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Abstract: The quality of honey bee drone semen is relevant in different contexts, ranging from
colony productivity to pathology, toxicology and biodiversity preservation. Despite its importance,
considerably less knowledge is available on this subject for the honey bee when compared to
other domestic animal species. A proper assessment of sperm quality requires a multiple testing
approach which discriminates between the different aspects of sperm integrity and functionality.
Most studies on drone semen quality have only assessed a few parameters, such as sperm volume,
sperm concentration and/or sperm plasma membrane integrity. Although more recent studies have
focused on a broader variety of aspects of semen quality, some techniques currently used in vertebrates,
such as computer-assisted sperm analysis (CASA) or multiparametric sperm quality testing, still
remain to be developed in the honey bee. This may be attributed to the particular sperm morphology
and physiology in this species, requiring the development of technologies specifically adapted to it.
This article reviews the present knowledge of sperm quality in honey bee drones, highlighting its
peculiarities and proposing future lines of research.
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1. Introduction

Honey bees are one of the most important pollinators, playing a vital role in plant pollination of
crop and wild species. For instance, it has been estimated that approximately 70% of all crop species
worldwide are dependent on bees for pollination [1]. However, recent reports of high colony losses
worldwide have raised public concern for the future of honeybees [2,3]. Regardless of the underlying
causes of these losses, with many factors possibly involved [4], efficient reproduction is fundamental
for replacing dead colonies.

A limiting factor of successful reproduction may be sperm quality. Since the queen will store
viable sperm after insemination for several years, the study of semen quality in this species is especially
relevant. It may determine the reproductive success of the queen and, as a consequence, the colony’s
survival and level of productivity [5], as well as the success of artificial insemination (Al, also called
instrumental insemination in this species) [6,7]. Poor semen quality generates poorer quality queens,
this being considered one of the main causes of colony loss [8]. The study of drone sperm quality is
also of considerable research interest. To date, it has been applied to study the effects of age [9-12],
body size [13], genetics [10,12], temperature [11,14], nutrition [11], management [15,16], seasonal
variations [10,17], disease [18,19], insecticides [20,21], miticides [22], semen storage in liquid and frozen
states [9,23-26], semen handling [9,27,28], sperm competition [29] and physiology [30].

Despite its importance, considerably less research has been undertaken on honey bee drone semen
quality than in the case of domesticated animals. For example, the numbers of articles on the “Web of
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Science” database from 1900 to May 2020 containing the keyword “sperm” was 4717, 1821, 982 and 252
in the bull, horse, goat and honey bee, respectively. Most studies on drone semen quality have only
assessed a few parameters such as sperm volume, sperm concentration and/or sperm plasma membrane
integrity. However, a proper assessment of sperm quality requires a multiple testing approach in order
to discriminate between the different aspects of sperm integrity and functionality [20,25]. This article
reviews the current knowledge of sperm quality in honey bee drones, highlighting its peculiarities and
proposing future lines of research.

2. Normal Sperm Structure in the Honey Bee

Honey bee sperm are long and filamentous cells with tapered ends (Figure 1) [31-33]. With a
length of 250270 um and a width of 0.7 um, the sperm consists of a relatively small and narrow head
region (10 pm long and 0.4-0.5 um in width [33]), the transitional centriole adjunct and the flagellum.
The sperm head contains two consecutive parts of equal size: the acrosomal complex followed by a
linear nucleus. The acrosomal complex is formed by a conical and two-layered acrosomal vesicle that
covers the perforatorium up to the anterior nuclear end, where the perforatorium is inserted into a
deep fossa [31]. The nucleus is dense and elongated, with a compact chromatin. The sperm flagellum
is formed by an axoneme of 9+9+2 microtubular pattern, two large mitochondrial derivatives and
two accessory bodies. The mitochondrial derivatives are asymmetrical in length and diameter and
lie parallel to the axoneme throughout the sperm flagellum. The two accessory bodies are elongated
structures located between the axoneme and each mitochondrial derivative.

Figure 1. A combined phase-contrast and fluorescence (Hoechst) image of a honey bee spermatozoon
showing the acrosome (a), nucleus (b) and flagellum (c). Scale-bar = 10 pm.

3. Sperm Life Cycle in the Honey Bee

3.1. Spermatogenesis and Sperm Storage in the Male

Spermatozoa are produced in the drone testes from the larval to the pupal stages of development [34,35].
Between days 3 and 8 after emergence, the spermatozoa are transported from the testes to the seminal
vesicles [34,36,37], where they are stored until ejaculation [37]. Immediately after emergence from their
cells, drones are unable to copulate for about 9-12 days. However, there may be great variation in the
time drones take to reach sexual maturity, which can depend on their genetics and the quality of the
colony in which they are reared [10,16].
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3.2. Mating, Sperm Storage in the Spermatheca and Egg Fertilization

Mating is the most significant function of an adult drone, although most of them fail in this
task. Drones mate with the queen during the mating flight at the age of 15-23 days, 21 days on
average [38]. In the afternoon of days with good weather [39,40], drones fly from the colonies to
the male congregation areas, with a diameter of around 30-200 m, where thousands of drones from
hundreds of colonies may await the arrival of a few virgin queens [41]. When a queen approaches a
male congregation area, the drones chase her trying to copulate, forming a comet-like swarm in her
wake. Normally, the queen mates consecutively with several drones in rapid sequence during the
mating (nuptial) flight [10]. Earliest studies suggested that the queens copulate with 12-14 drones on
average, usually in one or two mating flights [42-45], but a recent study suggested that the degree of
polyandry might be much higher, so that queens can mate up to 34-77 males [46]. During mating,
6-12 million spermatozoa are transferred from the seminal vesicles of the drone into the genital
orifice of the queen through the drone’s irreversibly everted endophallus [10]. After ejaculation, the
endophallus is broken off inside the queen, acting as a temporary vaginal plug that may prevent
sperm leakage, and the drone dies shortly afterwards. Approximately 10% of each male’s ejaculate is
transferred to the queen’s oviducts [47] where the semen of the different drones is mixed [48].

After the nuptial flight, the queen returns to the hive, where the process of sperm transport from
the oviducts to the spermatheca can take up to 40 h. Finally, only 3-5% of the received spermatozoa,
2 to 7 million, are usually stored [43,49,50], with an average of around 4-5 million sperm [51,52].
The queens do not mate again after the onset of oviposition [42], so that this sperm quantity must
be enough to fertilize million eggs over their entire life span [53]. In the latter study it was also
demonstrated that only two spermatozoa are required on average for egg fertilization.

4. In Vitro Evaluation of Semen Quality in the Honey Bee

4.1. Semen Collection

Two main techniques for collecting semen in drones have been described, based on the dissection
of the seminal vesicles and the induction of ejaculation. In the earliest studies, semen was obtained
mainly from the seminal vesicles (Table 1). In the last decade, however, induced ejaculation has been
the main method used to collect semen samples.

Table 1. Mean values, sperm recovery techniques and staining used for the semen quality traits more
frequently assessed in honey bee drones.

Origin of Semen * SI();T(I)IG/%?SESW Sperm Viability (%) * Reference
sv 9.9 [54]
SV 10.8 [36]
sv 85 - [55]
sv 114 - [56]

E 98.5-E/N [57]
E 86.9 - E/N [9]
sV 8.6 - [58]
E 8.7 99.2 - SYBR14/PI [18]
SV 7.6 - [59]
sv 9.2 - [13]
E 78.1 - SYBR14/PI [28]
SV 7.6 [60]
sv 12,0 . [61]
E 81-88 - SYBR14/PI [29]
sv 3.7-6.9 [62]
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Table 1. Cont.

Origin of Semen * SI();;I(I)IG%?::;W Sperm Viability (%) * Reference

SV/E 7.3 (E) 98.1 (SV)- SYBR14/PI [63]
E 3.2 - [10]
E 1.5 87.2 - SYBR14/PI [64]
SV 96.2 - SYBR14/P1 [65]
E 95.2 - SYBR14/PI [66]
E 85.1 - Hoechst/PI [25]
E - 87.8-91.4 - SYBR14/PI [67]
E 81.1 - SYBR14/PI [22]

98.1 (SV), 94.8 (E) -

SVIE i SYBR14/PI [68]
E 88.4 - HOST [69]
E 5.8 98.8 - SYBR14/P1 [16]
E 1.8 64.2 - SYBR14/PI [12]
E 3.1 79.7 - SYBR14/P1 [70]
E 10.5 69.7 - SYBR14/PI [71]
E 95-99 - 7-AAD [20]
E 99.2 - SYBR14/PI [72]
E 46.2-67.0 -SYBR14/P1 [73]
E 86.8 -HOST [74]
E 70.6 - AO/PI [75]

40f16

* SV: seminal vesicles; E: Ejaculate; E/N: Eosin/Nigrosin; PI: Propidium Iodide; HOST: Hypo-osmotic Swelling Test;

AOQO: Acridine Orange; 7-AAD: 7-Aminoactinomycin D.

Ejaculation of the honey bee drone is normally induced by the application of pressure on the
thorax and abdomen. Semen is collected directly from the tip of the everted endophallus into a glass
capillary tube connected to a syringe [76]. A higher success rate in semen collection may be expected
in older rather than young mature drones (Table 2; [12]), and the results may be quite variable for

different genetic lines and rearing conditions [10].

Table 2. Percentage of drones ejaculating semen after manual eversion.

Ejaculation Success (%)

Drone Age (days) Successsemen Collection Rate (%) Reference

Mature 8.3-23.6 [73]
12 40.0 [18]
14 58.6 [10]
14 63.5 [12]
15 80.0 [16]
20 62.0 [71]
21 52.8 [10]
21-25 67.6 [70]
35 75.8 [10]
35 87.8 [12]

Unlike other domestic animal species, in which the evaluation of semen destined for insemination
is a routine practice, in bees this assessment has usually been limited to research and toxicological
studies, with little practical application associated to AL

4.2. Semen Volume

Semen volume may be determined with the help of a precision syringe or by measuring the filled
length of the capillary tube. Each drone will yield approximately 1 uL of semen, ranging between 0.1
and 2.4 pL [10,12-14,16,18,67,70,71,77]. It should be noted that the drones usually yield more semen
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than can actually be collected in the capillary tube [78]. Among the factors possibly influencing the
volume of semen collected per drone, effects of age, body weight, season and breeding line have been
described [10,77].

4.3. Sperm Concentration

Sperm concentration is one of the most frequently studied parameters of sperm quality in drones,
allowing the spermatogenesis process and the sexual maturity of the drones to be evaluated [10]. Using
Al, a direct relationship between the number of spermatozoa collected per drone and the percentage of
them reaching the spermatheca has been described, so that individual differences in sperm quantity
may be related to the drone’s paternity success [79].

The manual counting of sperm cells under a microscope with the help of a hemacytometer is by
far the most frequently used method for sperm concentration assessment in the honey bee [12,18,20].
However, this approach is time consuming and provides variable results given the difficulty of obtaining
a homogeneous distribution of spermatozoa in the sample and in the viewing chamber [20,80,81].
Special care should be taken in sample preparation using this technique. Spectrophotometers,
commonly used to estimate sperm concentration in mammalian semen, have scarcely been studied for
use with the honey bee [20,80]. It was demonstrated by Ciereszko et al. [20] that the spectrophotometer
method may also be applied to this species, preferably using a 600 nm wavelength, to estimate the
sperm concentration through the degree of light absorbance of the sample. However, the low volume
of semen available in the honey bee requires the use of low-capacity cuvettes.

The use of other technologies described for determining sperm concentration in mammals, such
as automated image analysis, flow cytometry, fluorescent plate reading or cell counters [82,83], have
not been used in the honey bee. Given the particular morphology of the honey bee sperm, without a
prominent head as in mammals, the identification of each spermatozoon by image analysis may be a
difficult task. However, the combination of fluorescence microscopy and image analysis may allow
rapid and accurate identification [84].

Sperm concentration of the drone semen usually ranges between 2 and 9 million sperm per pL.
However, studies about this parameter in the honey bee usually refer to the total sperm quantity
collected per drone, that is, the actual concentration multiplied by the semen volume. This parameter
is highly variable, and differences of more than 100% have been reported between males [12,81].

In several studies, the spermatozoa were counted by dissecting the seminal vesicles of drones aged
11 or 12 days, with sperm numbers ranging from 1 to 30 million in individual drones (7.6 to 12.0 million
sperm on average in the different studies (Table 2): [13,55,56,58—61]. The number of spermatozoa in
the seminal vesicles may reach the highest level when the drones are around 7-9 days old [36,54].
The mean number of sperm collected per drone ejaculate is usually lower than that described for the
seminal vesicles, ranging between 0 and 19 million (1.5 to 7.3 million on average in the different studies
(Table 2): [10,12,64,70,71,77].

The sperm number produced per drone may vary according to body weight, age, season, genetics
and disease [10,18,54,67,77]. Sperm production seems to be higher in autumn and from large and
healthy drones around 21 days old. Large differences in the number of spermatozoa found in drones
by different authors may also be explained by errors in the method used [81], inbreeding and the effect
of different rearing and maintenance conditions of the drones [16].

The study of sperm concentration may also be applied to assess the reproductive quality of
the queen, through the estimation of the number of sperm stored in the spermatheca [47,51,54,84].
This is an important parameter related to the longevity of the queen since, when the sperm reserve is
depleted, queen bees are generally superseded (replaced by a young queen [85]) when they begin to
lay unfertilized eggs that develop into drones [86]. The most frequently used criterion in assessing the
reproductive quality of the young queen is to consider a threshold of 3 million sperm stored in the
spermatheca to discriminate the quality of insemination [78]. The proportion of poorly inseminated
queens (< 3 million sperm) ranged between 13.6% and 19.0% in the different studies [51,52,84,86,87].
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Biotic, abiotic and management practices could affect the insemination quality of the queen [84].
The number of sperm in the spermatheca will logically be reduced with the queen’s age [52].

4.4. Sperm Motility

Although sperm motility is one of the most widely used parameters to determine sperm quality in
mammals [88], in the honey bee it has been evaluated only occasionally [89]. However, sperm motility
is a prerequisite for sperm migration to the queen’s spermatheca and for subsequent egg fertilization.
In fact, it has been shown that sperm motility is more strongly correlated with sperm performance
indicators in inseminated queens than other sperm quality tests, including the viability assay [25].

Most attempts to assess this parameter in the honey bee have been based on the establishment of
a 4-6 grade score, according to the percentage of motile cells estimated subjectively [9,23,64,69,90-93].
In the more recent studies, sperm motility has been more frequently expressed as the percentage of
motile cells, with some occasional indicators of the type of movement [20,25,74,89,94,95]. Spermatozoa
may be classified as motile sperm if they present any type of active movement, freely motile if the
sperm head shows displacement, and circular sperm if the sperm head and tail overlap [89]. Of these,
total sperm motility seems to be a better indicator of semen quality than the other motility parameters,
as it is less prone to bias due to uncontrolled variation in the experimental conditions [89]. Circular
movement of sperm has been considered by some authors as an indicator of drone sperm quality [20,25].
We recently demonstrated, however, that this parameter shows a high sensitivity to the type of viewing
chamber used and to the incubation period [89].

Until now, it has not been possible to develop computer-assisted sperm motility analysis in
drones, due to difficulties in identifying sperm heads. Furthermore, honey bee sperm do not follow
the typical motility patterns of mammalian sperm. Drone sperm tend to vibrate rapidly while moving
in a relatively circular pattern [23]. It is therefore particularly important to reduce observer bias by
repeated measurements.

A strict control over factors potentially affecting sperm motility is essential in order to obtain
reliable results, and there is a need for standardization for each species [88]. The most commonly
used method to assess sperm motility in drones is the use of slide coverslips, with or without sample
incubation before or after loading it in the chamber. In a recent study, we demonstrated that the choice
of viewing chamber and diluent used has a significant effect on the motility results and that traditional
slide coverslips are contraindicated [89]. Specific disposable chambers seemed to give reliable results
with negligible effects on sperm motility parameters, even when the measurement was made a long
time after loading the chamber or using media without proteins. If the semen is diluted in media
containing 2% BSA, the use of the Makler chamber may also provide reliable results. A minimum
elapsed time of 5 min between chamber loading and sperm motility assessment was recommended for
drones. The diluent used to assess honey bee drone sperm motility may also have a significant effect
on the results [23,89].

Finally, it should be considered that it is unlikely that the in vitro study of the free swimming
motility of drone spermatozoa reflects the in vivo situation, since certain flagellar beating patterns may
be triggered by the mechanical restrictions inside the genital tract [96]. In this study, it was suggested
that the double helical movement pattern of insect spermatozoa may be an adaptation to movement
within narrow ducts, and that it is possible the axonemal wave would act against the duct wall rather
than the surrounding fluid, leading to a crawling motion instead of swimming. This suggests that
the use of specific microcapillary-based devices might be of interest in the study of sperm motility in
this species.

4.5. Sperm Morphology

Unlike the case of mammals, for which the evaluation of sperm morphology is a fundamental task of
semen analysis, very few studies have assessed the presence of morphologically abnormal spermatozoa
in honey bee semen. Different aberrant tail forms, including coiled, frayed and double-ended forms,
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have occasionally been described in drones [97]. This may be attributed to a higher homogeneity of
sperm forms in this species although, in the authors” experience, the presence of abnormal forms may
increase in certain circumstances, such as after freezing-thawing procedures. In fact, abnormal sperm
heads have only been described in dead spermatozoa after freezing in liquid nitrogen [98]. Regarding
sperm morphometry, total [77] and detailed [99] sperm length has also occasionally been included as a
sperm quality trait, showing significant differences between the beginning and the end of the breeding
season in the latter study.

4.6. Sperm Viability (Plasma Membrane Integrity)

Plasma membrane integrity is one of the most commonly assessed sperm quality parameters for
semen analysis in the honey bee, as the loss of integrity of this thin outer boundary layer is considered
incompatible with sperm viability [100]. Methods to assess the plasmalemma status are based on the
increased permeability of damaged membranes to different substances, such as stains [57,69,93,101] or
fluorescent probes [6,9,11,12,18,20,22,23,28,52,64,67,71,72,89,94,95,102-104]. The most commonly used
fluorochrome for staining dead sperm cells is propidium iodide (PI). An intact plasma membrane is
impermeable to PI, but this substance can pass through damaged membranes, bind to DNA and emit a
bright red fluorescence in the nucleus of dead spermatozoa. It is often combined with a second dye,
such as SYBR-14, Hoechst 33342 or acridine orange, that can cross intact plasma membranes of living
sperm cells, and also have affinity to the DNA, emitting a green (SYBR-14, acridine orange) or blue
(Hoechst 33342) fluorescence in living cells.

An alternative strategy is the use of hypo-osmotic solutions (hypo-osmotic swelling test, HOST),
that may also provide valuable information on the plasma membrane status. The technique is based on
the assessment of tail coiling associated with water accumulation in spermatozoa with intact plasma
membranes [64,69,74]. Other methods based on cell enzymatic activity have also occasionally been
used in the honey bee for viability assessment [15].

The manual counting of live and dead sperm cells under a fluorescence microscope after staining
with SYBR-14/Pl is the method most frequently described in the literature for sperm viability assessment
in the honey bee (Table 2). Other technologies, such as flow cytometry [20,65,66,73,98] and image
analysis [22,75], have also been implemented, allowing a more rapid evaluation of this parameter.

The results of sperm viability in fresh drone ejaculate is highly variable, ranging between 55% and
99% in the different studies (Table 2). In a step-by-step investigation, a reduction of about 10% of sperm
viability in the sperm transport from the seminal vesicles of the drones (98.1%) to the lateral oviducts
of the queen (88.7%) has been described [68]. This reduction naturally occurs during the second stage
of eversion of the endophallus and during the injection of semen into the lateral oviducts of the queen,
and has been attributed to increased pressure on the sperm during these stages. The sperm viability
may also vary according to drone age, nutrition, management practices, environmental factors and
exposure to insecticides and miticides [105].

The effect of mixing semen samples from multiple drones on sperm viability is controversial.
In some studies, this procedure had no effect on sperm viability [29,66]. However, the dilution of
semen in these studies may have reduced the possible deleterious effect of semen from different
drones on sperm survival. In other studies, mixing semen samples had a negative impact on sperm
survival [30,102]. Collins and Donoghue [102] observed that the semen processing procedure induced
a greater physical stress on the spermatozoa in the pooled semen than on those of the individual
ejaculates, which could explain the lower viability observed. In [30], semen was collected from the
seminal vesicles and mixed with content from the accessory glands of other drones, showing a negative
effect on sperm viability.

After storage in the queen’s spermatheca, sperm viability may also be highly variable, ranging
between 20% and 100% in the different studies, with averages ranging between 80% and 98% [8,51,52,63].
A progressive loss of sperm viability with the increasing age of the queen has also been described [8,52].
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4.7. Acrosome Integrity

During oviposition, the queen releases few spermatozoa from the spermatheca which enter the egg
via the micropyles where they encounter the vitelline membrane. Then, the acrosome reaction releases
lytic enzymes that aid in the penetration of the vitelline membrane to fertilize the egg. The integrity
of the sperm acrosome is usually evaluated using fluorescently labelled lectins, plant proteins that
specifically bind to some acrosomal glycoproteins. In the honey bee, the only study evaluating this
aspect used Pisum sativum agglutinin (PSA) lectin staining, and was carried out on fixed and dead
sperm, with full fluorescent acrosomes considered to be intact and acrosomes with lower or patchy
fluorescent staining as damaged [74]. A disadvantage of PSA is that it shows less specificity to the
acrosomal region than other lectins, such as Arachis hypogaea (peanut) agglutinin (PNA) [106,107].
Furthermore, PSA has affinity to egg yolk, which is commonly used in the diluents for drone sperm
cryopreservation and non-specifically binds to the sperm surface. As a result, the acrosomal status
may be evaluated incorrectly [106].

There is a need for more research about acrosomal integrity in the honey bee. The use of new
fluorochromes and procedures should be evaluated. In mammals, the determination of acrosomal status
in living sperm using flow cytometry or fluorescence microscopy is relatively common. The procedure
is based on the fact that the lectins are large proteins that cannot penetrate an intact acrosomal
membrane and, consequently, fluorescence is indicative of acrosome disruption or acrosome reaction
and the absence of fluorescence is indicative of an intact acrosome [108-110].

4.8. Sperm Mitochondrial Function (Mitochondrial Membrane Potential)

Spermatozoa need energy to carry out their different functions and they can mostly obtain the
ATP through the glycolytic and oxidative phosphorylation (OXPHOS) pathways [111,112]. There is
increasing evidence that mitochondria play an essential role in regulating sperm function and lifespan,
at least in mammals, for which the assessment of the sperm mitochondrial function is considered
highly relevant [113]. It is assumed that mitochondria OXPHOS provide the primary energy substrates
for the movement of sperm cells [114]. In insects, however, the role of the mitochondrial derivatives as
energy-producing organelles has been called into question by several studies, although it has been
assumed that they play an important biomechanical role in sperm motility [96].

Mitochondrial functionality is normally evaluated by its membrane potential. In the honey
bee, [20] is the only study which has evaluated the sperm mitochondrial function using the
probe Rhodamine 123 (R123) through flow cytometry. This was one of the first dyes used in
mammals, which accumulates in the mitochondria emitting green fluorescence that varies in intensity
depending on the number of functional mitochondria [114]. The disadvantages of this probe are its
low sensitivity and its quick quenching time when compared to more recently developed probes
such as 5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) or the specific
MitoTracker dyes. There is a need for further investigation into the sperm mitochondrial function in
the honey bee, and the use of new dyes, such as JC-1 and MitoTracker, may help in this task [113].

4.9. DNA Fragmentation

Given the importance of the accurate transmission of genetic information to the offspring, several
methods have been developed to detect damaged DNA in sperm [114]. These include the sperm
chromatin structure assay (SCSA), the terminal transferase dUTP nick-end labelling (TUNEL) test, and
the sperm chromatin dispersion (SCD) test. The TUNEL has been assayed in the honey bee to quantify
DNA breakage caused by the cryopreservation procedure, although no clear increase was observed
when compared to fresh semen samples [95]. Using the SCD test, a lower DNA fragmentation was
observed in the sperm stored in the spermatheca than in the drone ejaculate [115]. The same technique
was also used to demonstrate that N. ceranae infection causes sperm DNA damage in drones [116].
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4.10. Sperm Apoptosis

Spermatozoa may exhibit certain characteristics of apoptotic somatic cells, such as DNA
fragmentation, phosphatidylserine (PS) translocation, mitochondrial impairment or the presence
of active caspases, as described in mammals [117]. Loss of plasma membrane asymmetry, especially
translocation of phosphatidylserine (PS) from the inner to the outer leaflet has been studied in drone
spermatozoa by annexin V staining, combined with the 7-Aminoactinomycin D (7-ADD) fluorochrome
to detect dead cells [20]. However, the authors explained that apoptosis was not observed in the sperm
samples using this fluorochrome combination.

4.11. Effect of Stress

4.11.1. Oxidative Stress

The loss of redox homeostasis in sperm may generate oxidative stress that may have deleterious
effects on the spermatozoa, including lipid peroxidation of the membranes and DNA damage [118].
In fact, spermatozoa are more susceptible to oxidative stress than somatic cells because they contain
a reduced cytoplasm with few antioxidants and their plasma membrane is rich in unsaturated free
acids highly susceptible to peroxidation. Furthermore, the high cellular metabolism of spermatozoa
required to obtain flagella movement generates free radicals. This process may be aggravated by some
treatments, such as dilution and cryopreservation [118].

The direct determination of oxidative stress through the analysis of reactive oxygen species (ROS)
is very challenging due to their instability, the short lives of their intermediates [114] and the fact that
spermatozoa intrinsically produce ROS [118]. The measurement of the defence capacity of sperm
against oxidative damage and of the consequences of oxidative stress (lipoperoxidation of membranes
and DNA damage) seem to be better alternatives. Some recent studies of the honey bee where the
reduction potential of the cell [71] and of superoxide dismutase (SOD) activity [15] was analysed may
be included in the first group. To our knowledge, there are no studies evaluating the lipid peroxidation
of drone sperm membranes. This analysis may be done using boron-dipyrromethene (BODIPY) probes
or specific antibodies against lipid peroxides [113].

4.11.2. Response to Induced Stress

The response of spermatozoa to several kinds of induced stress, such as thermal [119],
oxidative [120] or osmotic stress [121], has been used as a parameter of sperm quality in mammals.
In the honey bee, the tolerance of drone sperm to osmotic and pH stress has also been evaluated,
finding correlations with the number of spermatozoa reaching the spermatheca after AI [25].

4.12. Biochemical Assays

In addition to the aforementioned studies related to the antioxidant capacity, other biochemical
assays, such as the quantification of adenosine triphosphate (ATP) content [15,71] and of enzyme-leakage
from the cytosol and mitochondria [25], have also been occasionally used to determine the sperm
quality in the honey bee. ATP is the main energy source used by the sperm for metabolic activity
and motility [71]. Given its relationship with sperm motility, it may be initially argued that increased
ATP concentrations may be indicative of better sperm quality [15]. However, an increase in energetic
metabolism could lead to oxidative injuries by generating ROS, and the increased levels of ATP could
be due not only to increased metabolism but also to decreased ATP consumption, resulting in lower
sperm motility [71].

Biochemical tests to quantify the leakage of sperm enzymes after dilution and freezing-thawing
may be used as markers for sperm cell damage. A significant negative correlation between the
leakage of the glucose 6-phosphate isomerase (GPI) enzyme from damaged cells and the number of
spermatozoa reaching the spermatheca after AI with cryopreserved semen has been described in the
honey bee [25].
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4.13. Multiparametric Sperm Quality Assessment

The measurement of multiple parameters simultaneously, cell by cell, may allow the development
of more robust quality tests, and may expand research possibilities [113,122]. Various multiparametric
tests may be developed nowadays, given the availability of a wide range of fluorescent probes,
multichannel fluorescent microscopes and multi-laser cytometers. In fact, numerous combinations
have been described in mammals [113], and similar methods are likely to be developed in the honey
bee in the near future.

4.14. Contamination of Semen

Finally, contamination with microorganisms should be considered as an important aspect of semen
quality, given its importance in terms of semen preservation and fertility, and the possibility of the
transmission of diseases and infections to the queen. For instance, it has been demonstrated that semen
samples contaminated with bacteria had a significantly lower mean viability than uncontaminated
samples [9]. Semen may also contain Nosema spores and viruses that can potentially transmit diseases
to the queen [123]. Given the relatively large size of Nosema spores (approximately 4.4 X 2.2 um [124]),
their presence may be checked microscopically when evaluating other parameters of sperm quality.

5. Conclusions

The study of sperm quality in the honey bee has many potential applications and research interest.
However, several aspects of drone sperm physiology and quality still remain unclear and further
investigation is needed about this topic. In this sense, the development of more sophisticated and
objective methods, such as computer-assisted sperm analysis, the use of new fluorescent dyes and the
development of multiparametric tests combined with flow cytometry and image analysis techniques
would help in this task.
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