Neutrosophic Positive Implicative \mathcal{N}-Ideals in BCK-Algebras

Young Bae Jun 1, Florentin Smarandache 2, Seok-Zun Song 3,∗ and Madad Khan 4

1 Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; skywine@gmail.com
2 Mathematics & Science Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA; fsmarandache@gmail.com
3 Department of Mathematics, Jeju National University, Jeju 63243, Korea
4 Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 45550, Pakistan; madadmath@yahoo.com
∗ Correspondence: szsong@jejunu.ac.kr

Received: 30 October 2017; Accepted: 13 January 2018; Published: 15 January 2018

Abstract: The notion of a neutrosophic positive implicative \mathcal{N}-ideal in BCK-algebras is introduced, and several properties are investigated. Relations between a neutrosophic \mathcal{N}-ideal and a neutrosophic positive implicative \mathcal{N}-ideal are discussed. Characterizations of a neutrosophic positive implicative \mathcal{N}-ideal are considered. Conditions for a neutrosophic \mathcal{N}-ideal to be a neutrosophic positive implicative \mathcal{N}-ideal are provided. An extension property of a neutrosophic positive implicative \mathcal{N}-ideal based on the negative indeterminacy membership function is discussed.

Keywords: neutrosophic \mathcal{N}-structure; neutrosophic \mathcal{N}-ideal; neutrosophic positive implicative \mathcal{N}-ideal

MSC: 06F35; 03G25; 03B52

1. Introduction

There are many real-life problems which are beyond a single expert. It is because of the need to involve a wide domain of knowledge. As a generalization of the intuitionistic fuzzy set, paraconsistent set and intuitionistic set, the neutrosophic logic and set is introduced by F. Smarandache [1] and it is a useful tool to deal with uncertainty in several social and natural aspects. Neutrosophy provides a foundation for a whole family of new mathematical theories with the generalization of both classical and fuzzy counterparts. In a neutrosophic set, an element has three associated defining functions such as truth membership function (T), indeterminate membership function (I) and false membership function (F) defined on a universe of discourse X. These three functions are independent completely. The neutrosophic set has vast applications in various fields (see [2–6]).

In order to provide mathematical tool for dealing with negative information, Y. B. Jun, K. J. Lee and S. Z. Song [7] introduced the notion of negative-valued function, and constructed \mathcal{N}-structures. M. Khan, S. Anis, F. Smarandache and Y. B. Jun [8] introduced the notion of neutrosophic \mathcal{N}-structures, and it is applied to semigroups (see [8]) and BCK/BCI-algebras (see [9]). S. Z. Song, F. Smarandache and Y. B. Jun [10] studied a neutrosophic commutative \mathcal{N}-ideal in BCK-algebras. As well-known, BCK-algebras originated from two different ways: one of them is based on set theory, and another is from classical and non-classical propositional calculi (see [11]). The bounded commutative BCK-algebras are precisely MV-algebras. For MV-algebras, see [12]. The background of this study is displayed in the second section. In the third section, we introduce the notion of a neutrosophic positive implicative \mathcal{N}-ideal in BCK-algebras, and investigate several properties. We discuss relations between a neutrosophic \mathcal{N}-ideal and a neutrosophic positive implicative \mathcal{N}-ideal, and provide conditions for a
neutrosophic \(N \)-ideal to be a neutrosophic positive implicative \(N \)-ideal. We consider characterizations of a neutrosophic positive implicative \(N \)-ideal. We establish an extension property of a neutrosophic positive implicative \(N \)-ideal based on the negative indeterminacy membership function. Conclusions are provided in the final section.

2. Preliminaries

By a \(BCI \)-algebra we mean a set \(X \) with a binary operation “\(*\)” and a special element “0” in which the following conditions are satisfied:

(I) \((x * y) * (x * z)) * (z * y) = 0,
(II) \((x * (x * y)) * y = 0,
(III) x * x = 0,
(IV) x * y = y * x = 0 \Rightarrow x = y

for all \(x, y, z \in X \). By a \(BCK \)-algebra, we mean a \(BCI \)-algebra \(X \) satisfying the condition

\[(\forall x \in X)(0 * x = 0).\]

A partial ordering \(\preceq \) on \(X \) is defined by

\[(\forall x, y \in X)(x \preceq y \Rightarrow x * y = 0).\]

Every \(BCK/BCI \)-algebra \(X \) verifies the following properties.

\[(\forall x \in X)(x * 0 = x),\]
\[(\forall x, y, z \in X)((x * y) * z = (x * z) * y).\]

Let \(I \) be a subset of a \(BCK/BCI \)-algebra. Then \(I \) is called an ideal of \(X \) if it satisfies the following conditions.

\[0 \in I,\]
\[(\forall x, y \in X)(x * y \in I, y \in I \Rightarrow x \in I).\]

Let \(I \) be a subset of a \(BCK \)-algebra. Then \(I \) is called a positive implicative ideal of \(X \) if the Condition (3) holds and the following assertion is valid.

\[(\forall x, y, z \in X)((x * y) * z \in I, y * z \in I \Rightarrow x * z \in I).\]

Any positive implicative ideal is an ideal, but the converse is not true (see [13]).

Lemma 1 ([13]). A subset \(I \) of a \(BCK \)-algebra \(X \) is a positive implicative ideal of \(X \) if and only if \(I \) is an ideal of \(X \) which satisfies the following condition.

\[(\forall x, y \in X)((x * y) * y \in I \Rightarrow x * y \in I).\]

We refer the reader to the books [13,14] for further information regarding \(BCK/BCI \)-algebras.

For any family \(\{a_i \mid i \in \Lambda\} \) of real numbers, we define

\[\bigvee \{a_i \mid i \in \Lambda\} := \sup \{a_i \mid i \in \Lambda\}\]

and

\[\bigwedge \{a_i \mid i \in \Lambda\} := \inf \{a_i \mid i \in \Lambda\}.\]
We denote the collection of functions from a set X to $[-1, 0]$ by $\mathcal{F}(X, [-1, 0])$. An element of $\mathcal{F}(X, [-1, 0])$ is called a negative-valued function from X to $[-1, 0]$ (briefly, N-function on X). An ordered pair (X, f) of X and an N-function f on X is called an N-structure (see [7]).

A neutrosophic N-structure over a nonempty universe of discourse X (see [8]) is defined to be the structure

$$X_N := \left\{ \frac{x}{(T_N(x), I_N(x), F_N(x))} \mid x \in X \right\}$$

(7)

where T_N, I_N and F_N are N-functions on X which are called the negative truth membership function, the negative indeterminacy membership function and the negative falsity membership function, respectively, on X.

For the sake of simplicity, we will use the notation X_N or $X_N := \frac{X}{(T_N, I_N, F_N)}$ instead of the neutrosophic N-structure in (7).

Recall that every neutrosophic N-structure X_N over X satisfies the following condition:

$$(\forall x \in X) \ (-3 \leq T_N(x) + I_N(x) + F_N(x) \leq 0).$$

3. Neutrosophic Positive Implicative N-ideals

In what follows, let X denote a BCK-algebra unless otherwise specified.

Definition 1 ([9]). Let X_N be a neutrosophic N-structure over X. Then X_N is called a neutrosophic N-ideal of X if the following condition holds.

$$(\forall x, y \in X) \left\{ \begin{array}{l} T_N(0) \leq T_N(x) \leq \bigvee \{T_N(x * y), T_N(y)\} \\ I_N(0) \geq I_N(x) \geq \bigwedge \{I_N(x * y), I_N(y)\} \\ F_N(0) \leq F_N(x) \leq \bigvee \{F_N(x * y), F_N(y)\} \end{array} \right..$$

(8)

Definition 2. A neutrosophic N-structure X_N over X is called a neutrosophic positive implicative N-ideal of X if the following assertions are valid.

$$(\forall x \in X) \ (T_N(0) \leq T_N(x), \ I_N(0) \geq I_N(x), \ F_N(0) \leq F_N(x)), \quad (9)$$

$$(\forall x, y, z \in X) \left\{ \begin{array}{l} T_N(x * z) \leq \bigvee \{T_N((x * y) * z), T_N(y * z)\} \\ I_N(x * z) \geq \bigwedge \{I_N((x * y) * z), I_N(y * z)\} \\ F_N(x * z) \leq \bigvee \{F_N((x * y) * z), F_N(y * z)\} \end{array} \right..$$

(10)

Example 1. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the Cayley table in Table 1.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Let $X_N = \left\{ \frac{0}{[-0.9, -0.2, -0.7]}, \frac{1}{[-0.7, -0.6, -0.7]}, \frac{2}{[-0.5, -0.7, -0.6]}, \frac{3}{[-0.1, -0.4, -0.7]}, \frac{4}{[-0.5, -0.8, -0.2]} \right\}$ be a neutrosophic N-structure over X. Then X_N is a neutrosophic positive implicative N-ideal of X.

If we take \(z = 0 \) in (10) and use (1), then we have the following theorem.

Theorem 1. Every neutrosophic positive implicative \(N \)-ideal is a neutrosophic \(N \)-ideal.

The following example shows that the converse of Theorem 1 does not holds.

Example 2. Let \(X = \{0, a, b, c\} \) be a BCK-algebra with the Cayley table in Table 2.

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

Let

\[
X_N = \left\{ \frac{0}{(t_0, t_1, f_0)}, \frac{a}{(t_1, t_1, f_1)}, \frac{b}{(t_1, t_1, f_2)}, \frac{c}{(t_2, t_0, f_1)} \right\}
\]

be a a neutrosophic \(N \)-structure over \(X \) where \(t_0 < t_1 < t_2, f_0 < f_1 < f_2 \) in \([-1, 0]\). Then \(X_N \) is a neutrosophic \(N \)-ideal of \(X \). But it is not a neutrosophic positive implicative \(N \)-ideal of \(X \) since

\[
T_N(b \ast a) = T_N(a) = t_1 \not\leq t_0 = \bigvee\{T_N((b \ast a) \ast a), T_N(a \ast a)\},
\]

\[
I_N(b \ast a) = I_N(a) = i_1 \not\leq i_2 = \bigwedge\{I_N((b \ast a) \ast a), I_N(a \ast a)\},
\]

or

\[
F_N(b \ast a) = F_N(a) = f_2 \not\leq f_0 = \bigvee\{F_N((b \ast a) \ast a), F_N(a \ast a)\}.
\]

Given a neutrosophic \(N \)-structure \(X_N \) over \(X \) and \(\alpha, \beta, \gamma \in [-1,0] \) with \(-3 \leq \alpha + \beta + \gamma \leq 0\), we define the following sets.

\[
T_N^\alpha := \{ x \in X \mid T_N(x) \leq \alpha \},
\]

\[
I_N^\beta := \{ x \in X \mid I_N(x) \geq \beta \},
\]

\[
F_N^\gamma := \{ x \in X \mid F_N(x) \leq \gamma \}.
\]

Then we say that the set

\[
X_N(\alpha, \beta, \gamma) := \{ x \in X \mid T_N(x) \leq \alpha, I_N(x) \geq \beta, F_N(x) \leq \gamma \}
\]

is the \((\alpha, \beta, \gamma)\)-level set of \(X_N \) (see [9]). Obviously, we have

\[
X_N(\alpha, \beta, \gamma) = T_N^\alpha \cap I_N^\beta \cap F_N^\gamma.
\]

Theorem 2. If \(X_N \) is a neutrosophic positive implicative \(N \)-ideal of \(X \), then \(T_N^\alpha, I_N^\beta \) and \(F_N^\gamma \) are positive implicative ideals of \(X \) for all \(\alpha, \beta, \gamma \in [-1,0] \) with \(-3 \leq \alpha + \beta + \gamma \leq 0\) whenever they are nonempty.

Proof. Assume that \(T_N^\alpha, I_N^\beta \) and \(F_N^\gamma \) are nonempty for all \(\alpha, \beta, \gamma \in [-1,0] \) with \(-3 \leq \alpha + \beta + \gamma \leq 0\). Then \(x \in T_N^\alpha, y \in I_N^\beta \) and \(z \in F_N^\gamma \) for some \(x, y, z \in X \). Thus \(T_N(0) \leq T_N(x) \leq \alpha, I_N(0) \geq \beta, F_N(0) \leq \gamma \).
Then $I_N(y) \geq \beta$, and $F_N(0) \leq F_N(z) \leq \gamma$, that is, $0 \in T_N^{\beta} \cap I_N^{\beta} \cap F_N^{\gamma}$. Let $(x \ast y) \ast z \in T_N^{\beta}$ and $y \ast z \in T_N^{\beta}$. Then $T_N((x \ast y) \ast z) \leq a$ and $T_N(y \ast z) \leq a$, which imply that

$$T_N(x \ast z) \leq \bigvee \{T_N((x \ast y) \ast z), T_N(y \ast z)\} \leq a,$$

that is, $x \ast z \in T_N^{\beta}$. If $(a \ast b) \ast c \in I_N^{\beta}$ and $b \ast c \in I_N^{\beta}$, then $I_N((a \ast b) \ast c) \geq \beta$ and $I_N(b \ast c) \geq \beta$. Thus

$$I_N(a \ast c) \geq \bigwedge \{I_N((a \ast b) \ast c), I_N(b \ast c)\} \geq \beta,$$

and so $a \ast c \in I_N^{\beta}$. Finally, suppose that $(u \ast v) \ast w \in F_N^{\gamma}$ and $v \ast w \in F_N^{\gamma}$. Then $F_N((u \ast v) \ast w) \leq \gamma$ and $F_N(v \ast w) \leq \gamma$. Thus

$$F_N(u \ast w) \leq \bigvee \{F_N((u \ast v) \ast w), F_N(v \ast w)\} \leq \gamma,$$

that is, $u \ast w \in F_N^{\gamma}$. Therefore T_N^{β}, I_N^{β}, and F_N^{γ} are positive implicative ideals of X. \qed

Corollary 1. Let X_N be a neutrosophic N-structure over X and let $\alpha, \beta, \gamma \in [-1, 0]$ be such that $-3 \leq \alpha + \beta + \gamma \leq 0$. If X_N is a neutrosophic positive implicative N-ideal of X, then the nonempty (α, β, γ)-level set of X_N is a positive implicative ideal of X.

Proof. Straightforward. \qed

Example 3. Let $X = \{0, 1, 2, 3, 4\}$ be a BCK-algebra with the Cayley table in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Let

$$X_N = \left\{ \begin{array}{c} 0 \\ (-0.8, -0.3, -0.7) \\ (-0.7, -0.6, -0.4) \\ (-0.8, -0.5, -0.67) \\ (-0.3, -0.5, -0.67) \\ (-0.2, -0.5, -0.1) \end{array} \right\}$$

be a neutrosophic N-structure over X. Routine calculations show that X_N is a neutrosophic positive implicative N-ideal of X. Then

$$T_N^{\beta} = \left\{ \begin{array}{c} \emptyset & \text{if } a \in [-1, -0.8), \\
\{0\} & \text{if } a \in [-0.8, -0.7), \\
\{0, 1\} & \text{if } a \in [-0.7, -0.4), \\
\{0, 1, 2\} & \text{if } a \in [-0.4, -0.3), \\
\{0, 1, 2, 3\} & \text{if } a \in [-0.3, -0.2), \\
X & \text{if } a \in [-0.2, 0], \end{array} \right\}$$
Theorem 3. Let \(X \)

\[I_N^β = \begin{cases} \emptyset & \text{if } β \in (-0.3, 0], \\ \{0\} & \text{if } β \in (-0.4, -0.3], \\ \{0, 2\} & \text{if } β \in (-0.5, -0.4], \\ \{0, 2, 3\} & \text{if } β \in (-0.6, -0.5], \\ \{0, 1, 2, 3\} & \text{if } β \in (-0.9, -0.6], \\ X & \text{if } β \in [-1, -0.9], \\ \end{cases} \]

and

\[F_N^γ = \begin{cases} \emptyset & \text{if } γ \in [-1, -0.7], \\ \{0\} & \text{if } γ \in [-0.7, -0.6], \\ \{0, 3\} & \text{if } γ \in [-0.6, -0.5], \\ \{0, 2, 3\} & \text{if } γ \in [-0.5, -0.4], \\ \{0, 1, 2, 3\} & \text{if } γ \in [-0.4, -0.1], \\ X & \text{if } γ \in [-0.1, 0], \\ \end{cases} \]

which are positive implicative ideals of \(X \).

Lemma 2 ([9]). Every neutrosophic \(N \)-ideal \(X_N \) of \(X \) satisfies the following assertions:

\[(x, y \in X) (x \preceq y \Rightarrow T_N(x) \leq T_N(y), I_N(x) \geq I_N(y), F_N(x) \leq F_N(y)). \tag{11}\]

We discuss conditions for a neutrosophic \(N \)-ideal to be a neutrosophic positive implicative \(N \)-ideal.

Theorem 3. Let \(X_N \) be a neutrosophic \(N \)-ideal of \(X \). Then \(X_N \) is a neutrosophic positive implicative \(N \)-ideal of \(X \) if and only if the following assertion is valid.

\[
(\forall x, y \in X) \begin{cases} T_N(x \ast y) \leq T_N((x \ast y) \ast y), \\ I_N(x \ast y) \geq I_N((x \ast y) \ast y), \\ F_N(x \ast y) \leq F_N((x \ast y) \ast y) \end{cases}. \tag{12}\]

Proof. Assume that \(X_N \) is a neutrosophic positive implicative \(N \)-ideal of \(X \). If \(z \) is replaced by \(y \) in (10), then

\[
T_N(x \ast y) \leq \bigvee \{T_N((x \ast y) \ast y), T_N(y \ast y)\} \\
= \bigvee \{T_N((x \ast y) \ast y), T_N(0)\} = T_N((x \ast y) \ast y),
\]

\[
I_N(x \ast y) \geq \bigwedge \{I_N((x \ast y) \ast y), I_N(y \ast y)\} \\
= \bigwedge \{I_N((x \ast y) \ast y), I_N(0)\} = I_N((x \ast y) \ast y),
\]

and

\[
F_N(x \ast y) \leq \bigvee \{F_N((x \ast y) \ast y), F_N(y \ast y)\} \\
= \bigvee \{F_N((x \ast y) \ast y), F_N(0)\} = F_N((x \ast y) \ast y)
\]

by (III) and (9).

Conversely, let \(X_N \) be a neutrosophic \(N \)-ideal of \(X \) satisfying (12). Since

\[(x \ast z) \ast (y \ast z) \leq (x \ast z) \ast y = (x \ast y) \ast z\]
Theorem 4. For any neutrosophic X, we have
\[
(\forall x, y, z \in X) \left(T_N(((x \ast z) \ast (y \ast z)) \leq T_N((x \ast y) \ast z), I_N(((x \ast z) \ast (y \ast z)) \geq I_N((x \ast y) \ast z), F_N(((x \ast z) \ast (y \ast z)) \leq F_N((x \ast y) \ast z) \right).
\]

by Lemma 2. It follows from (8) and (12) that
\[
T_N(x \ast z) \leq T_N((x \ast z) \ast z) \\
\leq \bigvee \{T_N((x \ast z) \ast (y \ast z)), T_N(y \ast z)\} \\
\leq \bigvee \{T_N((x \ast y) \ast z), T_N(y \ast z)\},
\]
\[
I_N(x \ast z) \geq I_N((x \ast z) \ast z) \\
\geq \bigwedge \{I_N(((x \ast z) \ast (y \ast z)), I_N(y \ast z)\} \\
\geq \bigwedge \{I_N((x \ast y) \ast z), I_N(y \ast z)\},
\]
and
\[
F_N(x \ast z) \leq F_N((x \ast z) \ast z) \\
\leq \bigvee \{F_N(((x \ast z) \ast (y \ast z)), F_N(y \ast z)\} \\
\leq \bigvee \{F_N((x \ast y) \ast z), F_N(y \ast z)\}.
\]

Therefore X_N is a neutrosophic positive implicative N-ideal of X. \qed

Lemma 3 ([9]). For any neutrosophic N-ideal X_N of X, we have
\[
(\forall x, y, z \in X) \left(x \ast y \leq z \Rightarrow \begin{cases} T_N(x) \leq \bigvee \{T_N(y), T_N(z)\} \\
I_N(x) \geq \bigwedge \{I_N(y), I_N(z)\} \\
F_N(x) \leq \bigvee \{F_N(y), F_N(z)\} \end{cases} \right). \tag{13}
\]

Lemma 4. If a neutrosophic N-structure X_N over X satisfies the condition (13), then X_N is a neutrosophic N-ideal of X.

Proof. Since $0 \ast x \leq x$ for all $x \in X$, we have $T_N(0) \leq T_N(x)$, $I_N(0) \geq I_N(x)$ and $F_N(0) \leq F_N(x)$ for all $x \in X$ by (13). Note that $x \ast (x \ast y) \leq y$ for all $x, y \in X$. It follows from (13) that $T_N(x) \leq \bigvee \{T_N(x \ast y), T_N(y)\}$, $I_N(x) \geq \bigwedge \{I_N(x \ast y), I_N(y)\}$, and $F_N(x) \leq \bigvee \{F_N(x \ast y), F_N(y)\}$ for all $x, y \in X$. Therefore X_N is a neutrosophic N-ideal of X. \qed

Theorem 4. For any neutrosophic N-structure X_N over X, the following assertions are equivalent.

(1) X_N is a neutrosophic positive implicative N-ideal of X.
(2) X_N satisfies the following condition.

\[
((x \ast y) \ast y) \ast a \leq b \Rightarrow \begin{cases} T_N(x \ast y) \leq \bigvee \{T_N(a), T_N(b)\}, \\
I_N(x \ast y) \geq \bigwedge \{I_N(a), I_N(b)\}, \\
F_N(x \ast y) \leq \bigvee \{F_N(a), F_N(b)\} \end{cases}, \tag{14}
\]

for all $x, y, a, b \in X$.

Theorem 5. Let X_N be a neutrosophic positive implicative \mathcal{N}-ideal of X. Then X_N is a neutrosophic \mathcal{N}-ideal of X by Theorem 1. Let $x, y, a, b \in X$ be such that $((x \ast y) \ast y) \ast a \leq b$. Then

\[
T_N(x \ast y) \leq T_N(((x \ast y) \ast y)) \leq \bigvee \{T_N(a), T_N(b)\},
\]
\[
I_N(x \ast y) \geq I_N(((x \ast y) \ast y)) \geq \bigwedge \{I_N(a), I_N(b)\},
\]
\[
F_N(x \ast y) \leq F_N(((x \ast y) \ast y)) \leq \bigvee \{F_N(a), F_N(b)\}
\]

by Theorem 3 and Lemma 3.

Conversely, let X_N be a neutrosophic \mathcal{N}-structure over X that satisfies (14). Let $x, a, b \in X$ be such that $x \ast a \leq b$. Then $((x \ast 0) \ast 0) \ast a \leq b$, and so

\[
T_N(x) = T_N(x \ast 0) \leq \bigvee \{T_N(a), T_N(b)\},
\]
\[
I_N(x) = I_N(x \ast 0) \geq \bigwedge \{I_N(a), I_N(b)\},
\]
\[
F_N(x) = F_N(x \ast y) \leq \bigvee \{F_N(a), F_N(b)\}.
\]

Hence X_N is a neutrosophic \mathcal{N}-ideal of X by Lemma 4. Since $((x \ast y) \ast y) \ast ((x \ast y) \ast y) \leq 0$, it follows from (14) and (9) that

\[
T_N(x \ast y) \leq \bigvee \{T_N((x \ast y) \ast y), T_N(0)\} = T_N((x \ast y) \ast y),
\]
\[
I_N(x \ast y) \geq \bigwedge \{I_N((x \ast y) \ast y), I_N(0)\} = I_N((x \ast y) \ast y),
\]
\[
F_N(x \ast y) \leq \bigvee \{F_N((x \ast y) \ast y), F_N(0)\} = F_N((x \ast y) \ast y),
\]

for all $x, y \in X$. Therefore X_N is a neutrosophic positive implicative \mathcal{N}-ideal of X by Theorem 3. □

Lemma 5 ([9]). Let X_N be a neutrosophic \mathcal{N}-structure over X and assume that T^a_N, T^b_N and F^c_N are ideals of X for all $\alpha, \beta, \gamma \in [-1, 0]$ with $-3 \leq \alpha + \beta + \gamma \leq 0$. Then X_N is a neutrosophic \mathcal{N}-ideal of X.

Theorem 5. Let X_N be a neutrosophic \mathcal{N}-structure over X and assume that T^a_N, T^b_N and F^c_N are positive implicative ideals of X for all $\alpha, \beta, \gamma \in [-1, 0]$ with $-3 \leq \alpha + \beta + \gamma \leq 0$. Then X_N is a neutrosophic positive implicative \mathcal{N}-ideal of X.

Proof. If T^a_N, T^b_N and F^c_N are positive implicative ideals of X, then T_N, T^0_N and F^0_N are ideals of X. Thus X_N is a neutrosophic \mathcal{N}-ideal of X by Lemma 5. Let $x, y \in X$ and $\alpha, \beta, \gamma \in [-1, 0]$ with $-3 \leq \alpha + \beta + \gamma \leq 0$ such that $T_N((x \ast y) \ast y) = \alpha$, $I_N((x \ast y) \ast y) = \beta$ and $F_N((x \ast y) \ast y) = \gamma$. Then $(x \ast y) \ast y \in T_N \cap T^0_N \cap F^0_N$. Since $T^a_N \cap T^b_N \cap F^c_N$ is a positive implicative ideal of X, it follows from Lemma 1 that $x \ast y \in T^a_N \cap T^b_N \cap F^c_N$. Hence

\[
T_N(x \ast y) \leq \alpha = T_N((x \ast y) \ast y),
\]
\[
I_N(x \ast y) \geq \beta = I_N((x \ast y) \ast y),
\]
\[
F_N(x \ast y) \leq \gamma = F_N((x \ast y) \ast y).
\]

Therefore X_N is a neutrosophic positive implicative \mathcal{N}-ideal of X by Theorem 3. □
Lemma 6 ([9]). Let X_N be a neutrosophic N-ideal of X. Then X_N satisfies the condition (12) if and only if it satisfies the following condition.

\[
(\forall x, y, z \in X) \left\{ \begin{array}{l}
T_N((x \ast z) \ast (y \ast z)) \leq T_N((x \ast y) \ast z), \\
I_N((x \ast z) \ast (y \ast z)) \geq I_N((x \ast y) \ast z), \\
F_N((x \ast z) \ast (y \ast z)) \leq F_N((x \ast y) \ast z)
\end{array} \right. \tag{15}
\]

Corollary 2. Let X_N be a neutrosophic N-ideal of X. Then X_N is a neutrosophic positive implicative N-ideal of X if and only if X_N satisfies (15).

Proof. It follows from Theorem 3 and Lemma 6. \qed

Theorem 6. For any neutrosophic N-structure X_N over X, the following assertions are equivalent.

1. X_N is a neutrosophic positive implicative N-ideal of X.
2. X_N satisfies the following condition.

\[
((x \ast y) \ast z) \ast a \leq b \implies \begin{cases}
T_N((x \ast z) \ast (y \ast z)) \leq \bigvee \{T_N(a), T_N(b)\}, \\
I_N((x \ast z) \ast (y \ast z)) \geq \bigwedge \{I_N(a), I_N(b)\}, \\
F_N((x \ast z) \ast (y \ast z)) \leq \bigvee \{F_N(a), F_N(b)\},
\end{cases} \tag{16}
\]

for all $x, y, z, a, b \in X$.

Proof. Suppose that X_N is a neutrosophic positive implicative N-ideal of X. Then X_N is a neutrosophic N-ideal of X by Theorem 1. Let $x, y, z, a, b \in X$ be such that $((x \ast y) \ast z) \ast a \leq b$. Using Corollary 2 and Lemma 3, we have

\[
T_N((x \ast z) \ast (y \ast z)) \leq T_N(((x \ast y) \ast z)) \leq \bigvee \{T_N(a), T_N(b)\},
\]

\[
I_N((x \ast z) \ast (y \ast z)) \geq I_N(((x \ast y) \ast z)) \geq \bigwedge \{I_N(a), I_N(b)\},
\]

\[
F_N((x \ast z) \ast (y \ast z)) \leq F_N(((x \ast y) \ast z)) \leq \bigvee \{F_N(a), F_N(b)\}
\]

for all $x, y, z, a, b \in X$.

Conversely, let X_N be a neutrosophic N-structure over X that satisfies (16). Let $x, y, a, b \in X$ be such that $((x \ast y) \ast y) \ast a \leq b$. Then

\[
T_N(x \ast y) = T_N(((x \ast y) \ast y)) \leq \bigvee \{T_N(a), T_N(b)\},
\]

\[
I_N(x \ast y) = I_N(((x \ast y) \ast y)) \geq \bigwedge \{I_N(a), I_N(b)\},
\]

\[
F_N(x \ast y) = F_N(((x \ast y) \ast y)) \leq \bigvee \{F_N(a), F_N(b)\}
\]

by (III), (1) and (16). It follows from Theorem 4 that X_N is a neutrosophic positive implicative N-ideal of X. \qed

Theorem 7. Let X_N be a neutrosophic N-structure over X. Then X_N is a neutrosophic positive implicative N-ideal of X if and only if X_N satisfies (9) and

\[
(\forall x, y, z \in X) \left\{ \begin{array}{l}
T_N(x \ast y) \leq \bigvee \{T_N(((x \ast y) \ast y) \ast z), T_N(z)\}, \\
I_N(x \ast y) \geq \bigwedge \{I_N(((x \ast y) \ast y) \ast z), I_N(z)\}, \\
F_N(x \ast y) \leq \bigvee \{F_N(((x \ast y) \ast y) \ast z), F_N(z)\}
\end{array} \right. \tag{17}
\]
Proof. Assume that X_N is a neutrosophic positive implicative \mathcal{N}-ideal of X. Then X_N is a neutrosophic \mathcal{N}-ideal of X by Theorem 1, and so the condition (9) is valid. Using (8), (III), (1), (2) and (15), we have

$$
T_N(x \ast y) \leq \bigvee \{T_N((x \ast y) \ast z), T_N(z)\}
= \bigvee \{T_N(((x \ast z) \ast y) \ast (y \ast y)), T_N(z)\}
\leq \bigvee \{T_N(((x \ast z) \ast y) \ast y), T_N(z)\}
= \bigvee \{T_N(((x \ast y) \ast y) \ast z), T_N(z)\},
$$

$$
I_N(x \ast y) \geq \bigwedge \{I_N((x \ast y) \ast z), I_N(z)\}
= \bigwedge \{I_N(((x \ast z) \ast y) \ast (y \ast y)), I_N(z)\}
\geq \bigwedge \{I_N(((x \ast z) \ast y) \ast y), I_N(z)\}
= \bigwedge \{I_N(((x \ast y) \ast y) \ast z), I_N(z)\},
$$

and

$$
F_N(x \ast y) \leq \bigvee \{F_N((x \ast y) \ast z), F_N(z)\}
= \bigvee \{F_N(((x \ast z) \ast y) \ast (y \ast y)), F_N(z)\}
\leq \bigvee \{F_N(((x \ast z) \ast y) \ast y), F_N(z)\}
= \bigvee \{F_N(((x \ast y) \ast y) \ast z), F_N(z)\}
$$

for all $x, y, z \in X$. Therefore (17) is valid.

Conversely, if X_N is a neutrosophic \mathcal{N}-structure over X satisfying two Conditions (9) and (17), then

$$
T_N(x) = T_N(x \ast 0) \leq \bigvee \{T_N((x \ast 0) \ast 0), T_N(z)\} = \bigvee \{T_N(x \ast z), T_N(z)\},
$$

$$
I_N(x) = I_N(x \ast 0) \geq \bigwedge \{I_N((x \ast 0) \ast 0), I_N(z)\} = \bigwedge \{I_N(x \ast z), I_N(z)\},
$$

$$
F_N(x) = F_N(x \ast 0) \leq \bigvee \{F_N((x \ast 0) \ast 0), F_N(z)\} = \bigvee \{F_N(x \ast z), F_N(z)\}
$$

for all $x, z \in X$. Hence X_N is a neutrosophic \mathcal{N}-ideal of X. Now, if we take $z = 0$ in (17) and use (1), then

$$
T_N(x \ast y) \leq \bigvee \{T_N((x \ast y) \ast y) \ast 0), T_N(0)\}
= \bigvee \{T_N((x \ast y) \ast y), T_N(0)\} = T_N((x \ast y) \ast y),
$$

$$
I_N(x \ast y) \geq \bigwedge \{I_N((x \ast y) \ast y) \ast 0), I_N(0)\}
= \bigwedge \{I_N((x \ast y) \ast y), I_N(0)\} = I_N((x \ast y) \ast y),
$$

and

$$
F_N(x \ast y) \leq \bigvee \{F_N((x \ast y) \ast y) \ast 0), F_N(0)\}
= \bigvee \{F_N((x \ast y) \ast y), F_N(0)\} = F_N((x \ast y) \ast y)
$$

for all $x, y \in X$. It follows from Theorem 3 that X_N is a neutrosophic positive implicative \mathcal{N}-ideal of X. □

Summarizing the above results, we have a characterization of a neutrosophic positive implicative \mathcal{N}-ideal.
Theorem 8. For a neutrosophic \mathcal{N}-structure X_N over X, the following assertions are equivalent.

1. X_N is a neutrosophic positive implicative \mathcal{N}-ideal of X.
2. X_N is a neutrosophic \mathcal{N}-ideal of X satisfying the condition (12).
3. X_N is a neutrosophic \mathcal{N}-ideal of X satisfying the condition (15).
4. X_N satisfies two conditions (9) and (17).
5. X_N satisfies the condition (14).
6. X_N satisfies the condition (3).

For any fixed numbers $\xi_T, \xi_I, \xi_F \in [-1, 0], \xi_I \in (-1, 0]$ and a nonempty subset G of X, a neutrosophic \mathcal{N}-structure X_N^G over X is defined to be the structure

\[
X_N^G := X_{(T_N^G, I_N^G, F_N^G)} = \left\{ \frac{x}{(T_N^G(x), I_N^G(x), F_N^G(x))} \mid x \in X \right\}
\]

(18)

where T_N^G, I_N^G and F_N^G are \mathcal{N}-functions on X which are given as follows:

\[
T_N^G : X \rightarrow [-1, 0], \ x \mapsto \begin{cases}
\xi_T & \text{if } x \in G, \\
0 & \text{otherwise,}
\end{cases}
\]

\[
I_N^G : X \rightarrow [-1, 0], \ x \mapsto \begin{cases}
\xi_I & \text{if } x \in G, \\
-1 & \text{otherwise,}
\end{cases}
\]

and

\[
F_N^G : X \rightarrow [-1, 0], \ x \mapsto \begin{cases}
\xi_F & \text{if } x \in G, \\
0 & \text{otherwise.}
\end{cases}
\]

Theorem 9. Given a nonempty subset G of X, a neutrosophic \mathcal{N}-structure X_N^G over X is a neutrosophic positive implicative \mathcal{N}-ideal of X if and only if G is a positive implicative ideal of X.

Proof. Assume that G is a positive implicative ideal of X. Since $0 \in G$, it follows that $T_N^G(0) = \xi_T \leq T_N^G(x)$, $I_N^G(0) = \xi_I \geq I_N^G(x)$, and $F_N^G(0) = \xi_F \leq F_N^G(x)$ for all $x \in X$. For any $x, y, z \in X$, we consider four cases:

Case 1. $(x \ast y) \ast z \in G$ and $y \ast z \in G$,
Case 2. $(x \ast y) \ast z \in G$ and $y \ast z \notin G$,
Case 3. $(x \ast y) \ast z \notin G$ and $y \ast z \in G$,
Case 4. $(x \ast y) \ast z \notin G$ and $y \ast z \notin G$.

Case 1 implies that $x \ast z \in G$, and thus

\[
T_N^G(x \ast z) = T_N^G((x \ast y) \ast z) = T_N^G(y \ast z) = \xi_T,
\]

\[
I_N^G(x \ast z) = I_N^G((x \ast y) \ast z) = I_N^G(y \ast z) = \xi_I,
\]

\[
F_N^G(x \ast z) = F_N^G((x \ast y) \ast z) = F_N^G(y \ast z) = \xi_F.
\]

Hence

\[
T_N^G(x \ast z) \leq \bigvee \{T_N^G((x \ast y) \ast z), T_N^G(y \ast z)\},
\]

\[
I_N^G(x \ast z) \geq \bigwedge \{I_N^G((x \ast y) \ast z), I_N^G(y \ast z)\},
\]

\[
F_N^G(x \ast z) \leq \bigvee \{F_N^G((x \ast y) \ast z), F_N^G(y \ast z)\}.
\]
If Case 2 is valid, then $T_N^\xi(y \ast z) = 0$, $I_N^\xi(y \ast z) = -1$, and $F_N^\xi(y \ast z) = 0$. Thus
\[
\begin{align*}
T_N^\xi(x \ast z) &\leq 0 = \bigvee \{ T_N^\xi((x \ast y) \ast z), T_N^\xi(y \ast z) \}, \\
F_N^\xi(x \ast z) &\leq 0 = \bigvee \{ F_N^\xi((x \ast y) \ast z), F_N^\xi(y \ast z) \}, \\
I_N^\xi(x \ast z) &\geq -1 = \bigwedge \{ I_N^\xi((x \ast y) \ast z), I_N^\xi(y \ast z) \},
\end{align*}
\]
For the Case 3, it is similar to the Case 2.
For the Case 4, it is clear that
\[
\begin{align*}
T_N^\xi(x \ast z) &\leq 1 = \bigvee \{ T_N^\xi((x \ast y) \ast z), T_N^\xi(y \ast z) \}, \\
I_N^\xi(x \ast z) &\leq 1 = \bigwedge \{ I_N^\xi((x \ast y) \ast z), I_N^\xi(y \ast z) \}, \\
F_N^\xi(x \ast z) &\leq 1 = \bigvee \{ F_N^\xi((x \ast y) \ast z), F_N^\xi(y \ast z) \}.
\end{align*}
\]
Therefore X_N^G is a neutrosophic positive implicative N-ideal of X.
Conversely, suppose that X_N^G is a neutrosophic positive implicative N-ideal of X. Then $(T_N^\xi)_{\xi} = G$, $(I_N^\xi)_{\xi} = G$, and $(F_N^\xi)_{\xi} = G$ are positive implicative ideals of X by Theorem 2.

We consider an extension property of a neutrosophic positive implicative N-ideal based on the negative indeterminacy membership function.

Lemma 7 ([13]). Let A and B be ideals of X such that $A \subseteq B$. If A is a positive implicative ideal of X, then so is B.

Theorem 10. Let
\[
X_N := \frac{X}{(T_N, I_N, F_N)} = \left\{ \frac{x}{(T_N(x), I_N(x), F_N(x))} \mid x \in X \right\}
\]
and
\[
X_M := \frac{X}{(T_M, I_M, F_M)} = \left\{ \frac{x}{(T_M(x), I_M(x), F_M(x))} \mid x \in X \right\}
\]
be neutrosophic N-ideals of X such that $X_N(=, \leq, =) X_M$, that is, $T_N(x) = T_M(x)$, $I_N(x) \leq I_M(x)$ and $F_N(x) = F_M(x)$ for all $x \in X$. If X_N is a neutrosophic positive implicative N-ideal of X, then so is X_M.

Proof. Assume that X_N is a neutrosophic positive implicative N-ideal of X. Then T_N^a, I_N^a, and F_N^a are positive implicative ideals of X for all $a, \beta \in [-1, 0]$ by Theorem 2. The condition $X_N(=, \leq, =) X_M$ implies that $T_N^a = T_M^a$, $I_N^a \subseteq I_M^a$, and $F_N^a = F_M^a$. It follows from Lemma 7 that T_M^a, I_M^a, and F_M^a are positive implicative ideals of X for all $a, \beta \in [-1, 0]$. Therefore X_M is a neutrosophic positive implicative N-ideal of X by Theorem 5.

4. Conclusions
The aim of this paper is to study neutrosophic N-structure of positive implicative ideal in BCK-algebras, and to provide a mathematical tool for dealing with several informations containing uncertainty, for example, decision making problem, medical diagnosis, graph theory, pattern recognition, etc. As a more general platform which extends the concepts of the classic set and fuzzy set, intuitionistic fuzzy set and interval valued intuitionistic fuzzy set, F. Smarandache have developed neutrosophic set (NS) in [1,15]. In this manuscript, we have discussed the notion of a neutrosophic positive implicative N-ideal in BCK-algebras, and investigated several properties. We have considered relations between a neutrosophic N-ideal and a neutrosophic positive implicative N-ideal. We have provided conditions for a neutrosophic N-ideal to be a neutrosophic positive implicative N-ideal, and considered characterizations of a neutrosophic positive implicative N-ideal. We have established an extension property of a neutrosophic positive implicative N-ideal based on the negative indeterminacy membership function.
Various sources of uncertainty can be a challenge to make a reliable decision. Based on the results in this paper, our future research will be focused to solve real-life problems under the opinions of experts in a neutrosophic set environment, for example, decision making problem, medical diagnosis etc. The future works also may use the study neutrosophic set theory on several related algebraic structures, BL-algebras, MTL-algebras, R_0-algebras, MV-algebras, EQ-algebras and lattice implication algebras etc.

Acknowledgements: The authors thank the academic editor for his valuable comments and suggestions and the anonymous reviewers for their valuable suggestions. The corresponding author, Seok-Zun Song, was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1D1A1B02006812).

Author Contributions: This paper is a result of common work of the authors in all aspects.

Conflicts of Interest: The authors declare no conflict of interest

References

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).