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Abstract: The Three Gorges Dam (TGD) is one of the largest hydroelectric projects in the world.
Monitoring the spatiotemporal distribution of extreme precipitation offers valuable information for
adaptation and mitigation strategies and reservoir management schemes. This study examined
variations in extreme precipitation over the Three Gorges Reservoir area (TGRA) in China to
investigate the potential role of climate warming and Three Gorges Reservoir (TGR). The trends in
extreme precipitation over the TGRA were investigated using the iterative-based Mann–Kendall
(MK) test and Sen’s slope estimator, based on weather station daily data series and TRMM (Tropical
Rainfall Measuring Mission) data series. The mean and density distribution of extreme precipitation
indices between pre-dam and post-dam, pre-1985 and post-1985, and near and distant reservoir
area were assessed by the Mann–Whitney test and the Kolmogorov–Smirnov test. The ratio of
extreme precipitation to non-extreme precipitation became larger. The precipitation was characterized
by increases in heavy precipitation as well as decreases in light and moderate rain. Comparing
extreme precipitation indices between pre-1985 (cooling) and post-1985 (warming) indicated extreme
precipitation has changed to become heavier. Under climate warming, the precipitation amount
corresponding to more than the 95th percentile increased at the rate of 6.48%/◦C. Results from
comparing extreme precipitation for the pre- and post-dam, near reservoir area (NRA) and away
from the reservoir area (ARA) imply an insignificant role of the TGR on rainfall extremes over the
TGRA. Moreover, the impoundment of TGR did not exert detectable impacts on the surface relative
humidity (RH) and water vapor pressure (WP).

Keywords: extreme precipitation indices; daily precipitation; Three Gorges Reservoir area
(TGRA); China

1. Introduction

Rainfall extremes could have many negative effects on the environment and the human population.
The frequent occurrence of rainfall extremes produces multiple disasters, including urban flooding,
server soil erosion, landslides and debris flows [1]. Moreover, rainfall extremes affect the ecological
process of the terrestrial ecosystem [2,3]. The spatial patterns of extreme precipitation trends exhibit
heterogeneous characteristics, especially at a smaller scale, due to factors including warming, water
vapor trends and topography differences [4,5].
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Rainfall extremes have been reported to become more frequent under warming conditions [6,7].
Due to global warming, the atmospheric water-holding capacity would increase at the rate of 7%/◦C
(described by the Clausius–Clapeyron (CC) relationship) [8]. A higher atmospheric water content
increases the possibility of extreme precipitation occurrences. Westra et al. (2013) found that global
extreme precipitation changed in proportion to changes in global mean temperature at a rate between
5.9%/◦C and 7.7%/◦C [7]. Apart from global warming, other anthropogenic factors such as dam
construction (hereafter interchanged with reservoirs) will affect extreme precipitation variation [9,10].
Reservoir impoundment would increase the water surface area while the intense moisture-heat
exchange in the reservoirs might alter the precipitation pattern. Moreover, dams provide the means
for irrigation, so dams trigger regional land use and land cover changes which then could affect the
regional climate (temperature and precipitation) [11]. Over the past six decades, the number of dams
and reservoirs has increased significantly, and the total area of reservoirs reached 507,102 km2 [12].
Approximately 50,000 large dams (higher than 15 m) were in operation worldwide [13].

The notion that large reservoirs could be expected to alter natural precipitation patterns
surrounding dams is nothing new [14]. Hossain et al. (2010) and Yigzaw et al. (2012) show that
extreme precipitation (99th percentile) showed a 4% increase per year after dam construction [9,10].
Pizarro et al. (2013) compared the intensity of extreme precipitation located near water bodies to those
away from water bodies, revealing higher precipitation intensity at locations closer to water bodies [15].

Recently, many efforts have been made to investigate physical factors to determine how large
reservoirs change extreme precipitation patterns. Artificial reservoirs can influence regional convective
patterns and associated thunderstorms [16]. A newly formed reservoir can widen open water bodies
and enhance the moisture supply for precipitation, hence serving as a feeder for precipitation [17].
Eltahir (1989) concluded that it is highly likely that the open water evaporation from the Bahr River has
a significant effect on the climate of the nearby dry regions [18]. Gangoiti et al. (2011) demonstrated
that terrestrial evaporation (including from lakes and reservoirs) can play an important role in creating
extreme precipitation events [19]. Apart from local evaporative feeder mechanisms triggered by
reservoirs, dams can be considered enhancers of convective available potential energy (CAPE), which in
turn might induce more precipitation [20]. Degu et al. (2011) found a higher possibility of storm
intensification in impounded basins of reservoirs in the Mediterranean and arid climates of the
United States [21]. This phenomenon is due to the increasing correlation observed between CAPE
and extreme precipitation events. Some dams serve for irrigation, which enhances atmospheric
water moisture content through evaporation and transpiration. The added water vapor will result in
strong spatial gradients of CAPE, which in turn enhance the likelihood of the formation of convective
precipitation [17]. Degu et al. (2011) found a higher possibility of storm intensification in impounded
basins of reservoirs in the Mediterranean and arid climate zones of the United States compared to
humid climate zones [21].

The Three Gorges Dam (TGD) is the largest hydroelectric dam project in the world [22]. The Three
Gorges Reservoir (TGR) has a length of 660 km and 1084 km2 of water surface area, representing a
significant land use and evaporation changes that are expected to result in changes in the regional
weather and climate patterns [23]. Recently, some climate disaster events appearing near the TGR
area urged the public to pay attention to the impact of the TGR on the climatic system. After the
TGR began operating, some studies were conducted to investigate the variation characteristic of
precipitation [24–27] and air temperature [28,29]. A numerical model simulated precipitation changes
under control and land use change triggered by the TGD and indicated no significant change in
precipitation [23]. Wu et al. (2006) detected the influences of the TGD on the precipitation around
the vicinity of the TGD using satellite rainfall data during 1998 and 2006 [30]. They concluded that
the precipitation amount had increased in the northern part of the TGR and decreased near the TGD.
Later, another study proved that this precipitation change characteristic was just part of the natural
inter-annual oscillation based on observations before and after 1980 [24]. The TGD began to impound
water in 2003. However, the aforementioned study [24] only included a four-year precipitation dataset
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after impoundment. Annual mean precipitation in the TGRA has been followed closely, while the study
of precipitation pattern and heavy precipitation variation was limited. Zhao et al. (2010) examined
extreme precipitation changes in the Three Gorges Reservoir Region from 1958 to 2007 [25], and found
the changes might have become more frequent after 1980. However, in the Zhao et al. (2010) study,
they did not analyze the roles of climate warming and the TGR on extreme precipitation changes.
Li et al. (2014) investigated the changes in hourly rainfall during 2009 and 2011 [27]. They found that
more intense and longer-duration precipitation was observed in the northern TGR. Due to a lack of
high-resolution rainfall data before 2009, this study cannot compare intense rainfall variation with that
before the TGD presence.

On the whole, the previous studies paid more attention to annual precipitation changes in the
TGRA. Although a few studies involved extreme precipitation, they only presented the long-term
change trends in the extreme precipitation. Little evidence is available on what factors affect extreme
precipitation in the TGRA. The possible factors influencing changes in extreme precipitation are
analyzed based on the longer daily precipitation data series in this study. The roles of climate
warming and ENSO (El Niño–Southern Oscillation) on extreme precipitation are discussed. In addition,
we attempt to determine whether the impoundment of the TGR changes the extreme precipitation
near the TGR.

2. Study Area

The TGR is 660 km long and has an average width of 1.1 km. When the water level reaches 175 m,
the TGR has a total area of 1084 km2 and a water storage capacity of 39.3 billion m3. The reservoir
began to store water in 2003. The extent of the impact the reservoir can have on the local climate
remains controversial. García (1994) found an increase in foggy and rainy days after the operation of
dams in Spain and concluded that changes occur only on a local scale of no more than 12 km from the
water body [31]. The systematic changes triggered by dams and impounded reservoirs can result in
increased local moisture availability and significantly affect mesoscale circulation, which is around
100 km [21,32]. Fu and Zhu (1984) pointed out that the extent affected by the Xinanjiang reservoir is
50–60 km on average [33]. In this study, the region 0–40 km away from the TGR was deemed as the
zone of influence of the TGR in the precipitation aspect. To compare the reservoir’s effects on extreme
precipitation, the study area was extended from the TGR to around 100 km away. The area 0–100 km
away from the TGR was defined as the Three Gorges Reservoir area (TGRA) (Figure 1). The TGRA
was categorized into two subareas, including the near reservoir area (NRA) and the area away from
the reservoir area (ARA) (Figure 1). The NRA was the area 0–40 km away from the TGR, while the
ARA was 40–100 km away from the TGR.

The mountainous area is mainly in the middle region of the TGRA (Figure 1). The elevation
ranges from 11 m to 2980 m. The TGRA is in the transition zone between two monsoon systems:
the Asian southeastern summer monsoon and the Indian southwestern monsoon [24]. This climatic
feature, combined with local irregular terrain, has shaped the TGR’s complicated rainfall regime.

The means of annual precipitation are between 820 mm and 1420 mm. More than 75% of
precipitation is concentrated between June and September. The mean annual evapotranspiration varies
between 563.34 mm and 962 mm [34]. The FAO aridity index (AI, i.e., precipitation/evapotranspiration)
is about 1.45. TGRA (Three Gorges Reservoir Area) is classified as a humid zone according to the FAO
aridity index, i.e., higher than 0.75 [35].
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Figure 1. Location of the Three Gorges Reservoir area (a); the topography of Three Gorges Reservoir 
area and the location of weather stations (b). Further weather station information is provided in 
supplemental Table 1. 
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events exceeding the 95th percentile for each year, while non-extreme 

rainfall is estimated after subtracting heavy rainfall from the annual rainfall 
total. 
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mm 
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mm 
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mm 
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mm 
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Annual precipitation amount when daily rainfall is between the 85th 

percentile and 95th percentile 
mm 

PREC Annual precipitation  Annual precipitation mm 

Note: Mx5 and P95 are recommended by ETCCDMI (the sum is 27 Climate Extremes Indices). A full 
description of the indices is available online: http://www.climdex.org/indices.html. E–NE is referred 
to in Ali et al. (2014) [36]. 

3. Data Source and Selected Precipitation Indices 

There were 29 national weather stations within the TGRA, from which daily rainfall data was 
selected for this study. The NRA encompassed 15 stations. The remaining stations were in the ARA. 
The location and distribution of 29 rain gauge stations over the TGRA are shown in Figure 1. 
Supplemental Table 1 lists the detailed information of these stations including ID, name, latitude, 
longitude, and altitude. 

The selected stations did not have uniform starting years to collect precipitation data. Since 
investigation on long-term trends in extreme precipitation would be based on a longer dataset, the 
research period was deemed to be 1959–2013.  

Figure 1. Location of the Three Gorges Reservoir area (a); the topography of Three Gorges Reservoir
area and the location of weather stations (b). Further weather station information is provided in
supplemental Table 1.

Table 1. Extreme climate indices used in this study.

Code Indicator Name Definition Units

Mx5 Maximum 5-day precipitation amount Annual maximum consecutive 5-day precipitation mm

P95 Heavy precipitation Annual precipitation amount when daily rainfall >95th percentile mm

E-NE Extreme precipitation to non-extreme
precipitation ratio

P95/(Annual total precipitation—P95).
E–NE is the ratio of annual extreme precipitation (P95) to annual

non-extreme precipitation. Extreme precipitation is the sum of
extreme rainfall events exceeding the 95th percentile for each year,

while non-extreme rainfall is estimated after subtracting heavy
rainfall from the annual rainfall total.

Fraction

P025 Light precipitation Annual precipitation amount when daily rainfall <25th percentile mm

P25 Light precipitation Annual precipitation amount when daily rainfall is between the
25th percentile and 35th percentile mm

P35 Light precipitation Annual precipitation amount when daily rainfall is between the
35th percentile and 45th percentile mm

P45 Light precipitation Annual precipitation amount when daily rainfall is between the
45th percentile and 55th percentile mm

P55 Middle precipitation Annual precipitation amount when daily rainfall is between the
55th percentile and 65th percentile mm

P65 Middle precipitation Annual precipitation amount when daily rainfall is between the
65th percentile and 75th percentile mm

P75 Middle precipitation Annual precipitation amount when daily rainfall is between the
75th percentile and 85th percentile mm

P85 Middle precipitation Annual precipitation amount when daily rainfall is between the
85th percentile and 95th percentile mm

PREC Annual precipitation Annual precipitation mm

Note: Mx5 and P95 are recommended by ETCCDMI (the sum is 27 Climate Extremes Indices). A full description of
the indices is available online: http://www.climdex.org/indices.html. E–NE is referred to in Ali et al. (2014) [36].

3. Data Source and Selected Precipitation Indices

There were 29 national weather stations within the TGRA, from which daily rainfall data was selected
for this study. The NRA encompassed 15 stations. The remaining stations were in the ARA. The location
and distribution of 29 rain gauge stations over the TGRA are shown in Figure 1. Supplemental Table S1
lists the detailed information of these stations including ID, name, latitude, longitude, and altitude.

The selected stations did not have uniform starting years to collect precipitation data.
Since investigation on long-term trends in extreme precipitation would be based on a longer dataset,
the research period was deemed to be 1959–2013.

To understand extreme precipitation changes over the TGRA, four rainfall indices were selected for
the period spanning 1959–2013. The four rainfall indices include annual maximum consecutive 5-day

http://www.climdex.org/indices.html
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precipitation amount (Mx5), extreme precipitation (P95) and the extreme to non-extreme precipitation
ratio (E–NE) (Table 1). The Mx5 and P95 can be deemed as the magnitude of extreme precipitation.
The E–NE can be utilized to analyze the change in fraction of extreme precipitation. These three
indices are related to the wetness conditions. According to the daily precipitation amounts, this study
categorized the remaining daily precipitation as eight different percentile intensities (P025, P25, P35,
. . . , P85), excluding extreme precipitation (P95). The 25th, 35th, . . . , 95th percentiles of precipitation
were calculated based on daily rainfall from 1971 to 2000 (the reference period) at each weather station.
This means that different weather stations have various percentiles of precipitation.

Apart from weather station data series, satellite rainfall datasets were also applied to explore
spatial precipitation patterns. The new Version 7 (V7) of the TRMM 3B42 product for the period 1998
and 2014 was used in this study, which considered ground observed rain information to remove the
bias of satellite retrievals [37]. Recently, TRMM data were widely used to examine extreme precipitation
events due to their relatively high-resolution characteristic [38]. The TRMM rain data and in situ rain
gauge data had good agreement for all rain intensity categories except light rain (<1 mm day−1) [26].
Due to the aforementioned validation, TRMM was used in this data directly without further validation.
The spatial resolution of TRMM data is 0.25◦ × 0.25◦.

Global and local temperature data sets were used. The global air temperature was from the GISS
Surface Temperature Analysis (GISTEMP) (Available online: https://data.giss.nasa.gov/gistemp/).
Local temperature was from the 29 national climate stations. Annual temperature changes were
estimated based on daily mean temperature at 29 national weather stations.

The ENSO cycle is represented by three ENSO indices, e.g., the multivariate ENSO index (MEI),
Southern Oscillation Index (SOI) and sea surface temperature (SST). In this study, SOI values were
selected to denote ENSO (Climate Research Unit of the University of East Anglia https://crudata.uea.
ac.uk/cru/data/soi/). The daily relative humidity (RH) data sets were from the 29 national weather
stations. Daily actual water vapor pressure (WP) was calculated from daily relative humidity and
temperature data.

4. Methodology

4.1. Statistical Analysis

4.1.1. Mann–Kendall

The Mann–Kendall and Sen’s estimators are widely used to estimate trends in the climate
and hydrological parameters [39–41]. The Mann–Kendall test is based on the assumption that the
detected data are independent and identically distributed. However, some datasets cannot satisfy the
assumption. The iterative-based Mann–Kendall (MK) method was adopted to detect trends in extreme
precipitation at the 0.05 significance level in this study [42]. This method can remove serial correlation
of detected datasets.

The MK method was also used to detect trends in the varying time data sets in addition to the
fixed time span (from 1959 to 2013). The starting years were from 1959 to 1997, while the ending years
were from 1975 to 2013 in this study. The minimum time span was 15 years, such as from 1959 to 1975,
from 1960 to 1976 or from 1997 to 2013. The maximum time span was 54 years (from 1959 to 2013).
The MK method used in the varying timing data sets is called as the moving-MK method. Sen’s slope,
the number of stations showing significant positive and negative trends in P95, E–NE and Mx5 during
different time spans, was estimated.

4.1.2. Field Significance Test

When analyzing a number of weather stations, a simultaneous evaluation of multiple hypothesis
tests is performed and therefore the problem of test multiplicity or field significance arises [43].
For example, for a spatial field with N = 29 independent weather stations (locations), α = 0.05 is the

https://data.giss.nasa.gov/gistemp/
https://crudata.uea.ac.uk/cru/data/soi/
https://crudata.uea.ac.uk/cru/data/soi/
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significant level forf each local test. How many locations’ null hypotheses are rejected causes the whole
region’s null hypothesis to be rejected. Field significance can be defined as the collective significance
of a group of hypothesis tests [44]. Consequently, this study estimated the minimum number of locally
significant trends to conclude that all changes were not caused by random variability. The resampling
technique was performed to detect the field significance of the number of stations with statistical
trends [7,45]. The detailed resampling technique can be found in Westra et al. (2013) [7].

4.1.3. Mann–Whitney Test and Kolmogorov–Smirnov Test

The statistical significance of changes in the mean and distribution from two different datasets was
tested using the two-sided Mann–Whitney test [46] and Kolmogorov–Smirnov [47] test, respectively,
at a 0.05 significance level. The null hypothesis for the Mann–Whitney test is that the two series
from two periods or two locations have equal medians or means. The Kolmogorov–Smirnov
test compares two datasets under the null hypothesis that they were drawn from the same but
unspecified distribution.

4.2. Experimental Design

4.2.1. Role of Climate Warming on Extreme Precipitation

It is well documented that increasing atmospheric temperature has caused extreme precipitation
to become more and more frequent [6,7,48]. The change point years in air temperature at 29 weather
stations were detected using Pettitt [49] (Table 2). Abrupt changes at 21 stations (72% of 29 stations) were
detected between 1982 and 1987. The MK method was used to detect trends in the temperature from 1959
to the change point year and from the change point year to 2013 at each station (Table 2). The decreasing
trends before change points and increasing trends after change points were predominant. Pooling air
temperature for the whole TGRA exhibited a decreasing trend before 1985, then a sharp increase after
1985 (Figure 2). The year 1985 was deemed as the change point over the TGRA. The cooling trends
before 1985 were likely to be connected partly to the decrease in solar irradiance and the change in the
Arctic Oscillation [50]. The change in the Arctic Oscillation controls cold air intrusions into north China.
Solar irradiance exhibited a dimming to a brightening transition in the 1990s. Regarding the global
temperature, it maintained a slowly increasing trend before 1985, while it showed a faster increasing trend
after 1985. Based on the above analysis, the entire time series was divided into two periods (1959–1985
and 1986–2013) to investigate the effects of climatic change on rainfall extremes in the TGRA. The climate
was warmer during the period from 1986 to 2013 compared to 1959–1985.
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Table 2. Abrupt change year of air temperature at 29 stations.

No. Name Change Point Year

Trend test

No. Name Change Point Year

Trend Test

From 1959
to Change
Point Year

From Change
Point Year

to 2013

From 1959
to 2013

From 1959
to Change
Point Year

From Change
Point to

Year 2013

From 1959
to 2013

1 Jiangjing 1989 − + + 16 Hechuan 1996 − + +
2 Shapingba 1985 − + + 17 Daxian 1987 − + +
3 Changshou 1983 − + + 18 Wanyuan 1996 − + +
4 Fengdu 1996 − + + 19 Zhengping 1983 − + +
5 Wanzhou 1985 − + + 20 Fangxian 1987 − + –
6 Fengjie 1983 − + + 21 Nanzhang 1983 − + +
7 Badong 1993 + – − 22 Zhongxiang 1987 − + +
8 Zigui 1985 − + + 23 Tianmen 1983 − + +
9 Yichang 1986 − + + 24 Qianjiang 1985 − + +
10 Jingzhou Ns / / + 25 Lichuan 1983 − + +
11 Jianli 1993 − + + 26 Enshi 1985 − + +
12 Liangping 1985 − + + 27 Laifeng 1983 − + +
13 Xingshan 1986 − + + 28 Wufeng Ns / / +
14 Qijiang 1985 − + + 29 Shimen 1985 − + +
15 Jianshi 1986 − + +

The moving-MK method was used in the P95, E–NE and Mx5. This part concentrated on the
changing differences between the two periods (1959–1985 and 1986–2013). The Mann–Whitney and
Kolmogorov–Smirnov tests were applied to detect the mean and distribution changes in three extreme
precipitation indices between the two periods. Finally, the method provided by the literature [51,52] to
examine changes in precipitation characteristics (∆P) in association with changes in global temperature
(∆T) was used. The authors calculated the precipitation amount difference (∆P) for nine precipitation
intensities (P025, P25, P35, . . . , P95) at 29 stations and global temperature differences (∆T) between
any two (different) years within 1959–2013. The ∆P/∆T ratios were represented as the response rate of
the different precipitation intensities to global warming.

4.2.2. Role of ENSO on Extreme Precipitation

Based on the lag effects of El Niño–Southern Oscillation (ENSO) on extreme precipitation, the average
Southern Oscillation Index (SOI) values from last November to March was calculated to assess the
relationship between ENSO and extreme precipitation [6]. For the non-normalized SOI value, the values
of the SOI below −7 often indicate El Niño episodes, while the values of the SOI above +7 are typical of
La Niña episodes. In this study, the normalized SOI was used [53]. SOI values below −1 indicate El Niño
years, while SOI values above +1 are typical of La Niña years. We classified the whole research period into
two types based on SOI values, e.g., class I years with SOI < 0, class II years with SOI > 0. The hypothesis
is ENSO has effects on extreme precipitation. Based on the hypothesis, the extreme precipitation during
class I years and class II years present different characteristics. The statistical differences in extreme
precipitation between class I years and class II years were tested by the Mann–Whitney test and the
Kolmogorov–Smirnov test.
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4.2.3. Role of the TGR on Extreme Precipitation

According to previous study conclusions [16,17,20,21], impounded reservoirs have larger effects
on precipitation near a reservoir than those away from a reservoir. The hypothesis was extreme
precipitation over the near the reservoir (NRA) was more likely to be affected by the TGR rather than
the away from the reservoir area (ARA) in this study.

To show a clearer picture on the impact of dams on extreme precipitation, paired analyses were
performed as a function of pre-dam and post-dam measurements and at locations near the reservoir
area (NRA) and away from the reservoir area (ARA). Daily precipitation from both ground weather
stations and TRMM was used. Since the TGR began to impound water in 2003, the period from
2003 to 2013 was deemed as the post-dam period. To keep the same number of comparison years,
the period from 1992 to 2002 was deemed as the pre-dam period when using weather stations as the
data source. Among 29 stations, 15 stations (No.1–No.15 in Figure 1b) were in the NRA, while the
remaining stations (No.16–No.29 in Figure 1b) were in the ARA. The statistical differences in extreme
precipitation between pre-dam and post-dam or between areas of NRA and ARA were tested by the
Mann–Whitney test and the Kolmogorov–Smirnov test.

5. Results and Discussion

5.1. Long-Term Trends in Extreme Precipitation Indices

The trends of P95, E–NE and Mx5 for the period of 1959–2013 were evaluated (Figure 3). During this
period, nineteen of a total 29 weather stations showed increasing trends in P95 with a median increase
of 1.78 mm/year. Among them, only two stations exhibited statistically significant (p-value < 0.05)
increasing trends. There were no stations showing a significant decreasing trend. The median slope in
stations with declining trends in P95 was −0.61 mm/year (Figure 3). Obviously, increasing trends in
P95 were more pronounced during the period of 1959–2013. Whether trends in P95 showing significant
positive and negative trends occurred due to random chance was tested by resampling methodology.
Figure 4 demonstrates that the number of stations showing significant both increasing and decreasing
trends were inside a 95% distribution area generated by 1000 bootstrap trials (Figure 4). Therefore, the
significant increasing and decreasing trends of annual P95 day in the TGRA were not field significant.

During the period from 1959 to 2013, the E–NE exhibited increasing trends at 24 stations,
five stations more than that in P95. Only five of a total 29 climatic stations showed decreasing
trends in the E–NE, with a median decrease of –0.09%/year, while the E–NE significantly increased
(p-value < 0.05) at five climatic stations during the years 1959–2013, i.e., three stations more than
P95. The median slope with increasing trends in E–NE was reached at 0.21% (Figure 3). The result
indicated that precipitation intensities had changed and the contribution from extreme precipitation
had increased. Similarly, the distribution of the number of stations showing significant decreasing and
increasing trends was generated using the resampling technique. The number of stations showing
increasing trends was outside the 95% distribution, while the number of stations showing decreasing
trends was inside this distribution (Figure 4). Thus, positive trends in the E–NE were field significant.
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or intensity of heavy precipitation events must increase at the expense of moderate and/or light 
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Figure 3. Changes in P95, (E–NE, Mx5 for the period of 1959–2013. Red upward and blue downward
triangles indicate increasing and decreasing tendencies, respectively. The triangle size represents the
magnitude of these positive and negative trends. The black spot in the triangles represents significant
trends at a 5% significance level. The red bar is the median slope of upward trend stations, while the
blue bar is the median slope of downward trend stations.

There were 12 stations showing decreasing trends in Mx5, among which only one station had
a statistically significant (p-value < 0.05) trend for the period of 1959 to 2013. Similarly, only one
station exhibited a significant increase during the period of 1959–2013 (Figure 3). The median slope
at stations with positive trends was 0.43 mm/year, while the median slope with negative trends
was 0.21 mm/year. According to change spatial distributions of P95, E–NE and Mx5, stations with
decreasing trends were mainly located along the Yangtze River and the southern area of the Yangtze
River. Obviously, the trends in Mx5 were not field significant (Figure 4).

There were more stations presenting increasing trends in extreme precipitation indices compared
with those showing decreasing trends. These results are in line with trends of the worldwide
average [6,7] and the whole of China except for the northeastern and northern parts [54].

To investigate precipitation intensity changes, trends in precipitation amount changes in different
precipitation intensities (P025, P25, P35, . . . , P95) were detected using the MK method. The median
changes ((slope × 54 years)/mean) × 100% for nine intensities at 29 stations were calculated. Figure 5 gives
the median changes at 29 stations for every intensity. P95 showed a positive trend with a 21.9% median
increase while P25 had a slight increase. However, all other percentile precipitation amounts showed a
decreasing trend. This result supported the previous findings that the frequency or intensity of heavy
precipitation events must increase at the expense of moderate and/or light precipitation events [55,56],
which was confirmed by the increase in the E–NE. Analysis of daily precipitation data over Asia implied
a remarkable shift of precipitation rate from light to heavy rain [57]. This kind of precipitation structure
was referred to as the “it never rains, but it pours” model of change [58]. Previous studies found that light
rain showed an overwhelming decreasing trend over Asia [57] and China [59].
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Figure 4. The field significant test for statistically significant increasing and decreasing trends. The 
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between vertical black dashed lines represents 95% of the distribution. The red filled circle represents 
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Figure 4. The field significant test for statistically significant increasing and decreasing trends. The bar
chart represents the distribution of stations with a statistically significant trend after implementing the
MK (Mann–Kendall) test on 1000 bootstrap extreme precipitation indices. The area between vertical
black dashed lines represents 95% of the distribution. The red filled circle represents the number of
stations with a statistically significant trend.
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5.2. Role of Climate Warming and ENSO on Extreme Precipitation Events

Changes in P95, E–NE and Mx5 were evaluated by the moving-MK test during a time varying
period with start year from 1959 to 1997 and end year from 1975 to 2013. To compare changes in
extreme precipitation, the mean of Sen’s slope (Figure 6) and the number of stations with significant
increasing and decreasing trends (Figure 7) in three extreme precipitation indices between pre-1985
and post-1985 were calculated.

Figures 6 and 7 show the increasing trend in P95 was predominant during the period from 1959
to 2013. The decreasing trend was concentrated between 1975 and 1982. Mean Sen’s slope from
1959 to 1985 was higher than that from 1986 to 2013, 3.96 mm/year and 0.58 mm/year, respectively.
The mean number of stations with significant increasing trends from 1959 to 1985 was also more than
that from 1986 to 2013. The E–NE showed similar change characteristics as P95. Mean Sen’s slope from
1959 to 1985 was 0.46%, higher than that from 1986 to 2013, which was 0.036%. Interestingly, there
were more stations with significant positive trends during the warming period (post-1985) than those
during the cooling period (pre-1985). The Mx5 exhibited a similar positive slope with 0.72 mm/year
from 1959 to 1985 and 0.59 mm/year from 1986 to 2013. Both global and local temperatures showed
sharply increasing trends from 1986 to 2013 compared to those from 1959 to 1985. It is noteworthy that
increasing air temperature did not make consecutive dry days become longer in duration.
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Figure 6. Median Sen’s slopes in P95, E–NE and Mx5 among 29 stations during different time spans for
periods with different starting years (1959–1997) and ending years (1975–2013). Median Sen’s slopes
within the downward yellow triangle were from 1959 to 1985, while median Sen’s slopes within the
upward yellow triangle were from 1986 to 2013. (/a = per annual).

Atmosphere 2018, 9, 24  12 of 23 

 

Figure 6. Median Sen’s slopes in P95, E–NE and Mx5 among 29 stations during different time spans 
for periods with different starting years (1959–1997) and ending years (1975–2013). Median Sen’s 
slopes within the downward yellow triangle were from 1959 to 1985, while median Sen’s slopes 
within the upward yellow triangle were from 1986 to 2013. (/a = per annual). 

Figure 7. Cont.



Atmosphere 2018, 9, 24 13 of 23
Atmosphere 2018, 9, 24  13 of 23 

 

Figure 7. Number of stations with significant decreasing (left panel) and increasing (right panel) 
trends in P95, E–NE and Mx5 during different time spans for periods with different starting years 
(1959–1997) and ending years (1975–2013). Number of stations within downward red triangles were 
from 1959 to 1985, while number of stations within upward red triangles were from 1986 to 2013. 

Negative trends were predominant for the period 1959 to 1985, in terms of local surface 
temperature, and then trends reversed after 1985. Global air temperature maintained an increasing 
trend for the period from 1959 to 1985, though the trend magnitude was less than that post-1985. 
Extreme precipitation during both pre-1985 and post- 1985 showed increasing trends. However, the 
upward trends in extreme precipitation before 1985 would be obviously more pronounced based on 
the Sen’s slope and number of stations with significant positive trends. It is interesting to note that 
extreme indices showed an increasing trend at more stations during the cooling period compared to 
those during the warming period.  

In addition to trend detection, the mean and distributions for all four indices were calculated 
and compared based on the Mann–Whitney and Kolmogorov–Smirnov tests for the pre-1985 and 
post-1985 periods (Table 3 and Figure 8). No significant change in mean (Table 3) and distribution 
for Mx5 for the two periods was observed (Figure 8). However, it was noticed that mean and 
distribution of P95 and E–NE changed significantly (p-value < 0.05) from the pre-1985 to post-1985 
periods. The mean in P95 increased from 308.6 mm during the pre-1985 period to 321.9 mm during 
the post-1985 period. The E–NE during post-1985 became 0.41 compared to 0.37 during pre-1985. 
Extreme precipitation during post-1985 was found to be heavier.  

Table 3. Statistical difference tests in the mean in the extreme rainfall indices (P95/mm, E–NE 
(fraction) and MX5/mm) between pre-1985 and post-1985 periods. 

Extreme Indices Pre-1985 Post-1985 p-mw
P95 308.64 321.95 <0.05 

E-NE 0.37 0.41 <0.01 
Mx5 145.74 145.32 0.94 

Note: p-mw are significance levels from Mann–Whitney test. 

Figure 7. Number of stations with significant decreasing (left panel) and increasing (right panel)
trends in P95, E–NE and Mx5 during different time spans for periods with different starting years
(1959–1997) and ending years (1975–2013). Number of stations within downward red triangles were
from 1959 to 1985, while number of stations within upward red triangles were from 1986 to 2013.

Negative trends were predominant for the period 1959 to 1985, in terms of local surface
temperature, and then trends reversed after 1985. Global air temperature maintained an increasing
trend for the period from 1959 to 1985, though the trend magnitude was less than that post-1985.
Extreme precipitation during both pre-1985 and post- 1985 showed increasing trends. However, the
upward trends in extreme precipitation before 1985 would be obviously more pronounced based on
the Sen’s slope and number of stations with significant positive trends. It is interesting to note that
extreme indices showed an increasing trend at more stations during the cooling period compared to
those during the warming period.

In addition to trend detection, the mean and distributions for all four indices were calculated and
compared based on the Mann–Whitney and Kolmogorov–Smirnov tests for the pre-1985 and post-1985
periods (Table 3 and Figure 8). No significant change in mean (Table 3) and distribution for Mx5 for
the two periods was observed (Figure 8). However, it was noticed that mean and distribution of P95
and E–NE changed significantly (p-value < 0.05) from the pre-1985 to post-1985 periods. The mean in
P95 increased from 308.6 mm during the pre-1985 period to 321.9 mm during the post-1985 period.
The E–NE during post-1985 became 0.41 compared to 0.37 during pre-1985. Extreme precipitation
during post-1985 was found to be heavier.

Table 3. Statistical difference tests in the mean in the extreme rainfall indices (P95/mm, E–NE (fraction)
and MX5/mm) between pre-1985 and post-1985 periods.

Extreme Indices Pre-1985 Post-1985 p-mw

P95 308.64 321.95 <0.05
E-NE 0.37 0.41 <0.01
Mx5 145.74 145.32 0.94

Note: p-mw are significance levels from Mann–Whitney test.
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Figure 8. Density distributions for P95, E-NE and Mx5, respectively, for the pre-1985 (blue) and
post-1985 (red) periods. Statistical significance was estimated using the Kolmogorov–Smirnov test for
distributions of the extreme precipitation indices.

Due to climatic system complexity, it is difficult to separate the contributions of the effects of global
and local temperature on the changes in the extreme precipitation. It is confirmed that the warming
climate had effects on the extreme precipitation variations. Based on the above analysis, extreme
precipitation (P95 and E–NE) has changed significantly in the mean and distribution from the cooling
to warming environment. Lü et al. (2017) found the global temperature played more roles in affecting
extreme precipitation (daily maximum precipitation) than local temperatures in the Yangtze River
Basin [60]. Figure 9 plotted the changes in the precipitation amount for nine precipitation intensities
responding to per 1 ◦C increase in global surface temperature from 1959 to 2013 (∆P/∆T). The ∆P/∆T
ratios for middle and light precipitation intensities were negative except for P25. However, the ∆P/∆T
ratio for P95 was 6.48%/◦C. Considering the 0.7 ◦C increase in the global surface temperature from 1959
to 2013, P95 would increase by 4.5%. This is in line with the 7%/◦C increase rate in the atmosphere’s
moisture-holding capacity estimated by the Clausius–Clapeyron equation. Westra et al. (2014) found
that extreme rainfall intensity is likely to increase at a rate equal to or above the atmosphere’s capacity
to hold moisture, leading to increases of 7% or more per 1 ◦C [61]. Considering the fact that higher
temperature can hold more moisture in the atmosphere, we need to confirm whether water moisture
pressure and RH during post-1985 period are higher than these during pre-1985 period. Interestingly,
RH and WP during pre-1985 period were higher (Table 4). RH and WP were calculated from local
meteorological data at surface weather stations. The precipitable water source did not originate from
the local moisture, but from ocean transported by the East Asian monsoon [62,63]. Thus, the lower WP
in the surface might not trigger weaker extreme precipitation.
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Figure 9. Changes in precipitation amount for nine precipitation intensities and PREC per one-degree
Celsius increase in global surface temperature (∆P/∆T%/◦C).
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Table 4. Statistical difference tests for the mean and distribution in the RH (%) and WP (hPa) between
pre-1985 and post-1985 periods.

Indices Pre-1985 Post-1985 p-mw p-ks

RH 78.6 77.4 <0.01 <0.01
WP 5.45 5.33 <0.05 <0.01

Note: p-ks is the significance level from Kolmogorov–Smirnov test.

The effects of ENSO on extreme precipitation were investigated (Table 5 and Figure 10).
Extreme precipitation did not show a statistical significant difference between class I years with
SOI < 0 and class II years with SOI > 0, though extreme precipitation (P95 and E-NE) appeared to be
heavier during class II years with SOI < 0.

Table 5. Statistical difference tests for the mean in the extreme rainfall indices (P95/mm, E–NE (fraction),
MX5/mm) in between class I years with SOI < 0 and class II years with SOI > 0.

Extreme Indices SOI < 0 SOI > 0 p-mw

P95 321.9 312.7 0.57
E-NE 0.398 0.385 0.63
Mx5 145.9 147.4 0.82
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5.3. Role of TGR on Extreme Precipitation

Tables 6 and 7 present the means and their statistical difference in P95, E–NE and Mx5 from
weather stations. The density distributions and their statistical difference in P95, E–NE and Mx5
are shown in Figure 11. First, extreme precipitation indices at NRA stations during pre-dam and
post-dam were compared. There were few distinctions in means and distributions in P95 between
pre-dam and post-dam. The E–NE during post-dam was slightly higher than those during pre-dam,
but it was not significant. Regarding distribution, E–NE showed significant differences between the
pre-dam period and the post-dam period. A significant increase was observed in Mx5, from 131.1 mm
to 141.2 mm. Meanwhile, Mx5 also exhibited significant difference in the distribution aspect. Based on
the above analysis, a conclusion that extreme precipitation at the NRA has become much heavier after
the TGD construction.
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Table 6. Statistical difference tests for the mean in the extreme rainfall indices (P95/mm, E–NE (fraction)
and Mx5/mm) from weather stations for the different periods. (ARA: reservoir area and the NRA: near
reservoir area).

Paired Analysis Precipitation Indices Location
Periods

p-mw
Pre-Dam Post-Dam

1
P95 NRA 305.02 308.29 0.45

E-NE NRA 0.37 0.40 0.18
Mx5 NRA 131.11 141.2 <0.05

2
P95 ARA 296.64 348.89 <0.01

E-NE ARA 0.368 0.46 <0.01
Mx5 ARA 138.36 164.78 <0.01

Table 7. Statistical difference tests for the mean in the extreme rainfall indices (P95/mm, E–NE (fraction)
and Mx5/mm) from weather stations for the different locations.

Paired Analysis Precipitation Indices Period
Locations

p-mw
NAR ARA

3
P95 Post-dam 348.9 308.29 <0.05

E-NE Post-dam 0.46 0.40 <0.01
Mx5 Post-dam 164.78 141.2 <0.01

4
P95 Pre-dam 296.64 305.02 0.54

E-NE Pre-dam 0.37 0.37 0.68
Mx5 Pre-dam 138.36 131.11 0.10

However, whether these extreme precipitation changes were due to natural climatic systems
or the TGD construction factors was not assured. Therefore, extreme precipitation changes at the
ARA between pre-dam and post-dam periods were compared. Table 6 suggests the means in extreme
precipitation indices (including P95, E–NE and Mx5) during the post-dam period were higher than
these during the pre-dam period. The distributions also showed significant differences between the
pre-dam and post-dam periods. Extreme precipitation, both at ARA and NRA locations, became
heavier after the TGD construction compared with those during the pre-dam period, making it difficult
to reach a conclusion that increasing extreme precipitation was linked to the TGD impounding.

Differences in extreme precipitation indices at the ARA and NRA locations after dam construction
were compared. The interesting results are shown in Table 7. The means of extreme precipitation
(P95, E–NE and Mx5) at the ARA locations were higher than those at the NRA locations (p < 0.05).
Moreover, the distributions of E–NE and Mx5 appeared to show significant distinction. These findings
were different from the hypothesis that the reservoir will increase extreme precipitation frequency
or intensity near the TGR. To examine whether this extreme precipitation pattern existed during the
pre-dam period, the extreme precipitation between the areas of NRA and ARA locations during this
period was compared (Table 7). However, the extreme precipitation did not show large differences
between areas of NRA and ARA.

It is highly likely that that the TGR did not show detectable effects on extreme precipitation around
the TGR compared to natural precipitation variations. Most studies suggested that dams and their
impounded reservoirs modify extreme precipitation patterns [9,10,20,21]. These conclusions were based
on the facts that adjacent land use and land cover have been changed due to dams. More land might be
brought under irrigation, for example. Irrigation makes more surface water available for evaporation
and transpiration, which consequently can trigger the formation of convective storm systems under
the right set of supporting conditions [32]. However, the TGD is constructed for flood protection,
hydropower and navigation. It is not used for irrigation purposes. Furthermore, the TGD is located
within a humid climate zone, which leads to less effects of the TGR on local climate. Degu et al. (2011)
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reported that large dams influenced local climate mostly in Mediterranean, and semi–arid climates,
while for humid climates the influence is less apparent [21]. The phenomenon that higher rainfall
intensities at locations closer to inland water bodies was accentuated in dryer climates [15].

Additional to data from weather stations, TRMM precipitation data were also included. Due to
high resolution TRMM rainfall data (0.25◦ × 0.25◦) being available after 1998, the years from 1998
to 2003 were deemed as the pre-dam period, while the years from 2004 to 2014 were referred to as
the post-dam period. It should be noted that the dividing period for TRMM is different from that for
weather stations (from 1992 to 2002 and from 2003 to 2013). Figure 12 gives spatial distribution of mean
for P95, E–NE, Mx5 from TRMM data during pre-dam and post-dam periods, and their differences
between pre-dam and post-dam periods. Tables 8 and 9 give the mean extreme precipitation indices
(P95, E–NE, Mx5) from TRMM data and statistical differences in the mean (p-mw) and distribution
(p-ks) estimated by the Mann–Whitney and Kolmogorov–Smirnov tests.

Regarding extreme precipitation indices over the NRA during the post-dam period, they were
significantly different in the mean and distribution compared with that during the pre-dam period.
When comparing extreme precipitation indices over the ARA, similar results could be obtained. It was
observed that there was a minimal difference in extreme precipitation indices for the NRA and the
ARA. The P95 for the ARA was 411 mm, while for the NAR it was 405 mm, for instance. Therefore, it
was difficult to reach a conclusion that the reservoir could exert some effects on extreme precipitation.

Table 8. Statistical difference tests for the mean and distribution in the extreme rainfall indices
(P95/mm, E–NE (fraction) and Mx5/mm) from TRMM data for the different periods.

Paired Analysis Precipitation Indices Location
Periods

p-mw p-ks
Pre-Dam Post-Dam

1
P95 NRA 265 411 <0.01 <0.01

E-NE NRA 0.18 0.29 <0.01 <0.01
Mx5 NRA 133 167 <0.01 <0.01

2
P95 ARA 355 405 <0.01 <0.01

E-NE ARA 0.24 0.28 <0.01 <0.01
Mx5 ARA 163 166 0.85 <0.01

Table 9. Statistical difference tests for the mean and distribution in the extreme rainfall indices
(P95/mm, E–NE (fraction) and Mx5/mm) from TRMM data for the different locations.

Paired Analysis Precipitation Indices Period
Locations

p-mw p-ks
ARA NRA

3
P95 Post-dam 405 411 0.54 0.57

E-NE Post-dam 0.28 0.29 0.10 0.18
Mx5 Post-dam 166 167 0.37 0.14
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Although TGR did not show detectable effects on extreme precipitation around the TGR, we need
to know whether other meteorological elements, i.e., WP and RH, in collection with precipitation,
were changed due to TGR impoundment. Firstly, RH at the same region (ARA or NRA) was compared
between the pre-dam and the post-dam periods (Table 10). The means of RH at both the ARA and the
NRA locations during the pre-dam period were higher than those during the post-dam period (p < 0.05).
WP at both the ARA and the NRA locations presented similar changes with RH. Then, RH at the same
period (pre-dam or post-dam) was compared between the ARA and the NRA locations (Table 11).
It is interesting to note RH at the ARA locations was larger than that at the NRA locations after TGR
impoundment. These results mean that the impoundment of TGR did not affect RH and WP. In other
words, the effects of TGR on RH and WP could be undetected or much smaller than other factors.

Table 10. Statistical difference tests for the mean and distribution in the RH (%) and WP (hPa) at the
same locations for the different periods.

Paired Analysis Precipitation Indices Location
Periods

p-mw p-ks
Pre-Dam Post-Dam

1
WP NRA 5.38 5.22 <0.01 <0.01
RH NRA 77.6 75.1 <0.01 <0.01

2
WP ARA 5.38 5.26 <0.01 <0.01
RH ARA 78.6 76.7 <0.01 <0.01

Table 11. Statistical difference tests for the mean and distribution in the RH (%) and WP (hPa) at the
same locations for the different locations.

Paired Analysis Precipitation Indices Period
Locations

p-mw p-ks
NAR ARA

3
WP Post-dam 5.22 5.26 0.56 0.35
RH Post-dam 75.1 76.7 <0.01 <0.01

4
WP Pre-dam 5.38 5.38 0.5 <0.01
RH Pre-dam 77.6 78.6 0.13 0.14
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6. Conclusions

Three extreme precipitation indices were used, including annual precipitation amounts
corresponding to more than the 95th percentile of precipitation (P95), the ratio of extreme to
non-extreme precipitation (E–NE) and maximum consecutive 5-day precipitation amounts (Mx5),
in this study. During the period from 1959 to 2013, increasing trends in P95, E–NE and Mx5 were
predominant, while only the E–NE was field significant. The heavy precipitation accounted for larger
proportion through comparing the trend of precipitation amount from different precipitation intensities.
Thus, an increasing trend in the top high percentile precipitation was at the expense of the declining
trends in light and middle precipitation.

ENSO did not show detectable associations with extreme precipitation. To detect the effect of
climate warming on extreme precipitation, the whole period was divided into two sub-periods,
including the cooling period (pre-1985) and warming period (post-1985) based on atmospheric
temperature variations. Increasing trends in P95, E–NE and Mx5 during the pre-1985 period were more
pronounced than those during the warming period (post-1985), though these three indices showed
upward trends during both periods. The P95 and E–NE have changed significantly in the mean and
distribution aspects from the pre-1985 to post-1985 periods. Extreme precipitation became heavier
during post-1985. Due to climate warming, P95 increased at the rate of 6.48%/◦C. However, climate
warming did not trigger increases in RH and WP from surface weather stations.

Through comparing extreme precipitation indices over the NRA, Mx5 show significant differences
between the pre-dam and post-dam years. However, over the ARA, there are three extreme
precipitation indices (P95, E–NE and Mx5) exhibiting significant differences between pre-dam and
post-dam construction. During the pre-dam period, extreme precipitation over the NRA and the
ARA did not show a large difference. During the post-dam period, extreme precipitation over the
NRA was smaller than that over the ARA. These results are contrary to the hypothesis that the
impounding reservoir has larger effects on precipitation near the reservoir than that away from
reservoir. Moreover, the results from TRMM precipitation analysis did not show an effect of the TGR
on extreme precipitation. Therefore, the variation of extreme precipitation over the TGRA is related
more to the natural climate system. Furthermore, the impoundment of TGR did not affect RH and WP.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4433/9/1/24/s1, Table S1:
General Information for 29 Meteorological stations.
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