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Abstract: An increasing occurrence of resistance in insect pests and high mammal toxicity exhibited
by common pesticides increase the need for new alternative molecules. Among these alternatives,
bioinsecticides are considered to be environmentally friendly and safer than synthetic insecticides.
Particularly, plant extracts have shown great potential in laboratory conditions. However, the lack
of studies that confirm their mechanisms of action diminishes their potential applications on a
large scale. Previously, we have reported the insect growth regulator and insecticidal activities
of secondary metabolites isolated from plants of the Calceolaria genus. Herein, we report an in
silico study of compounds isolated from Calceolaria against acetylcholinesterase, prophenoloxidase,
and ecdysone receptor. The molecular docking results are consistent with the previously reported
experimental results, which were obtained during the bioevaluation of Calceolaria extracts. Among the
compounds, phenylethanoid glycosides, such as verbascoside, exhibited good theoretical affinity
to all the analyzed targets. In light of these results, we developed an index to evaluate potential
multitarget insecticides based on docking scores.

Keywords: molecular docking; bioinsecticides; structure–activity relationship; phenylethanoid
glycosides; Calceolaria; multitarget

1. Introduction

The continuous growth of the world population has created an enormous pressure to satisfy
the global demand for agricultural products. The challenges include the depletion of soil fertility,
the constant depredation of natural soils to convert them into agricultural ecosystems, and the ability
of the arthropods to obtain resistance against traditional insecticidal controls.

Insecticides have been used for combating insect pests, mainly to increase the yield of food
production among other agricultural products. From ancient times, there are records that describe
the use of different types of products to combat insect pests [1]. It is known that various nonspecific
agents have been used, such as sulfur and poisonous natural extracts, then organochlorines,
organophosphates, carbamates, pyrethroids, and rotenoids, among others, and finally compounds,
which are specifically designed and synthesized against enzymatic systems of arthropods.

The increasing need for agricultural goods has resulted in misutilization of insecticides, and this
has led to the use of a higher concentration of insecticides or to the need for more toxic products.
This has resulted in increased toxic effects on other beneficial organisms that coexist with pests in
agroecosystems and on the bioaccumulation of higher concentrations of toxic insecticides in the bodies
of predators or the final consumers, including humans. Despite these problems, the use of insecticides
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is needed to satisfy global demand for products. Thus, we can say that insecticides are a necessary evil.
However, research must be carried out to identify better alternatives.

Among these alternatives, bioinsecticides enjoy a good reputation and are generally regarded
as environmentally friendly and safer than synthetic insecticides [2]. For some years, many groups
have conducted studies for biodirected phytochemical screening on plants toward the isolation and
characterization of extracts and compounds that are useful as biocides. In most of published reports,
authors investigate the effect of extracts or compounds against specific pest organisms, or against one
or more isolated molecular targets, such as acetylcholinesterase (AChE) [3]. We use the extraordinary
ability of plants to respond dynamically to herbivory through several molecular mechanisms, including
the biosynthesis of defensive compounds to identify those with potential to be used for pest control.
Those compounds can affect feeding, growth, and survival of insects and are widely distributed in
nature [4]. The organic extracts prepared from the botanical material are a rich source of many classes
of secondary metabolites. Many of them have been isolated via traditional chromatographic techniques
and even used as active components in botanical pest management products, mainly rotenone, nicotine,
strychnine, neem extracts, and essential oils [5]. Thus, the traditional methodology to discover new
insecticides includes phytochemical work for the screening of microbial metabolites, terrestrial plants,
algae, marine organisms, and so forth. Several factors make harder or more complicated the transition
from synthetic insecticides to bioinsecticides. Specifically, the use of an extract generally does not
offer guarantees of success in combating pests, and often, the insecticidal mechanisms involved are
unknown or are too difficult to elucidate due to the complexity of mixtures of natural extracts [6].

However, less emphasis is given to pesticide-discovery efforts based upon natural products
as templates for new structures via semisynthesis. In recent years, a renewed interest in obtaining
biologically active compounds from natural sources has emerged, not only as a source of new molecules
but also with innovative methodologies, including fragment-based design, high-throughput screening,
and genetic engineering, towards the development of new pest-management products with low or
absent toxicity towards nontarget insects and mammal organisms, low final concentrations caused
by ambient degradability, and a relatively low cost compared with those compounds obtained via
complete chemical synthesis [7].

Our group has conducted studies on the Calceolaria genus for the identification, isolation, and
characterization of new bioinsecticides. The extracts and several secondary metabolites isolated from
Calceolaria exhibit insect growth regulator (IGR) or insecticidal activities. The insecticidal activity was
assayed against the fruit fly (Drosophila melanogaster, Diptera), yellow meal worm (Tenebrio molitor,
Coleoptera: Tenebrionidae), and fall armyworm (Spodoptera frugiperda, J. E. Smith, Lepidoptera:
Noctuidae), which are important insect pests in fruits, stored grains, and corn [8]. The experimental
results indicate that some extracts and compounds isolated from Calceolaria interfere with sclerotization
and molting processes, suggesting interaction with an ecdysone receptor [9]. Several of these extracts
and compounds also act as enzymatic inhibitors against tyrosinase and protease enzymes [10],
suggesting potential multitarget activity. Few examples of multitarget insecticides have been reported
in the literature [11,12].

On the other hand, among the strategies used to find bioactive candidates, structure-based virtual
screening (SBVS) has played a critical role, especially in the identification of potential chemotypes [13].
Docking-based virtual screening (DBVS) is probably the most widely used of these strategies.
It involves docking of a library of ligands into a biological target and estimating the probability
that a ligand will bind to the protein target by the application of a scoring algorithm, aiding in the
identification of the most promising lead compounds for biological assays [14]. However, DBVS has
some limitations: (a) the content and quality of the compound library has a profound effect on the
success of DBVS, thus it is important to filter the library using the rule-of-five or other physicochemical
filters, and (b) with the actual scoring functions, the prediction of correct binding poses is feasible
but high accuracy prediction of binding affinity is still a challenge, thus there is little confidence on
docking scores to rank potential ligands, particularly on those of the same structural frame [14,15].
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Despite these limitations, DBVS has been successfully used in the identification of potential templates
for new drug development [16–18]. Recently, some examples of the use of virtual screening and other
computational chemistry tools in natural products research have been described [19–22].

With this in mind, we wanted to determine the potential use of compounds isolated from
Calceloraia as leads in the discovery of multitarget insecticides using DBVS on some proteins recognized
as targets for pesticides [12,23,24] and that could be targets for compounds present in Calceolaria
extracts based on experimental results [9,25,26]: acetylcholinesterase (AChE), prophenoloxidase (PPO),
and ecdysone receptor (EcR). Construction of a ligand library was based on compounds isolated and
present in organic extracts with experimentally demonstrated pesticide activity aiming to identify
potential structural templates that could be used in the development of new pesticides.

2. Materials and Methods

2.1. Ligand Construction

All of the ligands were chosen from a previously published review [27], which includes several
compounds from different chemical families, including diterpenes, triterpenes, and naphthoquinones
with a potential pesticidal activity, and some bioactive flavonoids and phenylethanoid glycosides as
well. All of the structures were constructed using Spartan ’10 for Windows, and these geometries were
optimized using the MMFF force field. Then, these structures were exported to Molegro Virtual
Docker 6.0.1 [28]; assignments of charges and ionization were based on standard templates as
part of the Molegro software. A complete list of all ligands and their structures are presented in
Supplementary Information.

2.2. Molecular Docking Studies

The docking studies were carried out based on the crystal structures of Drosophila melanogaster
acetylcholinesterase (DmAchE, PDB codes: 1DX4 [29] and 1QON [29]), Heliothis virescens ecdysone
receptor (EcR, PDB code: 3IXP [30] and 2R40 [31]), and Manduca sexta prophenoloxidase (PPO, PDB
code: 3HHS [32]). Two different structures from the Protein Data Bank (PDB) were selected to analyze
repeatability of results, independent of the PDB structure selected. This was not possible for PPO as
no other PDB structure has been reported. In addition, docking studies were carried out in human
acetylcholinesterase (hAChE, PDB code: 4EY7 [33] and 4M0E [34]) to determine whether some of
the compounds exhibited theoretical preference to the Drosophila/human enzyme. All structures
were retrieved from the Protein Data Bank [35]. Docking studies were carried out using a previously
reported methodology [36,37]. Briefly, all of the solvent molecules and cocrystallized ligands were
removed from the structures. Molecular docking calculations for all of the compounds with each of the
proteins were performed using Molegro Virtual Docker v. 6.0.1 [28]. Active sites of each enzyme were
chosen as the binding sites and delimited with a 15 Å radius sphere centered on the cocrystallized
ligand, except for the PPO structure, which has no cocrystallized ligand, and the sphere was centered
on the active Cu2+ ions. Standard software procedure was used. The assignments of charges on each
protein were based on standard templates as part of the Molegro Virtual Docker program, and no other
charges were necessary to be set. The Root Mean Square Deviation (RMSD) threshold for multiple
cluster poses was set to <1.00 Å. The docking algorithm was set to 5000 maximum iterations with a
simplex evolution population size of 50 and a minimum of 25 runs for each ligand. After docking,
MolDock Score was calculated as the theoretical binding affinity. To assess the efficacy of this procedure,
cocrystallized ligands were also docked to their respective receptors (except for PPO), the top-ranking
score was recorded, and the RMSD of that pose from the corresponding crystal coordinates was
computed. In all the cases, the RMSD was lower than 2 Å. For each enzyme, the 10 compounds with
lower MolDock scores were selected for analyzing their docking poses to identify potential structural
requirements for enzyme binding.
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2.3. Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations were carried out to observe differences that could account
for potential selectivity of phenylpropanoids for DmAChE over hAChE. Simulations were performed
in YASARA Dynamics v.18.4.24 [38,39] using AMBER14 force field [40]. The initial structures for the
MD simulation were obtained from the docking complexes of compound 87 with DmAChE (PDB
code: 1QON) and with hAChE (PDB code: 4M0E). Compound 87 (verbascoside) was selected, as it
is the most studied compound of the phenylpropanoids derived from Calceolaria. Each complex was
positioned into a water box with a size of 100 Å × 100 Å × 100 Å, with periodic boundary conditions.
Temperature was set at 298 K, water density to 0.997 g/cm3, and pH to 7.4. Sodium (Na+) and chlorine
(Cl−) ions were included to provide conditions that simulate a physiological solution (NaCl 0.9%).
Particle mesh Ewald algorithm was applied with a cut-off radius of 8 Å. A timestep of 2.5 fs was
set. The simulation snapshots were recorded at intervals of 100 ps until a total simulation time of
30 ns. Results were analyzed with a script included as part of YASARA software and included RMSD,
ligand binding energy variations (using MM-PBSA calculations), and distance of ligand 87 to Ser 283
(DmAChE) or Ser 203 (hAChE), as these residues play a key role in acetylcholinesterase enzymatic
activity. For DmAChE, we considered the interaction between the primary alcohol group of the central
glucopyranose ring with Ser 238, and for hAChE, the interaction between the hydroxyl group of the
ferouyl residue with Ser 203. A similar procedure has been recently reported for the simulation of
complexes of drugs with some proteins [41–43].

2.4. Construction of the Virtual Multitarget Index and the Weighed Multi-Target Index

The virtual Multitarget index of each compound was determined. To compare the multitarget
index of the analyzed compounds, we propose a virtual multitarget index (vMTi), which was calculated
for the three insect targets (EcR, PPO, and DmAChE) using formula (1):

vMTi = ∑n
i=1

MDi
MDr

(1)

where MDi corresponds to the MolDock score of the molecule in a specific target and MDr is the
MolDock score of the reference ligand; we considered the compound with the lowest MolDock score
(which has the highest theoretical affinity) for each target as the reference. Compounds with higher
values have a higher multitarget index. However, binding to hAChE is an undesirable condition.
To take this into consideration, we propose a weighed MTi (wMTi), which was calculated using formula
2, using an external coefficient n, which represents the desirability of binding to a specific target:

wMTi = ∑n
i=1 n

MDi
MDr

(2)

To calculate wMTi, we gave values of n = 0.3 to desirable targets (EcR, PPO, and DmAChE)
and n = −0.3 to hAChE.

In addition to these calculations, a contour plot was built with Minitab using PPO, DmAChE,
and EcR docking scores. This plot can help identify potential multitarget compounds because those
compounds would appear in valleys since they would have lower MolDock scores.

3. Results

3.1. Docking Studies Results

Tables 1–3 show data for the 10 compounds with a lower average MolDock score in the ecdysone
receptor (EcR), prophenoloxidase (PPO), and acetylcholinesterase (both DmAchE and hAChE) docking
study. A table with complete docking results is presented in Supplementary Information.
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Table 1. MolDock Scores obtained in the ecdysone receptor (EcR) docking. Top 10 compounds with the
better theoretical binding. PEG = Phenylethanoid glycosides.

Ligand Skeleton
Type Compound Name PDB: 3IXP PDB: 2R40 Average

MolDock Scores

88 PEG Calceolarioside C −214.0 −207.2 −210.6
90 PEG Forsythoside A −202.8 −213.5 −208.2
89 PEG Calceolarioside E −184.7 −212.5 −198.6
92 PEG Isoarenarioside −183.0 −205.5 −194.2
87 PEG Verbascoside −197.4 −184.1 −190.8
86 PEG Calceolarioside A −174.2 −183.6 −178.9
91 PEG Calceolarioside B −162.1 −176.7 −169.4
93 PEG Calceolarioside D −160.2 −169.3 −164.7
68 Scopadulane 3-Isovaleroyl-7-malonyloxy-thyrsiflorane −147.2 −157.1 −152.2

45 Isopimarane 3-β-Isovaleroyl-18-hydroxy-7-
α-malonyloxyent-isopimara-9(11), 15-diene −150.2 −151.5 −150.8

Table 2. MolDock Scores obtained in the PPO docking. Top 10 compounds with the better theoretical
binding. PEG = Phenylethanoid glycosides.

Ligand Skeleton Compound Name MolDock Score

86 PEG Calceolarioside A −161.187
110 Flavonoid Kaempferol-7-methyl ether −142.825
93 PEG Calceolarioside D −142.017

109 Flavonoid Gossypetin-7,8,3′-trimethyl ether −140.618
108 Flavonoid Herbacetin-8,4′-dimethyl ether −138.595
88 PEG Calceolarioside C −137.969

111 Flavonoid Kaempferol-4′-methyl ether −137.519
104 Flavonoid Naringenin-4′-methyl ether −137.451
107 Flavonoid Isoscutellarein-8,4′-dimethyl ether −137.188

Table 3. MolDock scores obtained in the AChE docking study. Top 10 compounds with the better
theoretical binding.

DmAChE MolDock Scores hAChE MolDock Scores

Ligand Compound Name PDB:
1DX4

PDB:
1QON

Average
Score

PDB:
4EY7

PDB:
4M0E

Average
Score SR 1

90 Forsythoside A −171.3 −254.5 −212.9 −177.7 −247.6 −212.6 1.00
88 Calceolarioside C −174.0 −251.6 −212.8 −145.7 −217.7 −181.7 1.17
87 Verbascoside −178.8 −233.5 −206.1 −152.6 −200.8 −176.7 1.17
89 Calceolarioside E −169.0 −239.1 −204.0 −116.7 −209.0 −162.8 1.25
93 Calceolarioside D −162.3 −227.7 −195.0 −147.9 −188.4 −168.2 1.16
92 Isoarenarioside −141.1 −244.8 −193.0 −165.1 −208.0 −186.6 1.03
86 Calceolarioside A −156.2 −212.8 −184.5 −164.6 −189.6 −177.1 1.04
91 Calceolarioside B −128.0 −210.5 −169.2 −137.9 −183.9 −160.9 1.05
44 Isopimarane −119.9 −180.3 −150.1 −137.0 −159.7 −148.4 1.01
43 Isopimarane −127.3 −164.5 −145.9 −150.2 −154.6 −152.4 0.96

1 Selectivity ratio (SR) = Average docking score DmAChE/Average docking score hAChE.

3.2. Molecular Dynamics Studies on Complexes of Verbascoside with DmAChE and hAChE

Figure 1a shows the comparison of the RMSD time profile for protein backbone atoms during the
30 ns simulation of the complexes of compound 87 and DmAChE and hAChE. Both complexes have
RMSD average values around 2 Å (RMSD = 2.13 Å for DmAChE and RMSD = 1.88 Å for hAChE).

We also wanted to check if the distance of compound 87 (verbascoside) to the catalytic site of
acetylcholinesterase variates during the simulation time. We selected the potential interactions to Ser
203 in hAChE or Ser 238 in DmAChE predicted by molecular docking as described in Methodology.
Figure 1b shows the variation of distances of compound 87 to these key serine residues along the
simulation time. As seen in this figure, the distance to catalytic site diminished from 4.8 Å to 3.0 Å
after 3 ns of simulation in the case of DmAChE (average distance = 3.6 Å), while it maintained almost
the same in hAChE (average distance = 5.21 Å).
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Figure 1. Plots of variations along time of Molecular Dynamics (MD) simulations of complexes of
87 with DmAChE (red) and hAChE (blue). (a) The Root Mean Square Deviation (RMSD) of protein
backbone; (b) distance of compound 87 to Ser 238 (DmAChE) or Ser 203 (hAChE).

To estimate the difference in binding energy of compound 87 in its complex with DmAChE
and hAChE, MM-PBSA methods were applied. Ligand binding energy suggests better binding of
compound 87 to DmAChE (E = −131.5 kJ/mol) versus hAChE (E = −134.0 kJ/mol) as binding energy
calculations implemented in YASARA Dynamics indicates that the higher the energy value, the better
the binding.

3.3. Construction of the Virtual Multitarget Index and the Weighed Multitarget Index

Figure 2 shows a contour graphic that compares docking scores of the analyzed compounds on
PPO, DmAChE, and EcR. The zone in red corresponds to those molecules with high theoretical affinity
against all the three molecular targets. Figure 3 shows the structure of the phenylpropanoids which
resulted with the highest values of vMTi and wMTi. Table 4 shows a list of compounds with higher
vMti and wMTi values; a full list is included in Supplementary Information.

Table 4. Compounds with higher vMTi and wMTi values. PEG = Phenylethanoid glycosides.

Ligand Skeleton Compound Name vMTi wMTi

88 PEG Calceolarioside C 2.86 0.60
89 PEG Calceolarioside E 2.67 0.57
86 PEG Calceolarioside A 2.72 0.56
87 PEG Verbascoside 2.67 0.55
93 PEG Calceolarioside D 2.58 0.54
90 PEG Forsythoside A 2.77 0.53
92 PEG Isoarenarioside 2.64 0.53
91 PEG Calceolarioside B 2.39 0.49

109 Flavonoid Gossypetin-7,8,3′-trimethyl ether 2.05 0.43
110 Flavonoid Kaempferol-7-methyl ether 2.03 0.43
77 Labdane 19-Malonyloxy-9-epi-ent-labda- 8(17), 12 Z, 14-triene 2.04 0.42

45 Isopimarane 3-β-Isovaleroyl-18-hydroxy-7-
α-malonyloxyent-isopimara-9(11), 15-diene 2.13 0.42

3 Abietane 19-Malonyloxy-dehydroabietinol 1.99 0.42
57 Stemarane 17-Acetoxy-19-malonyloxy-ent-stemar-13(14)-ene 2.03 0.41

108 Flavonoid Herbacetin-8,4′-dimethyl ether 1.92 0.40



Biomolecules 2018, 8, 121 7 of 16

Figure 2. Contour plot correlating PPO, DmAChE, and EcR docking scores. Zones in red-yellow
indicate higher affinity to EcR than zones in purple or blue.

Figure 3. Structures of phenylethanoid glycosides (compounds 86–90) which exhibited the highest
vMTi and wMTi values.

4. Discussion

4.1. Docking Studies on Ecdysone Receptor

Induction of molting in Arthropods coincides with a release of 20-hydroxyecdysone (20-E),
a steroidal-type hormone. Prior to each of the larval molts, at pupariation, at pupation, and
during metamorphosis, the hormone is released in carefully timed spurts, coinciding with major
morphological transitions. Ecdysone receptor (EcR) exists in three isoforms. Each requires a partner
during the heterodimerization, a Drosophila homolog of vertebrate RXR protein named ultraspiracle
(USP) protein. Although ecdysone can bind to EcR on its own, binding is significantly augmented by the
participation of USP. The interaction between EcR and ecdysone is a crucial event for the development
of insects, which is why it represents an interesting molecular target against pest insects [44].

Table 1 shows data for the 10 compounds with a lower average MolDock score in the ecdysone
receptor docking study. Phenylethanoid glycoside derivatives have better theoretical binding to EcR
among the evaluated compounds. Among them, the results indicate that binding to EcR occurs through
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hydroxyl groups of caffeoyl and phenyl ethyl residues in similar fashion to 20-E (Figure 4a). Analysis
of Figure 4a,b reveals that compound 87 (verbascoside, which is a major phenylethanoid glycoside
present in Calceolaria extracts) adopted a J-shaped conformation in the binding site of EcR, which is
similar to the conformation adopted by natural ligand of EcR, 20-E [31] and the interaction pattern is
very similar between these compounds: phenylethanoid residue interacts through hydrogen bonds
with Arg383 and Glu309 (in magenta in Figure 4a,b) like 2β and 3β hydroxyl groups of ring-A in
20-E, rhamnose residue interacts with Ala398 (in blue in Figure 3a,b) like C-6 ketone moiety in ring-B
in 20-E, feruoyl residue interacts with Thr 343 and rhamnose residue with Thr 346 (also in blue in
set of Figure 4) like 14-α hydroxyl group, and additional interactions between feruoyl residue and
central glucose ring of verbascoside with Tyr 408 and Asn 504 (shown in yellow) are seen in a similar
fashion for 25-OH group of side chain of 20-E. This interaction is notable because 20-E interacts with
this residue via a water linkage [31], hence the interaction of verbascoside with Asn504 could increase
affinity, as some studies have demonstrated that ligands designed to displace the water molecules
exhibit higher affinity [45].

Figure 4. Comparison of (a) the docked pose of verbascoside (compound 87) and (b) 20-E crystallized
in the LBD of EcR (PDB:2R40).

Though there are no previous studies on phenylethanoid glycosides as EcR ligands, there is some
experimental evidence that can support docking results. It has been previously reported that the ethyl
acetate extract of C. talcana, of which verbascoside is its major component (compound 87), caused
a developmental disruption of D. melanogaster and S. frugiperda larvae. In addition, the authors of
the study proposed verbascoside as a disruptor of ecdysteroid metabolism [26]. In another study,
the incorporation of verbascoside in the artificial diet of the pest Agrilus planipennis caused a 100%
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mortality at 45 mg/g of artificial diet [46] when testing the toxic effect of verbascoside against
at least three different pest insect species. In addition, Harmatha and Dinan have reported that
some polyhydroxylated stilbenoids have an antagonist EcR activity [47], and a previously reported
pharmacophore model indicated that the presence of hydroxyl groups in an ecdysteroid template
is important for EcR binding [48]. On the other hand, the presence of some other phenylethanoid
glycosides, such as calceolariosides A, B, and C, in active extracts of Calceolaria as well as in Fraxinus spp.
can be related to the strong larval molting disruption observed when the larvae of different species were
exposed to extracts with high amounts of phenylethanoid glycosides or directly to different amounts
of the isolated compounds [46]. All these experimental data strongly suggest that phenylpropanoid
glycosides could be EcR ligands.

As described here, the effect of verbascoside and related phenylethanoid glycosides against
the ecdysone receptor can explain only one of the multiple effects exerted by these compounds.
The experimental evidence remarkably indicates that molting disruption exerted by phenylethanoid
glycosides cannot be the only mechanism that explains the strong exerted insecticidal properties.
The above information suggests a possible antagonist and multienzymatic inhibitory mechanism that
phenylethanoid glycosides can exert, causing larvae disruption activity by acting as EcR antagonist in
addition to other mechanisms.

4.2. Docking Studies on Prophenoloxidase

Melanization, a process performed by phenoloxidase (PO) and controlled by the prophenoloxidase
(PPO) activation cascade, plays an important role in the invertebrate immune system in allowing a
rapid response to pathogen infection. The activation of the PPO system, by the specific recognition of
microorganisms by pattern-recognition proteins (PRPs), triggers a serine proteinase cascade, which
eventually leads to the cleavage of the inactive PPO to the active PO that functions to produce melanin
and toxic reactive intermediates. The importance of PPO–PO is due to cuticular sclerotization and
defense against pathogens and parasites. PO catalyzes hydroxylation of monophenols to o-diphenols
and oxidation of o-diphenols to quinones. Quinones take part in sclerotization and tanning of the
cuticle and serve as precursors for synthesis of melanin [49,50]. Therefore, PPO is a very suitable
molecular target for designing pesticide compounds.

Table 2 shows docking results from the PPO study. Among the compounds with better PPO
binding, the best are flavonoids and phenylethanoid glycosides. The results are in agreement with
several previous in vitro and in silico studies [10,51–55] in which most tyrosinase inhibitors possess
a phenol moiety as the pharmacophore. Among them, flavonoids appear as effective competitive
inhibitors of this enzyme. In addition, Karioti et al. [53] and Muñoz et al. [10] have reported tyrosinase
inhibitory activities of some phenylethanoid glycosides, which have lower but comparable inhibitory
activities compared with flavonols and flavones.

Hydroxyl groups of caffeoyl or phenylethyl residues have been proposed as essential structural
requirements to display inhibitory activities against PPO because of their chelating properties. Figure 5
shows that phenylethanoid glycosides could bind to the PPO catalytic site through interaction with
His residues, which are required to form a complex with copper ions. This is in agreement with
the previously reported information that indicates verbascoside as a substrate for tyrosinase [10].
Among phenylethanoid glycosides, compounds 86 and 93 could bind better than other analogs.
These compounds are monoglycosides, whereas other evaluated phenylethanoid glycosides are
diglycosides, which is in agreement with previous reports that indicate the increase in the number of
sugar units and the reduction of PPO inhibitory activity [53]. This observation could be explained in
terms of the higher molecular volume of diglycosides that prevents them access to the active site as is
shown Figure 5; the diglycoside compound 88 is shown in yellow and monoglycoside 86 is in cyan.
From this figure, it can be concluded that it is possible that monoglycosides could bind closer to the
catalytic site of PPO.
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Figure 5. Overlap docking poses of compounds 86 (cyan) and 88 (yellow). Histidine residues of
catalytic site are shown in green.

4.3. Docking Studies and Molecular Dynamics Simulations on Drosophila and Human Acetylcholinesterase

Acetylcholinesterase is a serine hydrolase that is vital for regulating the neurotransmitter
acetylcholine in insects. This enzyme is an excellent molecular target for the development of
insecticides [56,57]. The well-known active site has a deep and narrow gorge, with a catalytic site at
the bottom and a peripheral site at the entrance. Acetylcholinesterase is a molecular target used to
control insects that affect public health (e.g., mosquitoes, flies, cockroaches, among others) as well as
those that affect agriculture and gardening (e.g., grasshoppers, aphids, caterpillars, among others) [58].
Current anticholinesterase insecticides work through phosphorylation of a serine residue at the AChE
catalytic site, which disables the catalytic function and causes enzyme antagonism. Because this serine
residue is also ubiquitous in AChEs of mammals and other species with cholinergic nerves, the use
of anticholinesterase insecticides to target the serine residue causes serious off-target toxicity [59].
Therefore, it is necessary to evaluate in silico the affinity of molecules against the insect together with
mammalian enzymes to determine whether there are some structural features that lead to design
inhibitors specifically against insect enzymes.

Table 3 displays the MolDock scores of the top 10 compounds with better average docking scores
for DmAChE studies in PDB 1DX4 and 1QON structures. Data obtained during docking studies
with hAChE (PDB structures 4EY7 and 4M0E) is also shown. Selectivity ratio versus hAChE was
calculated with the average docking score obtained in both enzymes. Although some differences could
be appreciated in docking scores values, the same tendency was observed in both DmAChE structures
and both hAChE structures as phenylethanoid glycosides are among the compounds with a better
theoretical binding in the four docking studies. It has been reported that verbascoside and extracts
containing other phenylethanoid glycosides are moderate inhibitors of AchE [25].

Figure 6a,b shows the predicted binding mode of verbascoside (compound 87) in the active site
of both DmAchE and hAChE, respectively. In the case of the docking study carried out in DmAChE,
verbascoside and the rest of the analyzed PEGs adopted a Y-shaped conformation, with the central
sugar core interacting with residues of the catalytic triad (colored in yellow in Figure 6a) and the
phenylethoxy chain interacting with other residues within the bottom of the gorge. In the case of
hAChE, the analyzed PEGs adopted a similar conformation, but the phenylethoxy chain did not reach
the bottom of the gorge. An explanation to this is that PEGs interact with Asp74 through a hydrogen
bond in hAChE, whereas this residue is absent in DmAChE [60], limiting the access of PEGs to the
catalytic triad, and this could explain the better theoretical affinity of PEGs to DmAChE compared
to hAChE.

To analyze additional differences that could account for potential selectivity of PGs to DmAChE
over hAChE, MD simulations were performed. The RMSD values could indicate the stability of
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the protein relative to its conformation. Figure 4 shows the comparison of the RMSD of the protein
backbone profile during the 30 ns simulation of the complexes of compound 87 and DmAChE and
hAChE. Both complexes have RMSD values around 2Å (RMSD = 2.13 for DmAChE and RMSD = 1.88
for hAChE), suggesting that both complexes are stable.

An important difference that was observed during visual analysis MD simulations was the
variation of distance of verbascoside (compound 87) to catalytic site in DmAChE, as it appeared to
move closer to key residues Glu 237 and Ser 238, while it seemed that compound 87 maintained a
constant distance to equivalent residues Glu 202 and Ser 203 in hAchE complex. We confirmed this
by measuring the distance of verbascoside to Ser 238 or Ser 203. As seen in Figure 2b, the distance
to catalytic site diminished from 4.8 Å to 3.0 Å after 3 ns of simulation in the case of DmAChE
(average distance = 3.6 Å), while it maintained almost the same in hAChE (average distance = 5.21 Å).
This could account for the better binding of 87 towards DmAChE. This could be an important
difference that could be useful to future design of selective inhibitors to DmAChE based on the
phenylethanoid glycoside template. Additionally, MM-PBSA calculations suggest that 87 binds better
to DmAchE (E = −131.5 kJ/mol) than to hAChE (E = −134.0 kJ/mol). Overall, we conclude that, based
on molecular docking calculations and MD simulations, compound 87 is an interesting starting point
for the design of selective DmAchE inhibitors, an important factor to consider in terms of potential
toxicity against human beings.

Figure 6. Comparison of the docking poses of compound 87 in DmAChE (a) and hAChE (b). Catalytic
residues are colored in yellow and residues at the entrance of the active site in orange. Tyr71/Asp 74
residues, which are different in each enzyme, are colored in green. Key hydrogen bond interaction of
verbascoside to Asp 74 is shown in black.
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4.4. Virtual Multitarget Index and Weighed Multitarget Index

A multitarget drug has been defined as the integration of multiple pharmacophores in one
molecule with the purpose that it can have two or more simultaneous mechanisms of action [61].
Though the concept of multitarget drugs is an important research topic [62,63], there are few examples
of the study of multitarget insecticides [12].

Computational tools like molecular docking and multitarget quantitative structure–activity
relationship models (mt-QSAR) have been recently used for prediction and discovery of multitarget
compounds [64–67]. However, the development of parameters to measure the multitarget index of
a ligand is not an easy task. As described during the lapatinib discovery [68], the simple average of
biological activity against several targets (or in our case, docking scores) can be misleading, because a
compound with a promising average value of bioactivity on two or more targets could correspond to a
multitarget compound or to a highly selective compound against only one target. Thus, a reference
parameter and weighed coefficients for biological activities of interest should be included. Herein, we
propose the use of contour graphics, such as the one shown in Figure 2, and a multitarget index (vMTi)
to identify potential multitarget insecticides. In the contour plot of Figure 2, the docking scores in
three targets of interest (EcR, PPO, and DmAChE) are shown. Compounds that have shown greater
theoretical affinity for the three targets will appear in the bottom left of the plot and inside the red and
yellow contour areas. This would be a first criteria to identify potential multitarget compounds, because
selective compounds would not appear in this area. As expected, the phenylethanoid glycosides appear
in this area, but other compounds, such as abietane 3 and isopimarane 77, can be considered to have
potential multitarget properties.

Table 4 shows a list of compounds with higher vMti and wMTi values. In this table, phenylethanoid
glycosides appear as compounds with a better multitarget profile. In addition, compounds 88, 89,
and 87 (Figure 2) have not only high vMTi values, but also the highest wMTi due to their higher
selectivity to DmAChE than hAChE. Thus, these compounds are interesting candidates for the
development and evaluation of safer multitarget insecticides.

5. Conclusions

Our results complement the experimental results obtained during Calceolaria extracts evaluation
as biopesticides, and suggest that some of the compounds, such as the phenylethanoid family, can
be used for the development of multitarget bioinsecticides. Based on the docking studies, it appears
that verbascoside and other phenylethanoid glycosides could exert their bioactivity by modifying
the activity of various receptors like EcR and enzymes like PPO and AChE, as was suggested and
confirmed in previous experimental assays [25,26]. Theoretical affinity, together with vMTi and wMTi,
can be useful for the rational design of multitarget bioinsecticides. Verbascoside appears as a good
candidate for the development of a multitarget insecticide due to its prolific natural occurrence and its
chemical and biological properties [69].
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