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populations provide excellent opportunities to find marker-trait associations through linkage mapping
and have been extensively used in many crops [117]. Tuvesson et al. describe how a DH mapping
population for marker-trait associations can be created and maintained in rye, a crop which, like
perennial ryegrass, suffers from inbreeding depression [30]. Two distinct DHs are used to produce an
F1 population, individuals of which are then subjected to DH induction. Both the parental DHs and
the F1-derived DHs are crossed to a tester in order to keep them alive. Lolium-Festuca hybrids exhibit
high levels of recombination within their gametes and thus offer unique opportunities to determine
genome organization, elucidate genetic control of key agricultural traits and map markers [118].
Such introgression mapping combines well with DH induction and this approach has already been
successfully used to obtain and select useful gene combinations for freezing-tolerance [119].

Inducing a large number of DHs from a single, highly heterogeneous genotype could circumvent
the construction of a designed population altogether and allow for direct haplotype mapping (Figure 2).
Every single microspore-derived plant is a unique product of recombination between the chromosomal
pairs of the donor and an analysis of the inheritance of markers and genes is, therefore, possible in
such a population. Single pollen grain PCR-based sequencing methods for recombination studies have
been described in barley, maize, sorghum, and other crops [120–122]. However, a major advantage
of DH induction over these approaches is that it allows for phenotyping, in addition to genotyping.
Additionally, a sufficiently high number of DHs can be regenerated from the microspores of a single
plant to allow for fine-mapping or even map-based cloning approaches, without being dependent on
the seed set of specific crosses.

�1

Figure 2. Schematic representation of a direct haplotype mapping strategy by DH induction
of microspores derived from a single, heterozygous genotype exhibiting a trait of interest.
Through recombination during meiosis in the donor plant, the microspore population represents
a large diversity of possible haplotypes. Both donor and microspore-derived DH plants are genotyped
and phenotyped so that statistical methods can be used to infer the haplotype associated with the trait
of interest (in this case the dark blue, yellow, and red alleles).
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4.3. Doubled Haploids for Hybrid Breeding

Hybrid breeding has made a significant contribution to the acceleration of yield gains of many
important crops through the exploitation of the phenomenon of heterosis [123]. In perennial ryegrass,
DH induction may well be the most practical method for the development of homozygous lines
for hybrid breeding (Table 1). Currently, most breeding germplasm is recalcitrant to DH induction,
necessitating the introgression of androgenic capacity [63,66]. Using modern mapping approaches,
it should be feasible to obtain markers associated with the few major genes expected to control ELS
formation and green plant regeneration [63,67], in order to accelerate their introgression into elite
material [72].

Table 1. Comparison of three methods to obtain inbred or 100% homozygous lines in perennial ryegrass.

Repeated
Self-Fertilization

In Vitro Doubled
Haploid Induction

In Vivo Doubled
Haploid Induction

Method available yes yes 1 no

Genotype specificity low high unknown

Efficiency low high 2 unknown

Required skill low moderate low 3

Space required high low high

Lab requirements none high low

Generations required 5–6 4 1 1

Diploid regenerants 100% 50%–80% unknown 5

Obstacles self-incompatibility
inbreeding depression

albinism
inbreeding depression inbreeding depression

Side effects of procedure 6 allows selection every
generation

gametoclonal variation
somatoclonal variation
ploidy level variation
segregation distortion

part of inducer genome
could integrate

1 Anther culture, possibly isolated microspore culture; 2 Up to several hundreds of plants per 100 cultured
anthers using current anther culture techniques; 3 High if embryo rescue is required; 4 Some residual
heterozygosity (theoretically 1.6% after six generations); 5 If the chosen method generates haploids, colchicine
will be needed to double the chromosomes; 6 Can be positive or negative depending on end-use.

Even though inbreeding depression is severe in perennial ryegrass DHs, reports of vigorous and
fertile plants do exist [65]. In the early days of maize [124] and rye hybrid breeding [125], both allogamous
cereals suffered from inbreeding depression as well, and selection among inbred lines was successfully
used to improve their vigour and fertility to economically practical levels. Similar to the purging
of deleterious alleles described above, DH induction may, thus, be used as a selection tool against
inbreeding depression (Niels Roulund, personal communication; [97]). Additionally, negative effects
from inbreeding depression may be averted if diploid or tetraploid single-cross hybrids are used as
parents to produce double-cross hybrids. Indeed, tetraploid cultivars are of special interest in the
context of hybrid breeding, because polyploids often exhibit progressive heterosis the larger the genetic
diversity between their component genomes is [35,126]. A single-cross hybrid between two homozygous
autotetraploids (AABB) will display heterosis, but a double-cross hybrid from two distinct single-cross
hybrids (ABCD) is nearly always more heterotic [127]. Conversely, tetraploid Lolium-Festuca hybrids
have been converted into diploids by AC to reduce vigour and plant size for turf applications [128].
DH techniques can, thus, allow breeders to manipulate ploidy level and homozygosity in order to
maximize the exploitation of heterosis in future perennial ryegrass cultivars.

Hybrid seed production requires efficient multiplication of inbred lines, as well as an effective
method to control pollination. Elucidation of the SI system and the development of markers for its
components are now within reach [129–131] and should enable maintenance and multiplication of DH
lines through seed. Interestingly, repeated selfing of DHs has been proposed as a method to cause the
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breakdown of SI, since rare mutations in SI genes in pollen grains can, thus, be selected [78]. Schemes to
produce F1 seed of perennial ryegrass based on population hybridization [50,126], cytoplasmic male
sterility (CMS) [82,132], and SI [82,133,134] have been proposed (see also [135]), although opinions
differ on which method is the most practically and economically feasible.

5. Concluding Remarks

DH techniques in perennial ryegrass have advanced to a sufficiently successful and promising
stage to warrant a tentative glance at what future developments in this field may bring to both
breeding and research [12]. Some exceedingly useful applications require the realization of relatively
small improvements to existing in vitro protocols which could be derived from successful work in
barley, rye, and wheat [86]. For example, highly androgenic genotypes may be used as models in
DH or microspore transformation and mutagenization studies, or for direct haplotype mapping [39].
Homozygous line production for hybrid breeding, however, will require either improved in vitro
protocols that are effective in recalcitrant genotypes or the introgression of androgenic capacity into
breeding germplasm [63,66]. Additionally, investigations into and improvement of the agronomic
performance of perennial ryegrass DHs, as well as an efficient seed production system, are required for
an economically feasible production of hybrid cultivars. An alternative strategy to significantly reduce
genotype specific responses to in vitro DH production, would be the development of in vivo haploid or
DH inducers [92]. These would also allow the purging of deleterious alleles from natural populations,
thus enabling a broadening of the genetic variation available for breeding without incurring high
levels of performance impairment [99].

All of the haploid and DH techniques discussed here should reduce the time, space, and investment
required to perform effective perennial ryegrass research and breeding. Since this species can be
regarded as a model for other grasses, any progress made should be beneficial to them as well. Even
with the comparatively modest budgets of those active in forage crop improvement, haploid and DH
techniques can be developed into powerful tools to achieve the acceleration of the speed of genetic gain
needed to meet future agricultural demands.
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The following abbreviations are used in this manuscript:

AC anther culture
DH doubled haploid
CENH3 centromere-specific histone 3 variant
CRISPR clustered regularly interspaced short palindrome repeats
DMSO dimethyl sulfoxide
ELS embryo-like structures
IMC isolated microspore culture
MAS marker-assisted selection
QTL quantitative trait locus/loci
SI self-incompatible/self-incompatibility
TALEN transcription activator-like effector nuclease
TILLING targeting induced local lesions in genomes
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Abstract: Many of the major forage species used in agriculture are outcrossing and rely on the
exchange of pollen between individuals for reproduction; this includes the major species used
for dairy production in grazing systems: perennial ryegrass (Lolium perenne L.) and white clover
(Trifolium repens L.). Cultivars of these species have been co-existing since contrasting cultivars were
developed using plant breeding, but the consequences and need for strategies to manage co-existence
have been made more prominent with the advent of genetic modification. Recent technological
developments have seen the experimental evaluation of genetically modified (GM) white clover and
perennial ryegrass, although there is no current commercial growing of GM cultivars of these species.
Co-existence frameworks already exist for two major cross-pollinated grain crops (canola and maize)
in Europe, and for alfalfa (Medicago sativa L.) in the US, so many of the principles that the industry has
developed for co-existence in these crops such as detection techniques, segregation, and agronomic
management provide lessons and guidelines for outcrossing forage species, that are discussed in
this paper.

Keywords: pasture; GMO; co-existence

1. Introduction

Many of the major forage species used in agriculture are outcrossing and rely on the exchange of
pollen between individuals for reproduction. This includes the major species used for dairy production
in grazing systems: perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.).
Cultivars of these species have been co-existing since contrasting cultivars were developed using plant
breeding, but the consequences and the need for strategies to manage co-existence have been made
more prominent with the advent of genetic modification.

Genetically modified (GM) crops have been grown commercially for more than 20 years, with
more than 170 million hectares sown across 28 countries in 2015 [1]. The majority (70%–90%) of
these GM crops are used for animal feed [2] with up to 95% of the 9 billion animals grown for food
production each year in the USA consuming diets containing GM ingredients [2]. Until recently this
consumption was entirely based on the use of grains (soy, maize) or crop residues (cottonseed meal
and canola meal). However, the recent release of Roundup Ready alfalfa (Medicago sativa) and research
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in other forage crops such as perennial ryegrass and white clover [3,4] suggests that it is timely to
consider the co-existence of GM and non-GM pastures.

Co-existence frameworks already exist for two major cross-pollinated grain crops (canola and
maize) and alfalfa for seed and hay production, so many of the principles that the industry has
developed for co-existence in these crops such as detection techniques, segregation, and agronomic
management provide lessons and guidelines for outcrossing forage species.

Some of the principles that underpin a co-existence framework include,

• The ability to detect the transgene or its products in relevant commodities.
• A knowledge of the mechanism and extent of pollen (gene) flow and seed dispersal in the species.
• The strategic use of management interventions to “separate” GM and non-GM crops and prevent

gene flow between them.
• The equivalence or otherwise in the agronomic or nutritional aspects of the GM and non-GM crops.
• The segregation of products during marketing and supply.

An example of these co-existence frameworks for grain crops are those developed within the
European Union (EU) [5] which allow “the ability of farmers to make a practical choice between
conventional, organic, and GM crop production” considering issues such as the segregation of GM and
non-GM crops and the cost of this segregation. The principles of such a framework have been adopted
by several European nations for the commercial cultivation of GM maize [6]. The technical and social
aspects of the co-existence of GM and non-GM maize crops have been reviewed for Spain [7] and
the EU [6]. The isolation distances for GM maize proposed by European member states vary from
state to state and whether the GM crop is neighbouring a conventional or organic crop with distances
varying from 25 to 800 m [8]. A recent review found that the large and fixed isolation distances
proposed by some countries were not consistent with either the co-existence principles outlined by
the European Commission and were excessive based on scientific evidence [6]; they recommend that
isolation distances within the range of 10–50 m would in most instances be sufficient to keep GM
inputs from cross-pollination below the legal tolerance level of 0.9%. Therefore, despite inconsistency
in the application of the guidelines for co-existence, the principles are well established in grain crops
such as maize.

In contrast to grain crops where maximising seed set (through gene flow) is usually the goal, the
perennial forage supply chain has two distinct phases,

1. Seed production where high pollination is required
2. Pasture production where most management seeks to minimise reproductive development and

seed set—particularly in dairy grazing systems.

In contrast to grain crops where the adoption of GM crops has been widespread, in some
countries a range of technical and economic constraints [4] has meant there is only one perennial
outcrossing forage crop; glyphosate resistant alfalfa (Medicago sativa L.) that was finally approved for
fully deregulated, commercial release in the United States (US) in January 2011. The National Alfalfa
and Forage Alliance in the US has developed a set of guidelines for the co-existence of alfalfa seed
crops [9], and the technical aspects of co-existence and market assurance for alfalfa hay and forage
production in an era of biotech crops have been summarized by Putnam et al. [10].

In this paper, we will summarise the literature on aspects of functional equivalence and
co-existence in perennial outcrossing forage species with a particular emphasis on those used in
dairy production systems drawing on examples using both GM and non-GM plants.

2. Detection of Transgenes in Forages and Related Agricultural Products

Fundamental to the process of monitoring transgenic crops and agricultural commodities is the
ability to detect the transgene or its products. Although DNA fragments from high copy number
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endogenous plant genes such as rubsico have been detected in the blood and digesta [11,12], transgenic
DNA (tDNA) has been shown to be broken down in the rumen and duodenum of cattle [9], and
a number of studies have shown that tDNA was not detected in the milk of cows fed diets containing
GM feeds [11,13–19]. These data from milking trials are consistent with those from wide ranging
reviews of animal production trials that have focused on meat producing animals [2,20] with the
conclusion that there are no detectable or reliably quantifiable traces of GM feed components in eggs,
meat, or milk [2,20].

Therefore, efforts in GM detection for perennial forages should not focus on milk or meat but
rather on other agricultural products such as pollen, seed, and herbage. While the need to detect
transgenes in these products themselves is obvious as pollen is the vehicle for gene transfer, seed is
traded for sowing new pastures and herbage is the diet of grazing ruminants.

There is also the need to monitor the pollen of perennial forage species that are pollinated
by honeybees, as this pollen may find its way into honey. Honey containing traces of pollen from
genetically modified plants is currently subject to marketing and labelling regulations in the European
Union [21] following the commercial expansion of genetically modified field crops. Studies of the
amount of canola pollen occurring in honey from hives foraging non-GM crops in Australia and
GM crops in Canada found canola pollen levels on the order of 0.2% and thus well below the 1%
threshold for labelling in Australia [22]. White clover pollen is also present in honey produced by
bees foraging white clover flowers [23]. The exact cut-off levels for detection are likely to vary from
jurisdiction to jurisdiction as well as whether pollen is seen as a constituent or an ingredient of honey [21].
Regardless of these trade and regulatory discussions, the likely presence of genetically modified pollen
in honey following commercial release of GM white clover will most likely create a situation analogous
to that in canola (e.g., [22]) where commercial honey supplies will need to be monitored.

An example to demonstrate the ability to detect tDNA in a range of products from an insect
pollinated perennial forage species comes from research associated with the development and
evaluation of white clover with transgenic virus coat protein mediated resistance to Alfalfa Mosaic
Virus (AMV) [24]. During the production of genetically modified white clover seed, white clover
plants were pollinated by honey bees under containment conditions and PCR-based techniques were
developed to detect the AMV coat protein gene and the neomycin phosphotransferase 2 (npt2) selectable
marker gene in genetically modified white clover pollen, whether this pollen was collected fresh
from honey bees that have been foraging white clover or from honey [25]. Similarly, the AMV coat
protein gene was able to be detected in seed, fresh leaves (as would be fed at grazing), air dried leaves
(as would be fed as hay) when the leaves were either pure white clover, or in a mixture with perennial
ryegrass (simulating the mixed sward systems where white clover is most commonly grown) [26].

These results demonstrate that it is possible to develop molecular diagnostics for pollen, herbage,
or seeds from forage plants. The issues of the cost of real-time PCR based systems, which are the
standard reference method for transgene detection, when used for routine field-based applications
have been addressed in grain crops already through efficient sampling strategies [27–29] and through
the development of other diagnostic tools such as semi-quantitative enzyme-linked immunosorbent
assay (ELISA) (e.g., [29]) which have also been used to detect the presence of the CP4 EPSPS gene in
GM bentgrass [30] and alfalfa [10], and through the use of plasmid DNA for the calibrated detection
of specific transgenic events (e.g., [31,32]. More recently novel DNA amplification techniques such
as recombinase polymerase amplification (RPA) for the rapid point-of-use screening of transgenic
soybean seeds [33] have been developed. The ultimate choice of molecular diagnostics for forage
samples will depend on the cost and target detection limits, but the experience from major food crops
and initial data from forage samples demonstrates that it will be possible to develop these tools for
samples from dairy pastures.

Whilst there is no evidence to suggest that tDNA will find its way into the muscles or milk
of lactating cows following digestion, the development of methodologies to detect the presence or
absence of the cp4epsps transgene from soybean meal and the cry1a[b] transgene from GM corn grain in
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the rumen fluid, duodenal digesta, milk, blood, and faeces of lactating cows when fed these diets or
their near-isogenic comparators [11] demonstrates that it is possible to monitor the digestion of tDNA
in the digestive tract of ruminants.

3. Composition and Performance of GM Feeds and Forages

Although the entry of GM forages into the marketplace is relatively new, the use of GM grain as
animal feed has occurred for more than 20 years. Both the experimental studies and the trends following
the commercial feeding of GM feed to over 100 billion animals were reviewed by Van Eenennaamm and
Young [2] with the conclusion that no study had revealed any difference in the nutritional composition
of animals fed GM or non-GM diets nor where there any negative trends in commercial animal health
or productivity [2]. Of specific interest to this paper are the results of a 2 year feeding study on the
feeding of GM corn (whole-crop silage; kernels and cobs) of GM corn modified with the Bt-MON810
event and an isogenic comparator to dairy cows. This long term study concluded that there were no
consistent effects on milk composition or cow body condition and hence the GM corn and its isogenic
comparator could be said to have nutritional equivalence, and the milk produced had no functional
reason to be classified differently [18,19].

Given the small number of genetically modified perennial forages that have progressed to feed
trials, it is not surprising that there are few data sets describing the agronomic or nutritional equivalence
of GM cultivars and the non-GM cultivars that the transgenic event has been crossed in to. However,
in each of the cases that have been published to date, the data shows no evidence that the performance
of the GM cultivars is different to equivalent conventional cultivars other than for the trait controlled
by the transgene.

For instance, in a feeding experiment with Holstein cows diets were prepared that were
nutritionally similar and contained approximately 40% (by dry matter) of lucerne hay that was either
“Roundup Ready” (containing the cp4epsps protein) or three conventional cultivars that had been
selected to have similar nutritive characteristics to the hay derived from the GM cultivar [17]. In this
experiment there were no differences in daily milk yield, fat corrected milk yield, milk fat, milk lactose,
non-fat milk solids, nor dry matter intake of cows consuming GM or non-GM diets [17].

In white clover in Australia (where licence conditions prevented the feeding of GM clover herbage
to animals), a proximate analysis of both nutritional and anti-nutritional characteristics of the virus
coat protein mediated AMV resistant GM white clover was performed [24]. In this study there was
no difference in the nutritional characteristics (crude protein, in vitro dry matter digestibility, neutral
detergent fibre, and water soluble carbohydrates) and anti-nutritional characteristics (cyanogenic
glucosides, phytoestrogens, and saponins) were compared for two conventional white clover cultivars
(Mink, Grasslands Sustain) and their GM AMV resistant derivatives when grown under field or
glasshouse conditions [34].

A further study on Zoysia grass (Zoysia japonica Steud), genetically modified to be resistant to the
herbicide glufosinate [35], was shown to be no different to non-GM plants for a range of morphological
traits related to turfgrass agronomy and also the allergenicity of the pollen to humans as assessed
through skin prick tests [36].

4. Gene Flow in Out-Crossing Perennial Forage Species

The major biosafety concern with cross-pollinated perennial forages is the gene flow from GM
to non-GM crops [4]. However, in the case of commodities where the GM and non-GM crops have
substantive equivalence with respect to all traits rather than the GM trait, and that the GM trait has
been deregulated, the issue is not really one of biosafety per se but rather one of compliance with
regulatory guidelines for co-existence. The setting of these thresholds is a matter for commerce and
industry; the following discussion describes the aspects of gene flow in perennial forage species during
both seed and forage productions and how these data can be effectively used during the design and
implementation of a co-existence strategy for forage species.
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Perennial forage species may be either wind or insect pollinated. We have shown gene flow
in field grown wind pollinated, perennial ryegrass [37], and insect pollinated, white clover [38]
follows a leptokurtic distribution with a rapid decline in effective pollen flow such that greater than
95% of gene flow occurs within a relatively short distance of the pollen source (30–50 m) under
field conditions. However, a small amount of pollen moves a long distance from the pollen source.
These data are consistent with that observed internationally and for major outcrossing grain crops
such as maize and canola. These principles have been used to develop isolation distances used during
seed production [39].

As the pattern of pollen flow in both wind and insect pollinated species is leptokurtic, it is
possible for small amounts of pollen to travel a large distance. If this pollen finds a suitable recipient
population it is possible for novel traits (including GM) to establish themselves a long way from
the pollen source [30,40,41]. The extent to which these novel traits will establish themselves in the
new populations will depend on the reproductive fitness of the plants containing the new trait, the
ability of the species to establish new plants through seedling recruitment, and also adaptation of the
background genetics of the pollen donor to the new environment.

4.1. Isolation, Separation, and Segregation of Seed Crops

As there is no reason to believe that the pollen of genetically modified forages generally behave
differently to that from non GM crops during seed production, the existing seed production guidelines
that are used internationally to isolate and segregate cultivars are likely to apply (e.g., [39,41]). It is
also worth noting the development of a range of marker tools for the determination of varietal purity
based on plant [42,43] or endophyte [44] DNA are now available to assist with varietal identification
and seed production QA, along with the previously mentioned methods to detect transgenes to assess
not only the presence or absence of GM seeds but also the background in which these events occur.
It is also possible for industry to develop protocols to further minimize gene flow between GM crops
and those being grown for markets sensitive to GM such as the ”Grower Opportunity Zones” or GOZ
as defined by the National Alfalfa and Forage Alliance in the USA [9].

4.2. Transport of Seed and Hay Crops

Another aspect to consider is the spillage of seed during the transport of seed and hay crops.
A recent study in the US has shown that in a survey of 4190 sites on roadside verges in 2011/2012,
185 contained feral alfalfa (lucerne) populations of which 38 tested positive for the presence of the
CP4 EPSPS transgene [45]. These authors concluded that the distribution of feral alfalfa populations
was not random and tended to be clustered in seed and hay production areas where transport of seed
was likely, and that efforts to minimise seed spillage during transit and eradicating feral alfalfa along
roadsides would be effective strategies to minimize the flow of transgenes. They also used spatial
analysis to suggest that these feral populations started independently to provide further evidence that
these populations were the likely result of seed spillage or some other mechanism of seed transfer.

4.3. Isolation, Separation, and Segregation of Forage Crops

In order for gene flow to occur not only must pollen find a synchronously flowering plant,
pollination must occur, a fertile and mature seed must form, and this seed must join the seed bank,
germinate, and establish itself in an established pasture.

4.3.1. Seedbank and Recruitment of Perennial Ryegrass into Existing Pastures

Perennial ryegrass seeds are not persistent in the soil, forming a transient type 1 seed bank [46]
due to low seed dormancy and the ability to germinate across a range of environmental conditions.
For instance, only 14% of the perennial ryegrass seed bank remained 14 months after release and
all had gone after 2 years [47]. Little is known about the seedling recruitment of perennial ryegrass
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into established dairy pastures in Australia. However, a recent study in New Zealand showed no
germination of sown grasses in contrast to weedy annual and perennial grasses [48].

Seedling recruitment of sown perennial grasses into established pastures in Australia is generally
poor [49] and is considered to be a cause of the poor persistence of these pastures under grazing.
However, under conditions where grazing management encourages the development of mature heads
it is possible to see seedling recruitment of perennial ryegrass, particularly in marginal conditions
(e.g., [50–52]). There are attempts to manage perennial ryegrass pastures to facilitate seedling recruitment
in meat production systems—for instance, the following from an EverGraze guide to encourage seedling
recruitment of perennial ryegrass under grazing in Australia,

• Allow pasture to increase to 3000 kg/ha by the end of November
• Remove stock from mid-November to mid-January
• Graze the dry standing feed down to 1000 kg/ha before the autumn break

It can be seen that this management is not consistent with modern management of dairy pastures,
where either grazing management or fodder conservation would be used in November to handle this
Spring flush rather than allowing it to go to head and have the seed ripen over a 2 month period.

4.3.2. Management Practices That Could Be Used to Further Minimise Any Gene Flow between
Adjacent Forage Crops

A review of co-existence strategies for maize grain crops in the EU found that a reliance merely
on isolation distances often led to legislation of isolation distances that were not based on scientific
principles [6], and that management and biological issues such as

• pollen barriers
• flowering coincidence
• crop rotation
• regional strategies
• biological confinement

should all be considered when developing co-existence frameworks.

Along with these general guidelines a number of specific interventions have been proposed to
facilitate the co-existence of GM and non-GM alfalfa hay crops [9,10]. These are also applicable to
perennial forages grown for dairy grazing and include,

• Selecting seed that is certified for purity and quality
• Preventing transfer during harvest through cleaning machinery
• Testing to confirm non-GM status, if required

The following section of this review will address how these issues may be considered for a grazed
dairy system.

Given the paucity of data on seedling recruitment in dairy pastures, it is not possible to state that
the following interventions would reduce the amount of gene flow from X to Y, nor is it possible to
state whether the isolation distances used in seed production could be reduced by Z. Therefore the
following section describes some general principles and practices that could be used to reduce gene
flow but does not seek to quantify their relative efficiency. It is also important to note that most
gene flow occurs from plants that are near to each other so if the large pollen source is a paddock
adjacent to a well-managed dairy pasture and this paddock is laxly grazed and allowed to set seed,
then most of the pollination will occur from plants within that paddock rather than by pollen from the
well managed neighbour. Regardless of the absolute amount, the relative amount of pollen shed by
a paddock or plot is also based on the amount of “edge” of that paddock relative to its overall size.
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So within a large square paddock most of the pollen that is shed falls within the paddock boundary
(this is why seed production isolation distances do not increase as paddock size increases; in fact, the
opposite is true [39]).

4.3.3. Management of the “Donor Paddock” and “Recipient Paddock”

4.3.3.1. Sow One Large Paddock as Opposed to Multiple Small Ones

This minimises the proportional amount of area for pollen shed and also in isolation areas if these
are used.

4.3.3.2. Utilise Management to Avoid Flowering and Seed Set

This is consistent with modern dairy pasture management and includes both grazing and the
option for fodder conservation and silage, in order to remove flower heads before anthesis and/or
seed set.

4.3.3.3. Consider the Use of a Boundary Crop Sown to a Non-GM Cultivar Around the “Donor”
Paddock or Farm

This area can be managed in exactly the same way as the GM pasture but its physical presence
will minimise the potential for gene flow.

4.3.3.4. Consider the Use of “Reproductive” Barriers to Gene Flow Such as Flowering Time and Ploidy

Modern perennial ryegrass cultivars exist as either diploids or induced tetraploids and these two
classes are effectively reproductively isolated from each other outside of the laboratory. This reproductive
isolation was actually used to allow the gene flow work of Cunliffe et al. [37] to occur in a region with
endemic presence of diploid ryegrass pasture. Examples of tetraploid cultivars are Bealey and Banquet,
and diploid cultivars include Tolosa, AberDart, and Avalon.

There is also a wide range of flowering times in perennial ryegrass used commercially today.
For instance, in Australia there is approximately a 50 day range in flowering date from early maturing
types such as Barberia through to late heading types such as Shogun. However, there is a range even
within maturity types. A full list of categories of all cultivars may be found in publications such as the
Australian Seed Federation Pasture database [53].

Obviously the most extreme reproductive isolation would come from sowing an early maturing
diploid adjacent to a late maturing tetraploid, but increased isolation (and hence reduction in gene
flow) would also occur with less extreme contrasts.

4.3.3.5. Consider the Use of Shelter Belts between Farm Boundaries

As well as the physical effect of increasing the distance between neighbouring pastures, shelter
belts also decrease wind flow [54] and are therefore likely to decrease gene flow.

5. Conclusions

This paper discusses issues related to the design and implementation of a framework for
agricultural co-existence of GM and non-GM perennial pastures with a particular emphasis on high
intensity commercial grazing systems such as dairy where it is likely that these perennial pastures will
be sown. Therefore, it focuses on issues related to approved transgenic events for which there will
already have been an assessment of the likely environmental impact of the GM product. For instance,
in Australia this falls under the responsibility of the Office of the Gene Technology Regulator (OGTR)
where the likely impact of the combination of the transgenic event and the recipient species to human
health and the environment are assessed prior to approval to release.

As with the cross-pollinated grain crops, maize and canola, it would be possible to develop
a co-existence framework for seed production in forage plants using existing principles that are
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used for conventional forage seed production. There is likely to be less gene flow between adjacent
grazed and established pastures under intensive grazing than between neighbouring grain or seed
production paddocks. There are also a range of management interventions (on top of distance between
neighbours) to further reduce gene flow. Therefore, it is concluded that it would be possible for
industry to develop a co-existence framework for GM perennial pastures including perennial ryegrass
for both seed production and grazing.
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