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Abstract: Under the background of intelligent manufacturing, this paper aims to develop a model 

for person–job safe matching that optimizes safety with consideration of major equipment operator 

competency and task complexity. Safe matching cost is minimized in the developed model and is 

measured by the equipment downtime, production defect rate, and operator labor costs oriented by 

human factors. Human reliability is calculated with the goal of best value individual competency 

and best admit task complexity with a hierarchical structure. The 0-1 integer programming person–

job matching model minimizes the human factor safety and wage costs and satisfies the 

requirements of the production order, budget and operator quantity requirement. An improved 

genetic algorithm is designed to solve the model. The computational results of the proposed model 

based on a case study for a large iron and steel company evidently demonstrated its effectiveness. 

A new integrated model provides more realistic matches for person–job assignment. 

Keywords: safety; job matching; human factors; major equipment; competence strengths and 

weaknesses 

 

1. Introduction 

Major equipment mainly refers to intelligent manufacturing equipment for the aerospace, 

petroleum and petrochemical, nuclear power generation, steel metallurgy and other industries; and 

it is an important forces to lead the future social and economic development. The safe, reliable and 

cost saving operating of major equipment plays a significant role in survival in the new era of 

intelligent manufacturing. As new technologies start to pervade all areas of major equipment 

operation, major equipment operation has a higher and higher requirement for safety, reliability and 

money saving. As the levels of automation, informatics, robotics, sensors and mobile devices increase, 

it is particularly important to emphasize that human competency still remains essential for the safe 

operation of major equipment. In the new digital, networked and intelligent production 

environment, human operators face complex task environments in which the process and demand 

fluctuations are not well understood, failures are multidisciplinary, and the parameters are sudden 

and multiple and involve different technical aspects and interlinked effects. Human operators not 

only need to determine production rules, parameters, operation methods, and control instructions, 

predict equipment conditions, diagnose and troubleshoot problems, but also need to carry out 

inspection, commissioning, maintenance, repair tasks. In addition, new technologies are opening a 

new era in automation for manufacturers, in which human and machines will increasingly work side 

by side, it makes the operator tasks have different complexities from the traditional ones in the 5th 

industrial revolution. The key aspects of accurately operating of major equipment with adoption of 
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digitization and intelligent automation safe, are how well we match human operators’ competency 

to tasks’ complexity with safety considerations; how we predict the first concerns of operating major 

equipment such as the rejection rate, downtime, and labor costs; how we address individual human 

operator’s strengths and weaknesses; and especially, how we minimize safety costs by matching 

human operators to tasks. 

Many serious accidents occur in major equipment operations. Most of the accidents are caused 

by improper operation, and most improper operations are caused by improper person–job matches. 

To solve the challenge of an enterprise’s inability to consider both safe production and economic 

benefits, the process of major equipment production and operation is very dangerous. Taking large-

scale petrochemical equipment as an example, the production relies on high-risk units of equipment. 

The production reaction involves heat transfer, storage, separation, and fluid transfer. Petrochemical 

equipment stores or uses high-energy, toxic, biologically hazardous, even radioactive materials. The 

production process is accompanied by violent chemical reactions such as chlorination, 

ammonization, and oxidative polymerization. There are lots of serious accidents happened during 

the major equipment production. For example, the aluminum dust explosion accident of the Kunshan 

Metal Products Factory in 2014 caused 97 deaths and 163 injuries, and the direct economic loss was 

351 million yuan [1]. Safety accidents that involve major equipment are largely caused by lower 

competence and higher task complexity. When the competency of the human operator does not 

match the complexity of the task, operation errors, waste output, unplanned emergency shutdowns, 

and even major accidents occur. Therefore, under the dual consideration of task complexity and 

workers’ competence, which is valued by psychological and behavioral competence levels, the 

“person–job” matching method for the safe operation of major equipment is a challenging and urgent 

problem that should be solved in practice. 

Safety means being safe from hurt, injury, or loss [2]. Reliable matching [3] means that the 

matching can guarantee safety, reliability and cost savings. Person–job matching refers to the 

allocation of the right person to the right job based on an individual’s competence strengths and 

weaknesses and job’s complexities. Person–job reliable matching refers to the person–job assignment 

that can guarantee the completion of the functions of major equipment production and operation 

under specified conditions within a specified time. Decisions concerning person–job matching in 

practice are made from qualitative methods through manuals or quantitative methods through 

mathematical modeling. The benefit of the manual method is that the match is based on individual 

behavior and psychology characteristics, but the disadvantage of the manual method is that it can 

only solve the small-scale matching problem. The quantitative matching method is roughly divided 

into three types for different premises. First, mathematical optimization methods are suitable for the 

case of a known mechanism, and the premise is that the system parameters are known and the 

assumptions are strict. Second, the artificial intelligence methods rely on expert systems, they are 

suitable for situations in which mathematical models cannot be exactly established, but they require 

mastery of much experience and knowledge. Third, the data-driven empirical approach obtains the 

psychological cause-effect function mechanism by mining the investigation data, however, this 

method cannot give matches. Overall, we identify the following research gaps: mathematical 

optimization methods have the limitation of unrealistic assumptions and inaccurate parameters, but 

it can give specific assignment plans. Empirical methods can guarantee the premises are right, but 

cannot provide to the executive specific assignment solutions for the enterprises to the executive. Our 

approach combines mathematical operation models with psychology empirical searches to take 

advantage of their complementary strengths. The optimization model supply the matches to safety 

person–job matching method of major equipment based on the empirical result of specific industrial 

human reliability. The empirical results provide the cause and effect of human reliability and 

operation safely. It provides competence and task complexity mechanisms to characterize major 

equipment and tune optimization parameter values. The combination can provide a solid foundation 

on which to determine the parameters determination and give a practical assignment solution. 

Competence and complexity measure models are key foundations for the successful application of 

matching solutions. It is necessary to combine the empirical study of psychological and behavioral 



Appl. Sci. 2019, 9, 1219 3 of 28 

analysis not only with an optimization modeling for quantitative analysis but also with integrating 

multidisciplinary theory and methods, the empirical-mathematical modelling approach can not only 

give person–job matches but also to solve the major equipment safety, reliability and cost paradoxes. 

Furthermore, people’s psychology and behavior entail different competence strengths and 

weaknesses, and different tasks have different complexity characteristics. However, to our best 

knowledge, existing matching methods have not paid attention to the different competence and 

complexity of both matching subjects. It is contrary to the fact that every individual is different, they 

all function differently based on their competitive strengths and weaknesses. If mathematical 

modeling ignores the differences among individuals, the solutions will not make improve safety, 

reliability and cost saving. Fortunately, Eastwick et al. (2019) propose the research of best practices 

for testing the predictive validity of matching partner preference [4]. Musharrafa et al. (2018) 

introduced the concept of individual differentiation in human factor analysis and identified the 

vulnerable features of the analyzed objects based on the Bayesian network (BN) model [5]. However, 

the BN model cannot identify weaknesses. Furthermore, considering the impact of negative 

evaluations on human reliability, it is necessary to positively recognize the strengths and weaknesses. 

Therefore, we need to match jobs and operators according to the evaluation results of maximizing 

task complexity and operator competence. 

In summary, the key contributions are 3 folds: (1) Matching modeling: maximizing operator 

competence will inevitably be welcomed by operators and mobilize their enthusiasm for work. 

Maximizing task complexity is a way to be cautious about safety in production and reliable 

operations. We introduce strengths and weaknesses of each object’s mathematical formula into major 

equipment downtime loss and loss on a defective product with the task complexity of different jobs. 

(2) Model solving method: this research gives an improved genetic algorithm method for solving the 

above nonlinear matching models. The algorithm integrates different strategies for genetic operators, 

crossover and mutation. The computational result shows that the integration of more strategies in a 

genetic framework leads to better results. Moreover, results are quite comparable to those obtained 

by the enterprise actual job matching situation. (3) Academic thinking: Through multidisciplinary 

crossover and changes in the concept of safety management, new ideas and methods are proposed 

to solve the person–job matching problems associated with the safe and reliable operation of major 

equipment. We solve complex socio-technical system person–job matching problems through by 

combining behavioral science and optimization and thus contribute to the reliable, economic and 

balanced development of major equipment operation. This paper is structured as follows. Section 1 

presents the introduction; Section 2 describes the parameter determination method of the person–job 

safe matching model for major equipment operation. Section 3 constructs the safe person–job 

matching decision model and genetic algorithm according to major equipment operation 

characteristics. Section 4 presents an analysis of the example and a discussion of the results with a 

competency and complexity indicator system based on the empirical findings. Finally, the 

conclusions and subsequent research directions of this study are given. 

2. Literature Review 

2.1. Safe Matching Decision-Making 

The 2012 Nobel Prize in Economics was awarded for the theory of stable matching and its market 

design practice, which emphasizes the important theoretical value of matching research. Based on 

the concept of stable assignment, existence and Pareto optimality proposed by Gale and Shapley [6], 

matching theories have been vigorously developed. Management science focuses mainly on the 

research concerning mathematical modeling, operation optimization, fuzzy mathematics, stochastic 

optimization, game theory, simulation experiments, numerical analysis, multiobjective decision-

making and optimization plans. The research method is used to scientifically and systematically 

construct a bilateral matching model based on stability and satisfaction, and according to different 

indicator information, the matching model is classified into interaction matching, incomplete 

information matching, fuzzy matching, etc. Management science have studied random matching [7], 
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many-to-many unilateral matching [8], marriage matching [9], integer-oriented graph matching [10], 

multiobjective matching based on triangular inequalities [11], stable matching of joint responses [12], 

graph matching [13], preference order matching, interval preference fuzzy set matching, the 

matching of psychological behavior based on prospect theory, and multi-index bilateral matching 

that considers the dissatisfaction of both subjects [14], the types of problems that consider the 

dynamic matching of preference information, fair matching, the matching of the largest assigned pair, 

perfect matching, intuitionistic fuzzy matching that considers willingness, interactive matching, 

incomplete information matching, etc. The scholars of organizational behavior focus mainly on the 

mechanism of matching the individual characteristics of employees, such as skills, knowledge and 

abilities to job the requirements. The factors usually considered include satisfaction, performance and 

human capital. Economics scholars have mainly achieved the design of the means for labor market 

person–job matching under different guidance based on game theory and model algorithms in 

contexts such as intern–hospital matching and student–university matching. 

In terms of matching algorithms, the bilateral matching algorithm has been booming since it 

started with the deferred acceptance algorithm. The algorithms for solving bilateral matching can be 

divided into two types: a precise algorithm and an intelligent algorithm. Precise algorithms include 

delay acceptance algorithms and extension algorithms, enumeration methods, dynamic 

programming algorithms, national intern matching program algorithms and point pattern matching 

algorithms. In terms of intelligent algorithms, the heuristic algorithm has been a recent research focus, 

and it can realize precise and intelligent solutions. This algorithm can be roughly classified into 

genetic algorithms, tabu searches, particle swarm optimization algorithms, parameter algorithms and 

ant colony algorithms, deferred acceptance algorithms, first transaction loop algorithms, topology 

algorithms, first-served algorithms, etc. [15]. Furthermore, there has been a rapid growth of the use 

of genetic algorithms in the various areas of management. That there are only a handful of matching 

problem areas to which genetic algorithms have been applied as the solution approach. For example, 

Gopalakrishnan and Kosanovic (2015) solved an operational planning problem for combined heat 

and power plants through genetic algorithms and mixed 0–1 nonlinear programming [16]. Touat et 

al. (2017) constructed a hybridization of genetic algorithms and fuzzy logic for the single-machine 

scheduling with flexible maintenance problem under human resource constraints [17]. Metawa et al. 

(2017) proposed a genetic algorithm based model for optimizing bank lending decisions [18]. Zhang 

and Wong (2015) gave an object-coding genetic algorithm for integrated process planning and 

scheduling [19]. Painton and Campbell (1995) analyzed genetic algorithms in the optimization of 

system reliability [20]. Routledge et al. (2017) studied resource allocation for the LTE uplink based on 

genetic algorithms in mixed traffic environments [21]. Faia et al. (2018) studied genetic algorithms for 

portfolio optimization with a weighted sum approach [22]. Thus, it can be seen that genetic 

algorithms are widely used. Especially, in the assignment problem, efficient genetic algorithms for 

optimal assignment of tasks to teams of agents. We show that if the size of the problem is large, then 

standard crossover operators cannot efficiently find near-optimal solutions within a reasonable time. 

In general, the efficiency of the genetic algorithm depends on the choice of genetic operators 

(selection, crossover, and mutation) and the associated parameters [23]. Based on the major 

equipment person–job safe matching model characteristics, we use genetic algorithms to solve the 

matching model. The advantages of applying genetic algorithms are the following. We search 

parallels from a population of points. They can avoid being trapped in local optimally solutions. We 

use a fitness score, which is obtained from the major equipment human factors-oriented safety cost 

function, without other derivative or auxiliary information. Genetic algorithms work on the 

chromosome, which is an encoded version of the assignment solution’s parameters such as the 

person–job assignment caused rejection rate, downtime and wage costs. Safe person–job matching is 

based on the quantitative identification of individual strengths and weaknesses. 

Human reliability is critical to ensuring the reliability of production and the safe operation of 

major equipment. It should be noted that the human factor perspective and the differentiation of 

individual characteristics have emerged as part of the matching decision. The preference matching 

decision-making method reflects the idea of matching according to the advantages of the matched 
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resources and tasks. Problems of bilateral matching that considers psychological behavior has 

received attention. Most of the studies focus on the universal discipline of human psychology and 

behavior. Therefore, individual differences in psychological and behavioral strengths and 

weaknesses have not yet been considered. Different jobs have their own unique complexities which 

can cause dangers. It is thus necessary not only to introduce human-related reliability into the safety 

matching decision concerning major equipment but also to further consider the individual differences 

that affect human reliability in the process of job matching to obtain the person-job matching 

solutions with the lowest cost. This perspective transforms the concept of safety management 

through multidisciplinary interaction, we solve the matching problems concerning the safe and 

reliable operation of major equipment with combining behavioral science with mathematical 

optimization modeling. Such a perspective contributes to the reliable, economic and balanced 

development of major equipment manufacturing and provides support for the person–job matching 

method for the safe and reliable operation of major equipment. 

2.2. Human Reliability Research 

Human reliability is one of the important factors to ensure the safe and reliable operation of the 

industrial system [24]. Human reliability refers to people’s ability to complete specified tasks without 

error under specified times and conditions [25]. Human reliability is studied from the two 

perspectives of the person and the tasks [26]. The studies from operators’ perspective are mainly 

divided into two categories: first, mechanism of human error detection and diagnosis and decision-

making under emergency conditions [27], which concerns the influencing factors and the human 

factor reliability model. Second, the methods for the analysis and prediction of human error [28]. 

Representative achievements of such research include the finding that human error can be due to 

perception errors concerning environmental information [29]. The brain makes a wrong decision 

when it senses and processes information, and an intended action is not completed [30]. The 

physiological aspects of human error refer to the limits of human ability, including human 

perception, feelings, reaction speed, physical strength, and biological rhythm, and human 

psychological aspects refer to temperament, character, emotions, and attention. Ribeiro and Sousa et 

al. (2016) proposed a human reliability analysis model that combines the features related to facility 

conditions to determine the probability of human error in the probabilistic safety analysis of a process 

plant and to prove that the human factor is the leading cause of accidents [31]. Erga et al. (2016) 

studied the framework for the classification and analysis of human factors related to accidents and 

events [32]. The main indicators involve task complexity, such as multiple faults occur 

simultaneously, multiple devices cannot be used at the same time, the memory requirements are 

large, the interdependence between devices is unclear, an indicator is misleading or missing, a single 

fault masks the symptoms of other faults, and the scale and scope of the task are large. There are 

many steps in the completion of a specific task. The relationship between elements and tasks is 

complex, and the task is dynamic and uncertain. There are many information interferences, the task 

structure is complex, the numerical control system is complicated, the completion time is tight, the 

knowledge width and depth are high, the human-machine interface is complex, the factors are 

interdependent, the tasks are unstandardized and unconventional, and there is a lack of 

understanding of tasks and difficulty in operation [33]. 

Human reliability analysis methods include mainly human error rate prediction technology, the 

operator action tree, accident initiation and evolution analysis, the successful likelihood index, 

pairwise comparisons, social-technical-human factor reliability analysis, maintenance person 

behavior simulations,the multisequence failure model, the cognitive event tree system, cognitive 

reliability and error analysis, fuzzy set analysis [34] and comprehensive evaluations [35]. A 

representative method is Zwirglmaier et al. (2016) Bayesian network(BN) model that uses additional 

and qualitative causal paths to provide traceability, and that combines expert probabilities with 

information from operator performance databases such as the scenario authoring, characterization, 

and debriefing application to quantify the model and enrich the quantitative approach to rein the last 

decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability 
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analysis [36]. Qingji Zhou et al. (2018) constructed a cognitive reliability and error analysis methods 

model for human reliability analysis based on fuzzy Bayesian networks [37]. Xinyang Deng and Wen 

Jiang (2018) introduced a dependency-based and human error-based evidence network approach to 

the belief rule and uncertainty measurement [38]. Hu-Chen Liu et al. (2018) proposed a large-scale 

group decision-making method based on dependency-based human reliability [39]. In a word, it is 

necessary to deepen and refine the human factors of the major equipment operators with the new era 

of The Fifth Industrial Revolution, with the specific characteristics of major equipment safety 

operation. 

Overall, based on the empirical research method, the competence and job complexity indicator 

system are studied according to the psychology and behavioral factors of key equipment safety 

operation. Then, we identify and evaluate each individual competence and complexity according to 

individual strengths and weaknesses. Second, combining strengths, weaknesses of each individual 

and job complexity, we build an assignment model with the purpose of cost minimization, which has 

the function of ensuring safety and making the best use of competence. Third, the person–job 

matching model is a non-convex combination optimization model. It is difficult to get an optimal 

solution by traditional optimization algorithms. Therefore, this paper uses a heuristic algorithm to 

solve the model. The genetic algorithm codes the operators, and the natural order of the number to 

represent the coding of the job. The simple coding rule completes the representation of the decision 

variables, reducing the number of symbols and improves the efficiency of the algorithm. The method 

of elite strategy and proportional selection is used to select individuals, which ensures the 

convergence of the algorithm. Evolutionary reversal operator effectively improves the local search 

ability of genetic algorithm. The algorithm can find an optimal matching scheme in a relatively short 

time. The research not only puts psychology and behavior into the optimization model but also data 

mines the strengths and weaknesses. It presents a new way to introduce the characteristics of 

strengths and weakness into the matching problem. It can help major equipment operation 

enterprises to balance safety and economic benefits while developing in a safe and efficient way. 

3. The Model of Safe Person–job Matching 

3.1. Definition of the Variables 

The research ideas are shown in Figure 1. According to Figure 1, based on the psychological and 

behavioral reliability of operators competence and job complexity factors, we establish relationships 

between each person–job match and major equipment emergency downtime, production rejection 

rate and labor cost according to the evaluation result base on strengths and weaknesses. Based on the 

cause and effect relationships, a person–job matching model is built with consideration of both 

minimize cost and many production operation management needs. We use the empirical research 

method of exploratory factor analysis and confirmatory factor analysis to build the competency 

model and complexity model of major equipment safety operation. In order to reflect the universality 

of this matching method, we put the competency and complexity of major equipment operation 

empirical study in the application parts. 
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Figure 1. Research ideas. 

The following Table 1 presents the definitions of the model variables: 

Table 1. Variable definitions. 

Symbol Definition 

λ basic layer indicator weight, expressing degrees of strength or weakness 

k the k-th operator or job 

i the i-th expert who gives each basic indicator values 

t: the t-th middle layer factor 

d�
(�) value of t-th factor of middle layer calculated according to i-th expert evaluation score  

x(�,�)
∗  ideal value of the j-th basic indicator under the t-th middle layer factor 

x(�,�)
(�,�)

 the j-th basic layer index value of the t-th intermediate layer index of the k-the object 

to be analyzed by the i-th expert 

j: j-th basic layer index of the t-th middle layer factor 

P� the number of basic layer indicator under the t-th middle layer factor 

x: value of complexity and competency at the grassroots level 

 λ(�,�)
(�,�)

 the j-th basic layer index weight of the t-th intermediate layer index of the k-th object 

to be analyzed by the i-th expert 

y� t-th middle layer index value 

y�
∗ ideal value of t-th middle layer factor 

y�
(�,�)

 t-th middle layer index value according to the i-th expert who gives each basic 

indicator values for the k-th operator or job 

μ middle layer indicator weight expresses the degree of strength or weakness 

m number of middle layer indicators 

μ�
(�,�)

 t-th middle layer indicator weight, which can express the degree of strength or 

weakness according to the i-th expert who gives each basic indicator values for the k-

th operator or job 

m m stands for the mth job 

n n denotes the nth operator 

z: evaluating indicator of highest level of complexity and competence 

y: middle level evaluating indicator of complexity and competency 

X: value of complexity and competency at the grassroots level 

p�： number of measurement indicators that support the middle layer ym 

P: profit from unit-qualified products 

p�: profit from scrap and defective products 

q: production amount per hour 

T�: calendar time 
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T�: planned maintenance time 

t��: j-th operator’s monthly stoppage at station i, (i = 1,2, … , m;  j = 1,2, … , n) 

x��: 0-1 decision variable that indicates that the j-th person takes 1 in the i-th job and is 0 

otherwise 

θ�: i-th job non-qualified product coefficient,  

��
∗: r-th competence indicator ideal value,r = 1,2, … , z 

���: actual value of the r-th competence indicator of the j-th person,j = 1,2, … , n 

ω��
∗ : weight coefficient of the r-th competence index of the j-th person 

b��: k-th indicator complexity value of the i-th job,k = 1,2, … , l 

ω��: i-th job k-th indicator complexity weight 

g��: fixed salary of the j-th person in the i-th job 

δ: unit time evaluation coefficient 

t�
�: downtime for the i-th job 

A: annual total wage cost lower limit 

B: annual scrap limit 

C: total labor cost limit 

M: annual order quantity 

3.2. Matching Modelling Based on Competency and Complexity Strengths and Weaknesses 

(1) Method for identifying strengths and weaknesses of competence and complexity [40,41] 

As the complexity strengths and weaknesses identification method is the same as the 

competitive strengths and weaknesses identification model, we just built the complexity 

identification mathematical model as the example. Competency strengths and weaknesses 

identification model is all the same as competence identification model. Generally speaking, there are 

three layers in the competence measurement model. The three layers contain the basic layer, the 

middle layer and the top layer. The first step is to obtain the value of each basic indicator by expert 

opinions. The value of the middle layer indicator is calculated by the integration of basic indicator 

belonged to it. With a benchmarking guidance, with the goal of seeking the smallest distance from 

the ideal value, the weight of each middle layer factor is calculated by Equation (1). Since the larger 

the weight, the smaller distance between the basic indicator true value and ideal value, we define the 

weight as the mathematical expression of strengths and weaknesses. 

Strengths and weaknesses in basic layers under t-th middle layer is identified by Equation (1): 

d�
(�)�

� 
��� �x(�,�)

∗ − x(�,�)
(�,�)

� = �(λ(�,�)
(�,�)

)�

��

���

(x(�,�)
∗ − x(�,�)

(�,�)
)� 

s. t. : � λ(�,�)
(�,�)

= 1

��

���

 

 λ(�,�)
(�,�)

≥ 0 j = 1,2, … , P� 

(1) 

where d�
(�,�)� �x(�,�)

∗ − x(�,�)
(�,�)

� represents the distance between the expert evaluation value x(�,�)
(�,�)

 and its 

ideal value λ(�,�)
(�,�)∗

 . The optimal solution of Model (1) is the index weight that makes the smallest 

distance function preferable, and the weight reflects the difference in the strength of each indicator. 

The identification method for the highest-level factor strengths and weaknesses indicators. we 

obtain the indicator values of each middle layer according to the linear weighted evaluation method 

y� = �∑ (λ(�,�)
(�,�)

)∗���
��� (x(�,�)

∗ − x(�,�)
(�,�)

)�. If a basic indicator of a middle layer indicator reaches the ideal 

value, the middle layer index reaches the ideal value. Therefore, the ideal value of the middle layer 

indicator is 0. Equation (2) is for strengths and weaknesses identification of middle layer factor. 

d�
(�,�)�

� 
��� �y�

∗ − y�
(�,�)

� = d�
(�,�)�

�0 − y�
(�,�)

� 

= �(μ�
(�,�)

)� �(λ(�,�)
(�,�)∗

)�(x(�,�)
∗ − x(�,�)

(�,�)
)�

��

���

�

���

 
(2) 
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s. t. : ∑ μ�
(�,�)

= 1�
���   

 μ�
(�,�)

≥ 0 t = 1,2, … , m. 

The optimal solution μ�
(�,�)∗

 of Equation (2) represents the strengths or weaknesses value of each 

middle-level factor. 

The solutions of Equations (1) and (2) are the following. 

According to the Kuhn-Tucker optimality principle (the K-T point), the solution of Equation (1) 

is the following: 

① When there is an ideal value x(�,�)
∗   in x(�,�)

(�,�)
 , the weight coefficient that corresponds to the 

indicator is 1. If there is more than one ideal value, the weighting coefficient value of the indicator 

that corresponds to the measurement indicator that does not reach the ideal value averages 0. 

② When the indicator of the ideal value x(�,�)
∗  is not reached in x(�,�)

(�,�)
, the weight coefficient of 

each indicator is model (3): 

1

∑
�

��(�,�)
∗ ��(�,�)

(�,�)
�

�
��
��� �x(�,�)

∗ − x(�,�)
(�,�)

�
�

�
 . 

(3) 

Thus, the solution of Equation (2) can be obtained. Through the simple averaging method, the 

group recognition result of the structure of the strengths and weaknesses of the analyzed object is 

obtained. 

Evaluation method based on strengths and weaknesses 

The layer-by-layer recursive method is used to obtain the comprehensive value of the upper 

layer indicator. 

① The comprehensive evaluation method for the middle layer indicators is as follows: 

D� =
�

�
∑ d��(x��, x�∗) =

�

�

�
��� ∑ �∑ �ω��

∗ �
�

(x�
∗ − x��)

��
���

�
���  k = 1,2, … , n. (4) 

② The comprehensive evaluation method for the highest level indicators is as follows: 

 G� =
�

�
∑ �∑ �μ��

∗ �
�

(D�
∗ − D��)

��
���

�
���  k = 1,2, … , n.  (5) 

The above method is applied to the comprehensive analysis of job complexity and the operator’s 

psychological and behavioral competency. The evaluation values are expressed as z� and z�. 

(2) The major equipment person–job matching model 

1) Construction of the objective function 

The safety cost is measured from the aspects of downtime and the reliability of the start-up 

operation. 

① unplanned downtime safety cost. 

The loss of human downtime is calculated as follows: 

p × q × 12 × ∑ ∑ t��x��
�
���

�
���   (6) 

② unreliable operation safety cost. 

Human unreliability will directly impact the rate of scrap [42]. The scrap rate is determined by 

the factor of human error factor caused by the ability of the operators responsible for equipment 

maintenance and repair and the complexity of the job. We assume that scrap products go to the 

market at a certain price. 

The non-qualified rate of the j-th person in the i-th job is: 

��×�∑ �
�

�
∑ ���

∗�
��� �

�
(��

∗����)��
���

∑ ������
�
���

 . (7) 

Thus, the cost of human waste is: 

q × (p − p�)�T� − T� − 12 × ∑ ∑ t��x��
�
���

�
��� � × (8) 



Appl. Sci. 2019, 9, 1219 10 of 28 

(∑ ∑
��×�∑ �

�

�
∑ ���

∗�
��� �

�
(��

∗����)��
���

∑ ������
�
���

x��
�
���

�
��� ). 

③ Labor cost 

The labor cost includes the fixed salary and variable salary paid by the enterprise to the 

operators. The variable salary depends on the difference between the downtime of the equipment 

failure assessment and the actual downtime of the job. The value is positive, and the enterprise pays 

the employee a bonus, while operators are required to pay a fine. The labor cost is as follows: 

12 ∑ ∑ g��x��
�
���

�
��� + δ × 12 × ∑ ∑ (t�

� − t��)
�
���

�
��� x��. (9) 

2) Constraints: 

① Only one product is produced, production is demand driven, and the rigid production is 

determined by the annual order quantity. 

q × �T� − T� − 12 ∑ ∑ t��x��
�
���

�
��� � × �1 − ∑ ∑

��×�∑ �
�

�
∑ ���

∗�
��� �

�
���

∗�����
��

���

∑ ������
�
���

x��
�
���

�
��� �

�

�
≥

M.  

(10) 

② The amount of waste produced cannot exceed the maximum amount of scrap specified by 

the enterprise: 

q × �T� − T� − 12 ∑ ∑ t��x��
�
���

�
��� � × �1 − ∑ ∑

��×�∑ �
�

�
∑ ���

∗�
��� �

�
���

∗�����
��

���

∑ ������
�
���

x��
�
���

�
��� �

�

�
≤

B.   

(11) 

③ The total labor cost cannot exceed the upper limit specified by the enterprise: 

12 × ∑ ∑ g��x��
�
���

�
��� + δ × 12 × ∑ ∑ (t�

� − t��)
�
���

�
��� x�� ≤ C.  (12) 

④ The total annual unplanned downtime cannot exceed the enterprise’s maximum limit: 

12 × ∑ ∑ t��x��
�
���

�
��� ≤ A.  (13) 

⑤ In terms of operator assignment constraints, there are m operators in n jobs and m = n; that 

is, operators redundancy and operator shortages are not considered. 

∑ x��
�
��� = 1 j = 1,2, … , n  (14) 

∑ x��
�
��� = 1 i = 1,2, … , m  (15) 

 x�� ∈ {0,1}.  (16) 

According to the above analysis, the overall person–job matching optimization model for safety 

is expressed as follows: 

= �p × q × 12 × ∑ ∑ t��x��
�
���

�
��� + q × (p − p�)�T� − T� − 12 × ∑ ∑ t��x��

�
���

�
��� � ×

�∑ ∑
��×�∑ �

�

�
∑ ���

∗�
��� �

�
���

∗�����
��

���

∑ ������
�
���

x��
�
���

�
��� �

�

�
+ 12 ∑ ∑ g��x��

�
���

�
��� + δ × 12 ×

∑ ∑ (t�
� − t��)

�
���

�
��� x���  

(17) 

s.t. (18) 
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q × �T� − T� − 12 ∑ ∑ t��x��
�
���

�
��� � × �1 − ∑ ∑

��×�∑ �
�

�
∑ ���

∗�
��� �

�
���

∗�����
��

���

∑ ������
�
���

x��
�
���

�
��� �

�

�
≥

M  

q × �T� − T� − 12 ∑ ∑ t��x��
�
���

�
��� � × �1 − ∑ ∑

��×�∑ �
�

�
∑ ���

∗�
��� �

�
���

∗�����
��

���

∑ ������
�
���

x��
�
���

�
��� �

�

�
≤

B  

(19) 

12 × ∑ ∑ g��x��
�
���

�
��� + δ × 12 × ∑ ∑ (t�

� − t��)
�
���

�
��� x�� ≤ C  (20) 

12 × ∑ ∑ t��x��
�
���

�
��� ≤ A  (21) 

∑ x��
�
��� = 1      j = 1,2, … , n  (22) 

∑ x��
�
��� = 1      i = 1,2, … , m  (23) 

x�� ∈ {0,1}. (24) 

3.3. Genetic Algorithm 

(1) Coding scheme 

The genetic algorithm can not directly act on the decision variable parameters of the safety 

matching problem. Therefore, we need to represent a feasible solution to solve the problem as the 

chromosome of the genetic algorithm space. Then, we perform the genetic operation. Along with the 

coding principle of the genetic algorithm [43], this paper uses the integer arrangement coding method 

to construct the 0–1 programming mathematical model. The number of n candidates is 1, 2,..., n, and 

the chromosome is divided into n segments, with each segment corresponding to a person number, 

and the sequence of the number is the job matched to the person. If 9 persons are numbered {1, 2, 3, 

4, 5, 6, 7, 8, 9}, then |7|4|5|1|3|9|8|2|6|. For a legal chromosome, the person configuration is as 

follows: the 7th person is in the 1st job, the 4th person is in the 2nd job, and so on, this configuration 

represents the person–job matching scheme according to the following chromosome: 

x�� = 1, x�� = 1, x�� = 1, x�� = 1, x�� = 1, x�� = 1, x�� = 1, x�� = 1, x�� = 1. 

(2) Fitness function. The genetic algorithm obtains the next search information by using the 

objective function value, and the use of the objective function value is reflected by the evaluation of 

the individual fitness value. The model solves for the minimum value of the enterprise cost. As the 

cost is non-negative, the reciprocal of the objective function value is used as the fitness evaluation 

function. When the objective function value is smaller, the individual fitness value is larger, and the 

individual is more suitable for the job the individual is. For the treatment of constraints, the penalty 

function method is used. When the algorithm generates an individual that is not a feasible solution, 

it applies a penalty value to its fitness, reduces the fitness, and reduces the probability of inheritance 

to the next generation. The objective function value is penalized by the following formula: 

f(x) = �

�

�(�)
 (x meets the constraint)

�

�(�)�����
 (x does not satisfy the constraint)

. (25) 

f(x) is the fitness evaluation function, and F(x) is the objective function. C��� is the penalty 

term and is a suitably large job number, which is taken as 100. 

(3) Genetic operator. In the selection operation, based on an individual’s fitness, a certain number 

of individuals from the parent to the children are selected according to certain rules. To ensure the 

convergence of the algorithm, the selection operator of in this example is combined with the elite 

strategy and proportional selection. First, the probability that an individual is selected is proportional 

to his fitness value. When the fitness value is greater, the probability of being selected is greater. If 

the fitness value of a person is M, the probability that he is selected is: 

p = f� ∑ f�
�
���⁄  (i = 1,2, … , M).  (26) 
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Second, according to the elite strategy, that is, the individual with the highest fitness value of 

the parents, does not participate in the crossover and mutation operations but replaces the individual 

with the lowest fitness value due to the crossover and mutation operations. This ensures that the best 

individual among the children is never worse than the parent. 

① Cross-operation: Cross-operation refers to the two pairs of chromosomes that are exchanged 

to obtain two new individuals. Considering that the coding method of this paper adopts the partial 

mapping crossover operator, after the intersection, different numbers in the same individual are 

retained, and the same number uses partial mapping to resolve the conflict. For example, two 

chromosomes of length 9 are randomly generated to produce random integers γ� = 3 and γ� = 6 in 

the interval [1, 9]; they determine two intersections, and they exchange data in the middle of the 

intersection. The numbers repeated between the nonintersecting part and the middle part are 

replaced by *, and the intersection of the intermediate part is used to map and eliminate the conflict. 

The “6” duplication of the uncrossed part of the first chromosome in the crossover and the “6” 

duplication of the intermediate segment requires partial mapping, “6” corresponds to 5 in the second 

chromosome, 5 in the first chromosome corresponds to 8, 8 in the first chromosome corresponds to 

7, and there is no 7 in the first chromosome, so 6 in the uncrossed part becomes “7”, as shown in Table 

2. 

Table 2. Cross-operation examples. 

Before Crossing Crossing After Crossing 

6 3 7 8 5 1 2 4 9 * 3 8 5 6 9 2 4 * 7 3 8 5 6 9 2 4 1 

7 2 8 5 6 9 4 1 3 * 2 7 8 5 1 4 * 3 6 2 7 8 5 1 4 9 3 

② Mutation operator: the mutation operation refers to replacing a certain gene in a locus in a 

chromosome coding sequence with its allele to form a new individual. The mutation strategy in this 

paper is to randomly generate two mutation points and exchange the genes at their loci. For example, 

two random integers A and B in the interval [1, 9] are randomly generated to determine the position 

of the mutation, and the genes above the two positions are crossed. That is, as shown in Table 3. 

Table 3. Examples of mutation operations. 

Before Mutation After Mutation 

6 3 7 8 5 1 2 4 9 6 3 1 8 5 7 2 4 9 

③ Evolutionary reversal operator: To improve local searchability of the genetic algorithm, the 

evolutionary reversal operator is introduced after selection, crossover and mutation, and the 

chromosome with improved fitness is reversed after reversal; otherwise, the reversal is invalid, as 

shown in Table 4. 

Table 4. Example of the reversal operation. 

Before Reversal After reversal 

6 3 7 8 5 1 2 4 9 6 3 1 5 8 7 2 4 9 

(4) Algorithm solving process 

The symbols involved in the algorithm are defined as follows,”NIND” represents population 

size, Maximum genetic termination algebra is represented by MAXGEN and GGAP by genetic 

generation gap. 

Step 1: Input case-related data to select genetic algorithm parameters, including population size, 

chromosome coding string length N, maximum genetic termination algebra, cross probability Pc, 

mutation probability Pm and genetic generation groove. Step 2: Encode, by using the randperm (N) 

function to randomly generate the initial population. Step 3: Decode by first calculating the total 

downtime and total human factor rejection rate of each individual, then by calculating the individual 

objective function value is calculated to assign the minimum function value, and finally, by 

calculating the individual fitness with the fitness evaluation function. Step 4: Perform the selection, 
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crossover, and mutation operations to obtain a sub-generation. The reinsertion reins function is used 

to replace the parent-optimized individual with the lowest fitness to form a new population. Step 5: 

Determine whether the genetic algebra is greater than the maximum genetic algebra MAXGEN; if it 

is established, then proceed to the next step, otherwise, gen = gen + 1 to Step 3. Step 6: Output the 

optimal chromosome and the objective function value, and the algorithm ends. The specific operation 

steps of the algorithm are given below, and the flow chart is shown in Figure 2. 

 

Figure 2. Flow chart of the genetic algorithm for realizing safe person–job matching. 

3.4. Proposed Analytical Procedures 

Step 1: According to a specific type of major equipment, construct indicator systems to measure 

job complexity and an operator’s psychological and behavioral competency for the characteristics of 

a certain type of major equipment. Step 2: Collect the indicator values of each job and person to be 

assigned in terms of job complexity and operator competency. Step 3: According to Formulas (1) to 

(5) calculate the comprehensive values of job complexity and operator competency. Step 4: Input the 

results of Formula (5) into Formulas (6) to (26) to solve the optimization model of major equipment 

person configuration and obtain the person–job assignment scheme. Through the above analysis, the 

person–job safety matching process for major equipment according to the human factor perspective 

is shown in Figure 3. 

 

Figure 3. Implementation process method. 

4. Case Study 
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Case Information 

The iron and steel industry is one of the most important industries all over the world. Hazards 

are ever-present in the steel plant environment, and a heightened awareness and emphasis on safety 

is a necessary priority for this industry. Safety is a great concern in steel mills. As the industry 

transforms to meet today’s current evolving challenges, there are three major challenges need to be 

solved: namely the volume of good-quality iron ore is not satisfactory. The unplanned equipment 

downtime always happens, and the labor cost is too high. How do we solve the above problems 

without the input of additional resources input? Furthermore, steel industry operators melt, mold, 

and form iron ore and other materials to make the iron and steel used in countless products. These 

workers operate furnaces, molding equipment, and rolling and finishing machines to make iron 

pipes, grates, steel slabs, bars, billets, sheets, rods, wires, and plates. Competency requirements for 

operators in iron and steel production machinery are challenging and include the need for the highest 

precision, reliability and productivity, even in harsh environments with high temperatures and 

energy transmission. The tasks that iron and steel industry operators face are very tricky. The work 

tasks involved in steel manufacturing often require strength, endurance and precision, and can 

expose workers to a number of recognized injury risks. Therefore, we choose the production 

equipment person-job matching in the iron and steel industry as an example. 

Task complexity measurement model for major equipment operation. 

Based on the literature on operator’s psychology and behavioral competency and according to 

expert opinions, an initial questionnaire of task complexity and operators psychological and 

behavioral competence was designed. From the design to the recovery of the responses, the 

questionnaire lasted for four months (January 2016– April 2016). Of the 1000 questionnaires sent out, 

502 were collected after repeated emails and telephone calls. Eighty-four questionnaires were omitted 

because of significant missing data. A total of 418 valid questionnaires were eventually retained. 

Based on this set of questionnaire data, exploratory factor analysis and confirmatory factor analysis 

were conducted to obtain the task complexity and operators psychological and behavioral 

competence of the workers. 

1) Exploratory factor analysis 

Two hundred questionnaires were randomly selected for exploratory factor analysis. The job 

distribution was 78 mechanical, 29 automation, 61 metallurgy, 29 chemical, 19 electrical, and 24 

materials. The city distribution was Liaoning, Hebei, Heilongjiang, Jilin, Shandong, Beijing, Hubei 

and other provinces and cities. The age distribution was 60 people were aged 28 to 40 years, 41 people 

were aged 41 to 50 years, 88 people were aged 51 years and over, and 11 people did not answer. The 

education distribution was 50 college students and below, 65 undergraduate students, 67 Master's 

degree students, 14 doctoral students, and 4 people did not answer. 

Exploratory factor analysis was applied with SPSS 22.0 software and showed that the Cronbach’s 

alpha for overall reliability was 0.981: (1) the knowledge Cronbach’s alpha coefficient was 0.845; (2) 

the Cronbach’s alpha for the target path was 0.924; (3) the Cronbach’s alpha for workload was 0.909; 

(4) the Cronbach’s alpha for uncertainty was 0.554; (5) the Cronbach’s alpha for interpersonal 

dependence was 0.944; (6) the Cronbach’s alpha for the factor relationship was 0.914; and (7) the 

Cronbach’s alpha for the human-machine interface was 0.904. This shows that the reliability of the 

questionnaire was very high. The overall validity according to the Kaiser-Meyer-Olkin value was 

0.766, which satisfies the condition of being greater than 0.7 and shows that the questionnaire is 

suitable for exploratory factor analysis. Principal component analysis (PCA) by the maximum 

orthogonal rotation was used to extract seven factors whose eigenvalues were greater than 1. The 

explained cumulative variance explained rate was 68.564%, and the common factor explained most 

of the variance of the observed variables. 

2) Confirmatory factor analysis 

Confirmatory factor analysis (CFA) was used to test whether the number of factors and the factor 

load of the observed variables was consistent with the theoretical expectations. In the 218 samples of 
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the CFA confirmatory factor analysis, the job distribution of the respondents was 40 in mechanical 

inspection, 36 in electrical inspections, 66 in control room operation, 30 in technical management, 21 

in process design, and 6 in equipment maintenance. The city distribution was Hebei, Liaoning, 

Sichuan, Beijing, Guangdong, Guangxi, Hubei, Jiangsu, Shandong, Zhejiang and etc. The age 

distribution was 60 people were aged 28 to 40 years, 51 people were aged 41 to 50 years, 90 people 

were aged 51 and over, and 17 people did not answer. The distribution of educational background 

was 69 were college students and below, 80 were undergraduates, 41 were job graduates, 20were 

doctoral students, and 8 respondents did not answer. 

To verify the validity of the preliminary index factor structure, the remaining 218 questionnaires 

were used for confirmatory factor analysis. The results of confirmatory factor analysis (Table 5) and 

path coefficients (Table 6) were obtained by using structural equation AMOS 22.0 software. 
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Table 5. Confirmatory factor analysis model fitting index output. 

Fitting Index χ2  df p χ2/df NNFI CFI RMSEA 

Output results 2426.580 1020 0.067 2.379 0.916 0.907 0.071 

Table 6. Path coefficient table for major equipment operational complexity. 

Measurement 

Index 
 Factor COEFFICIENT C.R. P 

Standard 

Coefficient 

Measurement 

Index 
 Factor Coefficient C.R. P 

Standard 

Coefficient 

Task structure 

Task order 

← Knowledge 1   0.61 
Ideal state 

multipath 
← Target path 1   0.63 

← Knowledge 1.11 7.872 *** 0.61 
Multiple final 

states/targets 
← Target path 0.12 8.622 *** 0.66 

Task organization ← Knowledge 1.43 8.819 *** 0.71 Competition path ← Target path 0.16 10.194 *** 0.82 

Conflict rules ← Knowledge 1.67 9.128 *** 0.74 
Multiple conflicting 

goals 
← Target path 0.12 7.715 *** 0.58 

Logical 

relationship 
← Knowledge 1.55 8.85 *** 0.71 Path target conflict ← Target path 0.16 9.714 *** 0.77 

Structural diversity ← Knowledge 1.02 7.001 *** 0.53 Error prone ← Target path 0.12 7.738 *** 0.58 

Domain 

knowledge 
← Knowledge 1.2 7.985 *** 0.62 Target number ← Target path 0.13 8.949 *** 0.69 

Depth of 

knowledge 
← Knowledge 1.15 7.827 *** 0.61 Number of tasks ← Target path 0.14 7.724 *** 0.58 

Decision 

knowledge 
← Knowledge 1.17 7.712 *** 0.59 

Number of similar 

tasks 
← Target path 0.17 8.925 *** 0.69 

Quantity of 

behavior 
← Workload 1   0.7 

Path/process and 

result uncertainty 
← Uncertainty 1   0.65 

Number of steps ← Workload 0.87 9.417 *** 0.66 
Transcendental 

decision method 
← Uncertainty 0.11 9.429 *** 0.75 

Amount of input ← Workload 0.36 4.54 *** 0.51 
Known factor 

number 
← Uncertainty 0.11 8.118 *** 0.63 

Output quantity ← Workload 0.97 10.412 *** 0.73 
Known connection 

numbers 
← Uncertainty 0.13 8.229 *** 0.64 

Number of 

programs 
← Workload 1.08 10.281 *** 0.72 

Information/task 

transparency 
← Uncertainty 0.13 7.957 *** 0.61 

Number of actions ← Workload 0.87 10.249 *** 0.72 
Information 

integrity 
← Uncertainty 0.12 7.346 *** 0.56 

Time urgency ← Workload 0.84 9.981 *** 0.7 
Number of task 

elements 
← 

Factor 

relation 
1   0.63 

Time length ← Workload 80 9.489 *** 0.66 
Information 

prompt quantity 
← 

Factor 

relation 
0.11 8.692 *** 0.67 
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Number of 

personal 

interactions 

← 
Interpersonal 

dependence 
1   0.61 

Quantity of 

information 
← 

Factor 

relation 
0.16 10.194 *** 0.82 

Amount of 

collective 

communication 

← 
Interpersonal 

dependence 
1.01 7.372 *** 0.62 

Information 

intensity 
← 

Factor 

relation 
0.12 7.715 *** 0.58 

Amount of 

collective 

communication 

← 
Interpersonal 

dependence 
1.23 8.319 *** 0.69 

Size of question 

space 
← 

Factor 

relation 
0.16 9.714 *** 0.77 

Everyone’s 

Dependence 
← 

Interpersonal 

dependence 
1.77 9.425 *** 0.75 Subtask number ← 

Factor 

relation 
0.12 7.738 *** 0.58 

Misleading ← Interface 1   0.71 
Number of 

variables 
← 

Factor 

relation 
0.13 8.949 *** 0.69 

Lack of 

information 
← Interface 0.09 7.895 *** 0.64 

Memory 

requirements 
← 

Factor 

relation 
0.14 7.724 *** 0.58 

Homogeneity ← Interface 0.13 8.138 *** 0.83 
Relationship 

between elements 
← 

Factor 

relation 
0.17 8.925 *** 0.69 

Logical 

presentation 
← Interface 0.17 0.621 0.535 0.05 

Input-output 

relationship 
← 

Factor 

relation 
0.15 7.954 *** 0.65 

Operation 

information 
← Interface 0.16 -0.76 0.447 -0.06 

Element connection 

number 
← 

Factor 

relation 
0.11 9.429 *** 0.75 

       
Element connection 

strength 
← 

Factor 

relation 
0.11 8.118 *** 0.63 
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3) Competency measurement model for major equipment safety operators 

By using the same exploratory factor analysis and confirmatory factor analysis, the operator’s 

competency model is obtained as shown in Figure 4. 

 

Figure 4. Competency index system for large metallurgical equipment workers. 

4) Computation of the comprehensive evaluation value of personnel competence and post 

complexity 

A total of 49 operators were selected. According to the established operator’s competency 

measurement model, the comprehensive evaluation value of competency was calculated by using the 

structural identification model given in chapter 3.2 (1). 

 Solving the Weight Value of the Personality Advantage Characteristic 

By using formulas (1) and (2) to calculate the weight values of the personality advantages of 49 

operators
)18,...,2,1(

*
iwi , a total of 49 groups of feature weight coefficients were obtained, of which 

the first nine are shown in Table 7: 

Table 7. Weight coefficient of the personality advantage characteristics of the top 9 personnel. 

Staff wi1 wi2 wi3 wi4 wi5 wi6 wi7 wi8 wi9 wi10 wi11 wi12 wi13 wi14 wi15 wi16 wi17 wi18 

1 0.1 0 0.1 0.1 0 0.1 0 0.1 0 0 0 0.1 0.1 0.1 0 0.1 0 0.1 

2 0 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 

3 0.045 0.061 0.061 0.061 0.061 0.045 0.061 0.061 0.076 0.045 0.045 0.076 0.061 0.061 0.045 0.061 0.061 0.015 

4 0.045 0.061 0.061 0.061 0.061 0.045 0.061 0.061 0.076 0.045 0.045 0.076 0.061 0.061 0.045 0.061 0.061 0.015 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

6 0 0 0 0.125 0 0 0 0 0 0 0 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

7 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 

8 0 0 0 0.25 0 0 0 0 0.25 0 0 0.25 0.25 0 0 0 0 0 

9 0.1 0 0.1 0.1 0 0 0.1 0 0.1 0.1 0.1 0 0 0 0.1 0.1 0 0.1 

 Comprehensive Evaluation Value Based on Strong-Weak Structural Recognition 

Forty-nine sets of characteristic weight values are calculated and the integrated evaluation 

values of 49 operators are obtained by introducing them into Formulas (4), (5). The results are shown 

in Table 8. 

Table 8. Comprehensive evaluation of operators. 

Staf

f 

Comprehensiv

e Evaluation 

Value 

Staf

f 

Comprehensiv

e Evaluation 

value 

Staf

f 

Comprehensiv

e Evaluation 

Value 

Staf

f 

Comprehensiv

e Evaluation 

Value 

Staf

f 

Comprehensiv

e Evaluation 

Value 

1 0.09894 11 0.06390 21 0.04925 31 0.05776 41 0.10682 

2 0.07366 12 0.09514 22 0.06598 32 0.14674 42 0.10682 

3 0.10682 13 0.08354 23 0.05354 33 0.09714 43 0.10682 

4 0.10682 14 0.05849 24 0.04965 34 0.19529 44 0.10682 

5 0.11452 15 0.10845 25 0.08220 35 0.16380 45 0.06085 

6 0.07960 16 0.09040 26 0.06492 36 0.16247 46 0.07375 

7 0.11249 17 0.07898 27 0.07829 37 0.10682 47 0.05815 

8 0.09658 18 0.06101 28 0.05269 38 0.10682 48 0.08033 

9 0.08749 19 0 29 0.10964 39 0.10682 49 0.07277 
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10 0.08320 20 0.03861 30 0 40 0.10682   

According to the job setting the Anshan Iron and Steel Company, the complex characteristic 

weight values of 49 jobs were obtained by the same method )7,...,2,1( ii . Due to the limited 

space, only the characteristic weight values of the first nine jobs are listed here. The results are shown 

in Table 9: 

Table 9. Top 9 job complexity characteristic weights. 

Job Factor 1 Factor 2 Factor3 Factor 4 Factor 5 Factor 6 Factor 7 

1 0 0.2 0.2 0 0.2 0.2 0.2 

2 0.143 0.143 0.143 0.143 0.143 0.143 0.143 

3 0.167 0.167 0.167 0.167 0 0.167 0.167 

4 0.167 0.167 0.167 0.167 0 0.167 0.167 

5 0.143 0.143 0.143 0.143 0.143 0.143 0.143 

6 0.167 0.167 0.167 0.167 0.167 0 0.167 

7 0.2 0.2 0.2 0 0 0.2 0.2 

8 0.333 0 0.333 0 0 0.333 0 

9 0.2 0 0.2 0 0.2 0.2 0.2 

Similarly, the comprehensive value of job complexity is calculated by Formulas (4) and (5). The 

comprehensive evaluation value of 49 jobs is shown in Table 10: 

Table 10. Job complexity composite value. 

Job 
Evaluation 

Value 
Job 

Evaluation 

Value 
Job 

Evaluation 

Value 
Job 

Evaluation 

Value 
Job 

Evaluation 

Value 

1 0.17936 11 0.16418 21 0.05073 31 0.22105 41 0.21493 

2 0.10192 12 0.21157 22 0.09203 32 0.26238 42 0.11541 

3 0.11950 13 0.11247 23 0.20843 33 0.20488 43 0.09867 

4 0.16417 14 0.20605 24 0.10222 34 0.21949 44 0.16750 

5 0.09918 15 0.08890 25 0.09201 35 0.12193 45 0.23186 

6 0.11348 16 0.11514 26 0.20135 36 0.14264 46 0.05992 

7 0.14171 17 0.27778 27 0.17924 37 0.32119 47 0.08991 

8 0.21129 18 0.24278 28 0.22081 38 0.25532 48 0.21254 

9 0.13527 19 0.27888 29 0.13795 39 0.25957 49 0.20469 

10 0.18522 20 0.04401 30 0.11712 40 0.25966   

5) Results analysis 

Through field research, we obtained the production data parameters of the safety operators of 

the Anshan Iron and Steel Corp (Table 11). 

Table 11. Production data of the safety operators in an iron and steel enterprise. 

Serial Number Category Numerical Value 

1 Profit per unit product 405 yuan 

2 Unit hour output 500 ton 

3 Scrap profit −2370 yuan 

4 Calendar time 8760 h 

5 Scheduled downtime 588 h 

6 The first i  job assessment downtime 0.6 h 

7 The i job unreliable conversion into non-qualified product coefficient 0.02 

8 j  man i  job fixed salary 3000 yuan 

9 Annual total fixed wages 324,000 yuan 

10 Unit time assessment coefficient 6000 yuan/hour 

11 Annual order quantity 3,000,000 ton 
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12 Annual total human shutdown ceiling 70 h 

13 Annual maximum number of rejected items 408,600 ton 

14 Total labor cost ceiling 700,000 yuan 

15 j  the length of a person’s downtime in i  job Table 12 

Due to the space limitations, the downtime matrix of the jth person in the ith position is only 

partially listed here, as shown in Table 12. 

 Calculation of the Waste Rate 

By combining the calculation results of job complexity and operators comprehensive 

competence (taking the percentage system as a calculation unit), the waste rate coefficient matrix of 

the jth individual in the i-th job is calculated by formula 7. The data are too large. Only parts of the 

data are listed here, as shown in Table 13. 

Table 12. Downtime data of some the j-th operator in the i-th job. 

P J 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.6294 1.8116 0.2540 1.8268 1.2647 0.1951 0.5570 1.0938 1.9150 1.9298 0.3152 1.9412 

2 1.5094 0.5521 1.3594 1.3102 0.3252 0.2380 0.9967 1.9195 0.6808 1.1705 0.4476 1.5025 

3 0.0238 0.6742 0.3244 1.5886 0.6224 1.0571 0.3313 1.2040 0.5259 1.3082 1.3784 1.4963 

4 0.2466 0.3678 0.4799 0.8345 0.0993 1.8054 1.8896 0.9817 0.9785 0.6754 1.8001 0.7385 

5 1.0170 1.0215 1.6353 1.5897 1.2886 0.7572 1.6232 1.0657 0.7015 1.8780 1.7519 1.1003 

6 1.4607 0.9772 1.1571 0.4745 0.9177 1.9262 1.0936 1.0423 0.4632 0.9778 1.2481 1.3583 

7 0.9798 0.3359 1.9574 1.4254 1.0009 0.9422 0.1192 1.3639 0.0849 0.1429 1.0433 0.1935 

8 1.4757 0.5382 0.8457 1.0957 1.8855 0.8355 1.9661 0.6029 1.4022 1.3327 1.0783 1.3962 

9 1.6355 0.5215 1.1887 0.0450 0.8505 0.6254 0.3230 0.3575 0.8458 0.1885 1.1970 0.9418 

10 0.4481 1.3357 1.6888 0.6889 1.5610 1.3507 0.0134 1.2043 0.7735 1.8320 0.0023 0.9249 

11 0.9175 1.3239 1.5406 0.7004 1.3240 0.8323 1.6839 1.6658 0.5129 1.2269 1.1645 1.0815 

12 1.0401 0.6954 0.3000 1.1722 0.5243 0.0889 1.5099 0.4856 0.8848 1.3756 0.7185 1.4727 

Table 13. Human waste rate matrix. 

Staff Job 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.0175 0.0156 0.0163 0.0173 0.0155 0.0161 0.0169 0.0179 0.0167 0.0176 0.0173 0.0179 

2 0.0181 0.0167 0.0172 0.0180 0.0167 0.0171 0.0177 0.0184 0.0175 0.0182 0.0184 0.0170 

3 0.0173 0.0153 0.0160 0.0171 0.0151 0.0158 0.0166 0.0177 0.0164 0.0174 0.0171 0.0177 

4 0.0173 0.0153 0.0160 0.0171 0.0151 0.0158 0.0166 0.0177 0.0164 0.0174 0.0171 0.0177 

5 0.0171 0.0149 0.0157 0.0169 0.0148 0.0155 0.0164 0.0176 0.0162 0.0172 0.0169 0.0176 

6 0.0180 0.0165 0.0170 0.0178 0.0164 0.0168 0.0175 0.0183 0.0173 0.0181 0.0178 0.0183 

7 0.0172 0.0150 0.0158 0.0169 0.0149 0.0155 0.0164 0.0176 0.0163 0.0173 0.0169 0.0176 

8 0.0176 0.0157 0.0164 0.0173 0.0156 0.0162 0.0169 0.0179 0.0168 0.0176 0.0173 0.0179 

9 0.0178 0.0161 0.0167 0.0176 0.0160 0.0165 0.0172 0.0181 0.0171 0.0179 0.0176 0.0181 

10 0.0179 0.0163 0.0169 0.0177 0.0162 0.0167 0.0174 0.0182 0.0172 0.0180 0.0177 0.0182 

11 0.0184 0.0172 0.0176 0.0182 0.0171 0.0175 0.0180 0.0186 0.0179 0.0184 0.0182 0.0186 

12 0.0176 0.0158 0.0164 0.0174 0.0157 0.0162 0.0170 0.0180 0.0168 0.0177 0.0174 0.0180 

 Analysis results 

The genetic algorithm was programmed by the MATLAB2014a version. The running 

environment was a 2.0 Ghz, 4 GB memory and the Windows 10 operating system. The optimal 

iterative evolution diagram of the problem is obtained as shown in Figure 5. 
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Table 14. Optimal solution. 

 i 

j  
1 2 3 4 5 6 7 8 9 

1
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1
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1
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1
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1
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1
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1
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7 

1
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2
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3
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3
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3
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3

6 

3

7 

3

8 

3

9 

4

0 

4

1 

4

2 

4

3 

4

4 

4

5 

4

6 

4

7 

4

8 

4

9 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

22 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

46 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

49 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Namely, 

，，，，，，，，， 111111111 10,94,816,749,632,527,435,32,26,1  xxxxxxxxx
 

The results indicate that the sixth person is assigned to the first job, the second person is assigned to 

the second job, the thirty-fifth person is assigned to the third job, the twenty-seventh person is 

assigned to the fourth job, the thirty-second person is assigned to the fifth job, the forty-ninth person 

is assigned to the sixth job, the sixteenth person is assigned to the seventh job, the fourth person is 

assigned to the eighth job, and the tenth person is assigned to the ninth job. By analogy, the remaining 

assignment schemes can be obtained. 

In fully recognizing the value of the contribution of the operators, this paper considers the 

assignment of the operators with the minimum loss of heavy equipment downtime due to mission 

complexity and operators competence. According to the cost function of human factor loss and its 

main parameters, we select human factor downtime ijt ,the human factor rejection rate ij and the 

human factor variable wage cost coefficient  to change the value of one parameter within a certain 

range under the condition that the other parameters remain unchanged, then we observe the degree 

of its impact on the costs. The experimental results are shown in Table 15. 

Table 15. The influence of parameter changes on the optimal solution of the system (sensitivity 

analysis). 

Parameter ��� ��� � 

Parameter Change Rate (%) −50/0/+50 −50/0/+50 −50/0/+50 

The corresponding cost 

of different parameter 

changes (10,000 yuan) 

Human 

failure 

downtime 

cost 

1469/3034/3741 2974/3034/3045 3034/3034/3034 

Cost of 

defective 

products 

18,882/18,837/19,063 9493/18,837/28,197 18,837/18,837/18,837 

Labor cost 345/298/277 298/298/298 240/298/347 

Total cost 20,696/22,169/23,081 12,765/22,169/31,540 22,043/22,169/22,432 

An analysis of the results revealed not only that 1) the change in human factor downtime ijt  

has a significant impact on costs and the rejection rate ij , and the artificial variable wage costing 

coefficient   affects only the cost directly related to it, but also that 2) the human factor downtime 

ijt  and the rejection rate ij  have a greater impact on total cost, and the rejection rate ij  has the 

most obvious impact. Therefore, in the process of controlling production costs, enterprises should 

minimize human failure due to downtime. 

5. Implications 

5.1. Theoretical Implications 

Altogether, the theoretical contribution of this research to the literature on the matching problem 

and human resources management is fourfold. 

First, this paper provides a research framework that promotes the combining of psychology, 

behavior and operation research. Regarding the research methodology, the key point of the research 

on the “person-job” safety matching method for major equipment is to consider the “integrated 

mode” of interdisciplinary theory and research methods. This consideration not only puts qualitative 

psychology and behavior into the quantitative optimization model, but also data mines the 

characteristics of strengths and weaknesses characteristics under the psychology and behavior data; 
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It also finds a new way of introducing the characteristics of strengths and weaknesses characteristics 

into the optimization model. 

Second, this research constructs a new model of human factor reliability. It constructs human 

factor reliability from two perspectives in contrast to the previous studies. Previous studies usually 

construct prediction factors from only one perspective. We consider two important perspectives in 

this study, namely, safety operation competency and task complexity. This approach provides a 

decision-making reference for human resources allocation from the perspective of safety 

management. 

Third, this research broadens the utility of safety cost and gives a new mathematical formula to 

measure the safety costs in a broad sense. In the previous studies, safety costs are limited to accident 

costs. This research broadens the concept of safety operation, where safety operation means that 

when the rejection rate is less, unplanned downtime is less, and it is better to have less labor costs. In 

addition, we formulate the minimum cost of operator allocation in the scenario of major equipment 

operation. The person–job matching method based on the level of psychological behavior 

competency and task complexity, including human factor loss, human failure downtime loss and 

labor costs, is constructed based on the comprehensive evaluation of the structure of strengths. 

5.2. Management Implications 

Firstly, this research is a benefit to safety management and opens a new way for safety 

management. In practice, we therefore have to go beyond the traditional safety management 

approach, such as the safety production responsibility system, the fire accident management 

approach, and the early warning system. Indeed, the traditional ways are all important. However, 

approximately 80% of production accidents are mainly caused by a human error, while the remaining 

20% almost always involve a human factors component. From the point of view of practical 

management instructions, one of the most important contributions of this research is that it provides 

a specific safety assignment plan. This plan is applicable and can predict future job safety cost. 

Secondly, the approach in this paper is beneficial for improving a human resources evaluation 

system based on individual strengths and weaknesses. Many at-risk behaviors occur intuitively and 

are the result of a poor emotional status. One of the major reasons associated with a bad mood is the 

feeling that one is being treated unfairly. Operators hope to be evaluated by a maximization of his/her 

competency contribution and obtained achievements from their individual strengths’ characteristics 

standing out. The evaluation method given by this research is good for encouraging operators to 

behave better himself and to do a better, safer job. 

Thirdly, this paper contributes to human resources allocation according to task complexity and 

individual competency. It is necessary to study the difference between allocating human resources ;it 

is also necessary to study the particularity of human psychology and behavior and seek safety in the 

work. This approach is good for major equipment management to balance safety and benefits. 

Lastly, operators should be taught according to their aptitude and individual characteristics. 

Training systems should be established in different categories and should be tailor-made to target 

the individual characteristics of the operators to strengthen their error correction and ability to 

improve. It is good for major equipment operators to develop in a healthy way. 

6. Conclusions 

The increasing large-sized integration and intellectualization of major equipment poses 

unprecedented challenges to safe person–job matching. Such challenges are due to the complexity of 

different tasks and the psychological and behavioral competencies of different people, by which poor 

person–job assignment solutions can lead to the waste of human factors, the loss from human-caused 

downtime and the increased cost of labor wages. To solve the safety matching problem, human 

reliability with a consideration of operator competency and task complexity is introduced into the 0–

1 assignment optimization model. Based on the theory of behavioral science and operations research, 

this study describes the rate of the waste of human factors through the comprehensive evaluation of 

the structure of strengths and weaknesses and potential person–job combinations. The optimization 
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model considers the minimum human factor safety and wage costs and satisfies the requirements of 

order, budget and assignment. An intelligent genetic algorithm is designed to solve the model and to 

realize the “person-job” assignment scheme that has the minimum cost and that ensures the safe 

operation of major equipment. This solution can improve the safety of the matching scheme and the 

reliability and scientific basis of the decision-making. Introducing the perspective of human factors 

into the staffing problem of the safe operation of major equipment in the process industry provides 

a solution for the safe and reliable production. This approach can promote the integration of 

multidisciplinary theories and research methods, such as the methods used in behavioral science, 

statistics and operations research. 

The “person-job” matching decision for major equipment is a complex “social-technological-

physical” system. This paper combines empirical research on the analysis of psychological and 

behavioral mechanisms with the optimization model algorithm for quantitative analysis. Theoretical 

principles and methods are introduced in the optimization modeling process of operations research. 

The use of a reliable human perspective resolves the contradiction between safe and reliable 

operation and resource input. Through the cross-integration of multidisciplinary theory and 

methods, we solve the problem of person–job matching decision-making for heavy equipment from 

the perspective of safety. This work can enrich and perfect the theory and method of resource 

matching decision-making under the guidance of safety and improve the scientific basis and 

effectiveness of matching decision-making. A mathematical modeling method combines scientific 

and practical psychological behavior with optimization is formed to realize the correct, robust and 

efficient optimization problem-solving algorithm. The cross-combination method of behavioral 

science and operations research can enrich the person–job matching theory. 

The optimization of the person–job assignment scheme, which combines the reliability of human 

psychology and behavior with the complexity of the task, can indeed reduce the cost of the safe 

operation of equipment caused by the loss of rejection rate of the human factor and the duration of 

human factors in a broad sense. It can also reduce the wage cost of human factors. Moreover, the 

change in the duration of human factor downtime has a significant impact on the cost, and the 

rejection rate of the human factor and the variable wage cost coefficient have an impact only on the 

costs directly related to them. The impact of the duration of human factor downtime and the rejection 

rate of the human factor is relatively large. With the survey data from the Anshan Iron and Steel 

Group as an example, the influencing factors of the complexity and safe operation of major 

equipment are proved by exploratory factor analysis and confirmatory factor analysis. The 

influencing factors include seven main aspects of complexity, namely, knowledge, workload, 

interpersonal dependence, human-machine interface, target path, uncertainty, and the factor 

relationship. Operators reliability can be measured from the perspective of psychological behavior. 

The main dimensions include attention to detail, work order, dedication, responsibility, new 

technology application, mastery of equipment support mechanisms, mastery of production process 

technology, mastery of automatic production control system, problem handling ability, system 

thinking ability, innovation ability, risk management ability, analysis and judgment ability, 

teamwork, cooperation, decisive action, experience sharing, self-control and physical fitness. 

The limitation of this study is that the principle of “person-job” matching for safe operation 

requires further empirical analysis with large sample data on multiple enterprises. Future research 

will concern the multilateral cooperation of major equipment operators and multitype collaborative 

work. A method for determining the indicators of the psychology and behavior of human factor 

reliability will be constructed. Based on the information recorded in the human resources database, 

such as individual education and work experience, work performance, and assessment records, the 

specific values of individual indicators are given by constructing a data mining method. Future 

research will require a team perspective to consider the safety, multitype collaboration, time urgency, 

multitask parallelism of major equipment operators, and the mixture of project tasks and 

conventional tasks. Future research will consider different types of tasks when building a matching 

model algorithm. 
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