
that the floor impact sound reduction capacity has a close relationship with the dynamic stiffness
of resilient materials. A total of six different kinds of resilient materials were loaded under four
loading conditions. The test results show that loading time, loading, and material properties influence
the change in dynamic stiffness. Artificial neural network (ANN) technique was implemented to
obtain the responses between the deflection and dynamic stiffness. Three different algorithms were
considered in the ANN models and the trained results were analyzed based on the root mean square
error. The feasibility of using the ANN technique was verified with a high and consistent level
of accuracy.

Keywords: artificial neural network; data regression; resilient material; long-term load; dynamic
stiffness

1. Introduction

In Asian countries, where the population density is very high, high-rise residential buildings are
common. The issue of floor impact sound tends to occur in most high-rise buildings. Many countries
have set regulations for controlling floor impact sounds [1–3]. Various systems are needed to minimize
the floor impact sounds and one of the most effective ways is to use a floating floor system.

Many studies have shown that lightweight and heavyweight impact sounds can be reduced
by using resilient materials. Findley [4] developed an empirical and analytical model to evaluate
the influence of impact sound transmission on low frequencies. Experimental tests on the response
between the floor impact sound reduction and dynamic stiffness showed that as the dynamic stiffness
decreases, the lightweight impact sound reduction tends to increase [5]. Measuring the apparent
dynamic stiffness is an important procedure for evaluating the impact sound reduction. Kim and
Lee [6] conducted an experimental study on the relation between the long-term deflection and dynamic
stiffness considering various resilient materials. The creep behavior of polymer materials has been
extensively studied in the chemical engineering field [7–9]. However, the objective of the studies was to
determine the creep behavior of the polymer material itself. Kim et al. [10] conducted an experimental
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study to evaluate the response between the deflection and dynamic stiffness under long-term loading,
and proposed an equation to predict the dynamic stiffness.

An artificial neural network (ANN) is a generalized mathematical model that resembles human
neural biology. Many ANN techniques have been proposed to predict or classify various data.
These techniques are useful to predict unknown output data, depending on various input values [11,12].
Many studies have presented the feasibility of using ANNs in civil and other engineering areas with
good results. Yang et al. [13] researched an optimum mixture design of reactive powder concrete based
on an ANN to establish the relationship between the design parameters and properties of reactive
powder concrete. The proposed ANN model can be used for optimum design in different regions.
Rafiei et al. [14] reported computational intelligence techniques to estimate concrete properties using
previously collected data. Linear and nonlinear regression were considered as statistical techniques.
The backpropagation neural network and self-organization feature map were used as neural network
techniques. Sebaaly et al. [15] presented an automatic mix design process to optimize asphalt mix
constituents. A simple multilayer perceptron structure was developed using Marshall mix design data.
Singh et al. [16] investigated the effect of using marble slurry to partially replace cement by weight
in concrete. A compressive strength prediction model was developed to verify the experimentally
evaluated 28-day compressive strength. They reported that the proposed model would be useful in
predicting the 28-day compressive strength for concrete incorporating marble slurry. Azimi-Pour and
Eskandari-Naddaf [17] proposed ANN and genetic expression programming models to predict the
effect of nano silica and micro silica on cement mortar properties. The ANN model was applied to
experimental results to verify the performance of the cement mortar. The ANN model was reported
to be an alternative approach for evaluation of the silica effect in cement mortar. Shi et al. [18]
introduced the prediction of mechanical properties of engineered cementitious composite (ECC) using
ANN technique. ANN models were developed for ECC reinforced with polyvinyl alcohol fiber,
and experimental data from other researchers were used as a training set. The predicted results
showed excellent consistency with the test results.

Various ANN models were proposed to estimate the strength of concrete members.
Soltani et al. [19] studied different input parameters on Interface shear Transfer capacity using artificial
neural network models that produce consistent levels of accuracy. Lee and Lee [20] introduced a
theoretical ANN model to predict the shear strength of fiber reinforced polymer (FRP) reinforced
concrete members. The developed comparisons between the developed ANN model and experimental
data indicated that the ANN model resulted in better accuracy than other existing design equations.
Cascardi et al. [21] presented an ANN model to predict the strength of FRP confined concrete.
Extensive test data were considered to define the variables of the proposed equations. The proposed
ANN model was adapted for the FRP confined concrete design, and guaranteed improved accuracy.
Elshafey et al. [22] used an ANN model to predict the punching shear strength of slab-column
connections based on 244 test data. Two simplified punching shear equations were developed in
the study. Morfidis and Kostinakis [23] predicted the seismic damage state of reinforced concrete
buildings based on ANN investigation using multilayer feedforward perceptron networks. The ANN
model can be used to reliably approach the seismic damage state of buildings. Pathirage et al. [24]
proposed an autoencoder-based framework that can support deep ANN. To verify the accuracy and
efficiency of the proposed framework, experimental studies on steel frame structures were conducted.
Sollazzo et al. [25] introduced an ANN to estimate the structural performance of asphalt pavements.
Several significant input parameters were considered in the analysis. The authors trained three
different ANNs to analyze datasets. Androjić and Dolaček-Alduk [26] provided an ANN model with
the objective of predicting the consumption of natural gas during asphalt production. Tosun et al. [27]
used linear regression and artificial neural network modeling to predict engine performance. It was
reported that the use of ANN was more accurate than the use of linear regression modeling.

In addition to the various studies mentioned above, various ANN models have been proposed
to predict the tensile and compressive strength of concrete [28–32]. The proposed models considered
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various input data and showed good precision and accuracy compared with the experimental results.
Therefore, the applicability of ANN models can be verified based on diverse studies.

Many previous studies on resilient materials have been conducted based on experiments.
However, to the best of our knowledge, the behavior of resilient material using ANN modeling
has not been studied. In this paper, a prediction of the relation between the deflection response and
the dynamic stiffness of the resilient materials was investigated using ANN models. Kim et al. [10]
proposed an empirical equation to predict the responses between long-term deflection and dynamic
stiffness. The proposed equation can predict the trend of the responses. However, since only four
variables were considered in the equation, there was a limit to the accuracy. Therefore, in this paper,
mathematical approaches based on the universal approximation theorem were conducted to predict
the dynamic stiffness of resilient materials. Three different ANN models with seven variables were
proposed, and the results were compared.

2. Experimental Study

2.1. Test Specimens

Table 1 shows the six resilient materials that were chosen to investigate the response between
long-term deflection and dynamic stiffness of resilient materials. These materials are generally applied
to most construction of Korean residential buildings, and have various material properties.

Figure 1 shows the bottom shape and cross-section of the specimens. The resilient materials
were manufactured in corrugated, embossed, and flat shapes. Table 1 shows the nomenclature and
the material properties of the resilient materials. Material type, density and the bottom shape of
the specimens were represented by the first, second, and third nomenclature groups, respectively.
According to ISO 20392, the dimensions of the specimen were 150 mm × 150 mm × 30 mm, and four
different weights (40, 80, 250, and 500 N) of loading plates were placed on each specimen.
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Table 1. Details of specimens.

Specimen Material Density (kg/m3) Bottom Shape Elastic Modulus (MPa)

EPS(1)-12-C Ethylene Polystyrene
Type 1

12.1 Corrugated 0.15
EPS(1)-13-F 13.2 Flat 0.23
EPS(2)-15-C Ethylene Polystyrene

Type 2
15.4 Corrugated 0.11

EPS(2)-25-C 25.5 Corrugated 0.12
PE-24-F Polystyrene 24.0 Flat 0.16

EVA-59-E Ethylene Vinyl Acetate 59.3 Embossed 0.11

2.2. Test Measurements

Figure 2 shows the experimental apparatus for measuring the deflection of the resilient materials.
The weights of the loading plate considered in this experimental study were (40, 80, 250, and 500) N.
Four loading plates were used to reflect the various loading conditions in the actual building.
The stresses correspond to loads of 250 and 500 N were 0.011 and 0.022 MPa, respectively. These stresses
can simulate the stresses caused by a refrigerator or piano in buildings. Permanent loads can be
reflected by using 40 and 80 N loadings. A dial gauge with an accuracy of 1/100 mm was used to
record the long-term deflection of the resilient materials. The dial gauges were placed on the center of
the loading plates using a magnetic base. All specimens were placed on a sturdy shelf.
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The elastic modulus of the test specimen was measured using a Universal Testing Machine (UTM)
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3. Artificial Neural Network (ANN)

We formulated the training data set, S =
{(

x1, y1), (x2, y2), . . . , (xn, yn)
}

, where xi denotes the
ith input feature vector, and yi denotes the ith output value. In this paper, a feature vector consists
of the 7 variables and the y is measured dynamic stiffness for that feature vector. In addition to MLP
regression as a typical ANN model for prediction, we also applied the distance weighted k-nn method
and the regression tree method which are known to be effective for prediction of nonlinear function.

3.1. Distance-Weighted k-nn Regression

Firstly, we applied distance-weighted k-nn regression algorithm.
This finds the k nearest feature vectors xi, i = 1, . . . , k of the current input feature vector xq from

the stored training data set, and computes the distance between the current input feature vector xq and
each nearest feature vector xi:

d
(

xq, xi
)
= ‖xq − xi‖, i = 1, . . . , k (1)

The weight for each nearest feature vector is computed using distance:

wi =
1

d
(
xq, xi

) , i = 1, . . . , k (2)

Then it predicts the output F(xq) using the weighted average, as follows:

F(xq) =
∑k

i=1 wiyi

∑k
i=1 wi

(3)

where yi is the corresponding output of the ith nearest feature vector xi.

3.2. Regression Tree

The regression tree algorithm constructs a decision tree from a provided training set S.
After constructing a tree in the learning phase, it predicts the output F(xq) of current input vector xq

by searching the tree. Starting from the root node, it selects a child node depending on the value of
the feature specified at each node. The leaf node shows an estimated value of the function, i.e., F(xq).
We built the regression tree as follows:

Step 1. Initially, the mean of the output value for set S is computed as:

m =
1
n ∑

yj∈S

yj (4)

Then the variance is computed as:

Var =
1
|S| ∑

yi∈S

(yi −m)
2

(5)

Set S is made the root node of the regression tree.

Step 2. For each feature xi, i = 1, . . . , d, search all possible binary splits
{

Si
1, Si

2
}

from set S of the
parent node.

Binary split using the ith feature is the partition of S, as follows;

S = Si
1 ∪ Si

2, Si
1 =

{(
xj, yj

) ∣∣∣l1 < xj
i ≤ u1

}
, Si

2 =
{(

xj, yj
)∣∣∣l2 < xj

i ≤ u2

}
, and u1 = l2 (6)
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and compute the mean mi
1, mi

2 for two split sets Si
1, Si

2, respectively.

mi
k =

1
ni

k
∑

yj∈Si
k

yj, k = 1, 2 (7)

where ni
k is the number of data in set Si

k.
The variance for split is computed as:

Var2 =
1∣∣Si
1

∣∣ ∑yi∈Si
1
(yi −mi

1)
2
+

1∣∣Si
2

∣∣ ∑yi∈ Si
2
(yi −mi

2)
2

(8)

Select a binary split that has minimum variance from all possible binary splits using every feature.
Compute the decrease of variance from the parent node.

If the decrease in variance is less than the predefined threshold α, then stop. Otherwise, accept that
split, and create two child nodes, where each node corresponds to Si

1, Si
2, respectively.

Step 3. For each child node, go to step 2.

3.3. Multiple Layer Perceptron Regression

We applied multiple layer perceptron regression (MLP Regression) algorithm (Figure 4).
The number of hidden layers is assigned as 1. The number of hidden units for each layer is changed as
a parameter during experimentation.
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Figure 4. Schematic diagram of MLP regression.

At each layer, we first compute the total input z to each unit, which is a weighted sum of the
outputs of the units in the layer below. For the first hidden layer, the input zi for the ith hidden unit,

zi =
d+1

∑
j=1

w1
ijxj (9)

where w1
ij is the connection weight from the jth input unit to the ith hidden unit, and d is the number

of input units. For the output unit, the input is computed as:

zo =
m+1

∑
j=1

w2
j hj (10)

where, w2
j is the connection weight from the jth hidden unit of the hidden layer to the output unit, hj is

the output of the jth hidden unit of the hidden layer, and m is the number of hidden units of the hidden
layer. For the input layer and hidden layers, a unit with output 1 is added to include a bias term.
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Then a non-linear function f h(.) is applied to zi to get the output of the hidden unit. The activation
function used is the sigmoid function, i.e.,

f h(zi) =
1

1 + e−zi
(11)

The activation function for the output unit is a linear function, i.e.,

f o(zo) = zo (12)

Output f o(zo ) is the predicted output F(xq) of the current input feature vector xq.
For the input, we used an auto encoder to transform the input feature vector to a new feature

vector using unsupervised learning. The autoencoder is a 2-layer perceptron with one hidden layer.
The autoencoder learns effective representation of the input data from the provided unlabeled training
data, and it tries to generate output so that it is equal to input. The used cost function is:

J(w) =
1
n

n

∑
i=1

1
2

h
(

w, xi
)
− xi2 +

α

2
{

d

∑
i=1

m

∑
j=1

(w1
ji)

2
+

m

∑
i=1

d

∑
j=1

(w2
ji)

2} (13)

where m is the number of hidden units, h
(
w, xi) is the output of autoencoder for xi, and w is the weight

vector of the encoder and decoder. The first term of J(w) is an average sum-of-squares error term.
The second term is a regularization term (also called a weight decay term) to decrease the magnitude of
the weights. The α is called the weight decay parameter to control the relative importance between the
two terms. After learning, the output value of the hidden layer h = [h1, . . . , hm]

T becomes a transformed
vector. This transformed vector will be used as a new input vector for MLP regression for each data.

4. Results and Discussion

4.1. Empirical Equation and ANN Algorithms

This section compares the relation between the deflection and dynamic stiffness based on the test
results to the equation proposed by Kim et al. [10], and the artificial neural network modeling using
three different data regression algorithms. Equation (14) shows the proposed equation. The proposed
equation uses the dynamic stiffness after 30 min after loading, the applied load, the elastic modulus,
and the material coefficients. However, the ANN system considers the following seven attributes for
the training data set: applied load, density, elastic modulus at early loading stage, dynamic stiffness
after 30-min loading, shape, deflection, and dynamic stiffness.

DS = DS30 +
3
P

e(
∆C1

3 −C2
P
E ) (14)

where DS is the dynamic stiffness (MN/m3), DS30 is the dynamic stiffness 30 min after loading
(MN/m3), P is the applied load (N), E is the elastic modulus (MPa), and ∆ is the deflection (mm).

Various nearest feature vectors of distance-weighted k-nn, tree depth and nodes were tested to
obtain the minimum Root Mean Squared Error (RMSE) of k-nn regression, regression tree, and MLP
Regression, respectively. Figure 5 plots the test results of the three data regression algorithms.
The X-axis and Y-axis represent the number of variables and the calculated RMSE results, respectively.
In the case of the k-nn regression algorithm, the RMSE was the smallest when the value of weighted
k-nn was 3. In the case of the regression tree and MLP regression, the RMSE was the smallest when
the tree depth was 10 and the number of nodes was 8, respectively.

Table 2 shows the correlation coefficient, Root Mean Square Error (RMSE), Relative Absolute
Error (RAE), and Root Relative Square Error (RRSE) of the algorithms used in this study. Each error
can be calculated using the following equations.
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RMSE =

√
1
n

n

∑
i=1

(pi − yi)
2 (15)

RAE =
∑n

i=1|pi − yi|
∑n

i=1|pi − yi|
(16)

RRSE =

√√√√∑n
i=1(pi − yi)

2

∑n
i=1(pi − yi)

2 (17)

where n is the number of data set, pi is the predicted value, yi is the actual value, pi is the mean value.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 14 
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Figure 5. RMSE comparison of the three algorithms.

The correlation coefficient and the errors of the proposed equation by Kim et al. [10] were also
calculated for comparison. Since the average correlation coefficient of the three algorithms was 0.9843,
the three models are confirmed to well reflect the data of the training set. The correlation coefficient of
the ANN models was about 9.5% more than that of the proposed equation by Kim et al. Also, when the
ANN models were used, the RMSE decreased by 54.4% and the relative errors decreased by an average
of 92.0%. Table 2 confirms that when the ANN algorithms were used, the accuracy was significantly
improved Tables 3 and A1 show the calculated weight values between the (input layer and hidden
layer) and (hidden layer and output) for dynamic stiffness prediction.

Table 2. Error comparison between the ANN algorithms.

Algorithm Correlation Coefficient Root Mean Square Error Relative Absolute Error (%) Root Relative Square Error (%)

k-nn regression 0.9864 1.5221 12.2242 16.5721
Regression tree 0.9817 1.7481 16.0049 19.0322
MLP Regression 0.9848 1.5931 13.9954 17.3445

Kim et al. [10] 0.8992 3.5529 195.5806 198.8626

Table 3. Weights of the hidden layer (ω2
i ).

1 2 3 4 5 6 7 8

ω2
i −2.533 −4.174 −2.358 −6.918 1.297 2.209 5.622 −1.997

4.2. Test Results and Comparison

Figure 6 compares the responses for the test results, the proposed equation by Kim et al. [10],
and the three different models. The 250 and 500 N loading plates were applied to the specimens.
Figure A1 of the Appendix shows additional comparison plots under (40 and 80) N loadings. The x-
and y-axes represent the deflection of the specimens and the dynamic stiffness, respectively. The solid
curves with markers (blue) and the solid curves (red) indicate the test results and the dynamic stiffness
calculated using the equation, respectively. The three different types of dashed curves represent the
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dynamic stiffness predicted using the three ANN algorithms. The vertical line in the plots represents
the maximum deflection of the resilient materials under each loading. The deflection was measured for
more than 500 days and the load-deflection responses of the specimens were reported by Kim et al. [10].
The vertical line implies the practical maximum deflection of each material.

In most cases, the regression data using the algorithms predicts well the test results. Reasonable
data regression among the actual test data was observed in the ANN system using the k-nn regression
and regression tree algorithms. However, the regression models could not predict the dynamic
stiffness-deflection responses outside of the actual data range. These algorithms were effective only
within the actual test data range. MLP Regression more reasonably predicted the test data than
the proposed equation in most cases and could predict the deflection dependent dynamic stiffness
outside the measured test data. The data regression tendency of these ANN systems was similar in all
the specimens.

For example, in the case of EPS(2)-15-C (Figure 5c), the maximum deflection of specimens
under (250 and 500) N loading was (10.34 and 17.21) mm, respectively. The three ANN models well
predicted the dynamic stiffness prior to reaching the maximum deflection. However, k-nn regression
and regression tree algorithms could not track the dynamic stiffness trend after the final deflection,
and tended to converge to the final recorded dynamic stiffness. Regardless of the deflection increase,
the predicted dynamic stiffness was about (8.34 and 8.10) MN/m3 under (250 and 500) N loading,
respectively. On the other hand, MLP regression well inferred the trend of data and showed a similar
tendency to the proposed equation. The step-wise prediction responses were monitored in PE-24-F
(Figure 6e) when k-nn and regression tree algorithms were applied. This shape is due to the sparsely
measured test data in which caused by a significant increase of deflection during the test. However,
the continuous curve response was obtained when MLP regression was used.
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Figure 6. Dynamic stiffness comparisons between the test results and the equation for 250 N and 500 N.
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5. Conclusions

Understanding dynamic stiffness behavior is important, since floor impact sound is affected by the
dynamic stiffness of resilient materials. The objective of this research was to verify the response between
the dynamic stiffness and deflection based on artificial neural network technique. In the previously
proposed prediction equation, only four variables were considered; however, 7 mechanical properties
of resilient materials were considered to develop ANN algorithms. Therefore, the relationship between
deflection and dynamic stiffness could be predicted with higher accuracy.

Three different ANN algorithms were proposed and compared based on RMSE. The correlation
coefficient of the dynamic stiffness-deflection relation of the previous equation was only 0.8992;
however, when ANN modeling was used, the correlation coefficient increased to an average of 0.9843.
When the ANN algorithms were utilized an average of 9.5% of increased correlation coefficient was
obtained. In addition, it was confirmed that the values of RMSE, RAE, and RRSE were significantly
reduced. RMSE showed an average 54.4% reduction compared to the equation of Kim et al., while RAE
and RRSE decreased by 92.8% and 91.1%, respectively.

When the behavior of the resilient material was analyzed using k-nn regression and regression
tree algorithms, the prediction curve was greatly affected by the distribution of input data. However,
it was verified that when MLP Regression algorithm was applied, the response between dynamic
stiffness and deflection was well predicted. Accurate prediction of dynamic stiffness can be obtained
when the proposed algorithm was provided, and thereby the ANN technique is applicable to systems
for analyzing the behavior of resilient materials.
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Appendix A

Table A1. Weights of the hidden layer (ω1
i,j ).

j
i

1 2 3 4 5 6 7 8

1 1.254 1.025 2.345 −6.354 0.363 2.105 2.761 −0.768
2 −0.048 0.058 0.548 0.051 −0.446 0.109 1.602 0.265
3 −0.628 −0.456 −2.975 3.993 −0.234 −0.698 −3.150 −0.755
4 0.613 2.451 −1.618 −0.527 −0.356 −0.257 −1.823 0.979
5 0.750 1.032 2.012 0.325 −0.286 1.033 3.876 0.874
6 0.347 −0.571 0.425 −0.778 1.103 −0.525 0.314 0.292
7 −1.091 −0.834 0.658 0.667 0.490 0.020 −1.521 −0.009
8 0.428 1.027 −0.986 −3.075 −0.350 −1.113 −2.211 −0.104
9 0.357 −1.621 −0.111 0.162 0.198 −1.188 0.716 0.113
10 0.299 −0.141 −2.049 3.991 −0.962 −1.069 −0.742 −0.064
11 −1.008 1.494 0.285 1.739 −0.106 0.201 0.105 0.111
12 −0.783 −1.423 0.136 −0.618 0.482 0.128 1.975 −0.637
13 0.005 −0.130 0.883 −1.746 0.063 0.104 0.262 −0.453
14 0.454 0.000 0.314 −4.021 0.574 −0.237 2.173 0.262
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Figure A1. Cont.



Appl. Sci. 2019, 9, 1088 13 of 14
Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 14 

 

40 N 80 N 
(d) EPS(2)-25-C 

40 N 80 N 
(e) PE-24-F 

40 N 80 N 
(f) EVA-59-E 

Figure A1. Dynamic stiffness comparisons between the test results and the equation for 40 N and 80 
N. 

References 

1. Lee, B.-S.; Jun, M.-H.; Lee, J.-Y. Influencing Factors of the Deflection of Floor Sound Insulation System. J. 
Archit. Inst. Korea 2013, 29, 37–44. 

2. Environmental Quality Standards for Noise. Available online: 
https://www.env.go.jp/en/air/noise/noise.html (accessed on 3 March 2019). 

3. ACT Parliamentary Counsel. Environment Protection Act 1997; A1997-92; ACT Legislation Register: 
Canberra, ACT, Australia, 1997. 

4. Findley, W.N. Creep Characteristics of Plastics. In Proceedings of the Symposium on Plastics; American Society 
of Testing and Materials: West Conshohoken, PA, USA, 1994. 

5. Kim, K.-W.; Jeong, G.-C.; Sohn, J.-Y. Correlation between Dynamic Stiffness of Resilient Materials and 
Lightweight Floor Impact Sound Reduction Level. Korean Soc. Noise Vib. Eng. 2008, 18, 886–895. 

6. Kim, J.; Lee, J.-Y. Evaluation of Long-term Deflection and Dynamic Elastic Modulus of Floor Damping 
Materials Used in Apartment Buildings. J. Archit. Inst. Korea 2014, 30, 29–36. 

7. Gnip, I.Y.; Vaitkus, S.; Keršulis, V.; Vėjelis, S. Analytical description of the creep of expanded polystyrene 
(EPS) under long-term compressive loading. Polym. Test. 2011, 30, 493–500. 

8. Raghavan, J.; Meshii, M. Creep of Polymer Composites. Compos. Sci. Technol. 1998, 57, 1673–1688 
9. Barbero, E.J. Prediction of Long-term Creep of Composites from Doubly-shifted Polymer Creep Data. J. 

Compos. Mater. 2009, 43, 2109–2124. 
10. Kim, C.; Hong, Y.-K.; Lee, J.-Y. Long-term dynamic stiffness of resilient materials in floating floor systems. 

Constr. Build. Mater. 2017, 133, 27–38. 
11. Taherdangkoo, R.; Taherdangkoo, M. Application of hybrid neural particle swarm optimisation algorithm 

to predict solubility of carbon dioxide in blended aqueous amine-based solvents. Int. J. Softw. Eng. Technol. 

0

10

20

30

40

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
.S

. (
M

N
/m

3 )

Deflection (mm)

PE-24-F
Kim et al. [10]
k-nn regression
Regression tree
MLP Regression

0

10

20

30

40

0.0 4.0 8.0 12.0 16.0

D
.S

. (
M

N
/m

3 )

Deflection (mm)

PE-24-F
Kim et al. [10]
k-nn regression
Regression tree
MLP Regression

0

4

8

12

16

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
.S

. (
M

N
/m

3 )

Deflection (mm)

EVA-59-E
Kim et al. [10]
k-nn regression
Regression tree
MLP Regression

0

4

8

12

16

20

0.0 1.0 2.0 3.0 4.0 5.0

D
.S

. (
M

N
/m

3 )

Deflection (mm)

EVA-59-E
Kim et al. [10]
k-nn regression
Regression tree
MLP Regression

Figure A1. Dynamic stiffness comparisons between the test results and the equation for 40 N and 80 N.

References

1. Lee, B.-S.; Jun, M.-H.; Lee, J.-Y. Influencing Factors of the Deflection of Floor Sound Insulation System.
J. Archit. Inst. Korea 2013, 29, 37–44.

2. Environmental Quality Standards for Noise. Available online: https://www.env.go.jp/en/air/noise/noise.html
(accessed on 3 March 2019).

3. ACT Parliamentary Counsel. Environment Protection Act 1997; A1997-92; ACT Legislation Register: Canberra,
ACT, Australia, 1997.

4. Findley, W.N. Creep Characteristics of Plastics. In Proceedings of the Symposium on Plastics; American Society
of Testing and Materials: West Conshohoken, PA, USA, 1994.

5. Kim, K.-W.; Jeong, G.-C.; Sohn, J.-Y. Correlation between Dynamic Stiffness of Resilient Materials and
Lightweight Floor Impact Sound Reduction Level. Korean Soc. Noise Vib. Eng. 2008, 18, 886–895.

6. Kim, J.; Lee, J.-Y. Evaluation of Long-term Deflection and Dynamic Elastic Modulus of Floor Damping
Materials Used in Apartment Buildings. J. Archit. Inst. Korea 2014, 30, 29–36.
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