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Tribology, the study of friction, wear, and lubrication, has been a subject of interest for
researchers exploring the complexities of materials and surfaces. Recently, machine learning has
emerged as a valuable tool in this field, offering new avenues for understanding. The second
Special Issue in the journal Lubricants dedicated to this partnership signifies a step forward in our
exploration of these concepts. Machine learning’s ability to analyze large datasets and extract
patterns has broadened our understanding of tribology. This collaboration between traditional
methods and computational techniques has enabled researchers to uncover insights previously
inaccessible. From predicting frictional behavior to optimizing lubricant compositions, machine
learning’s applications in tribology are diverse.

The nine research and two review articles, as well as one technical note, covered in
this Special Issue embrace a wide range of topics, from fundamental research on friction
mechanisms to practical studies improving industrial machinery performance. Predictive
modeling stands out as an area of interest, allowing researchers to forecast tribological properties
accurately. This includes predicting material wear rates and optimizing lubricant formulations
for specific conditions. Furthermore, machine learning has facilitated the exploration of complex
phenomena across different scales, providing a comprehensive understanding of tribological
processes. The convergence of tribology and machine learning offers opportunities for synergy
and discovery, marking a significant moment in the field’s evolution.

The Guest Editors extend their gratitude to all authors and reviewers for their contributions,
as well as to the editorial staff of MDPI journal Lubricants for their support and guidance.

Conflicts of Interest: The authors declare no conflicts of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are
solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).
MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions or products referred to in the content.
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Abstract: Physics-informed machine learning (PIML) has gained significant attention in various
scientific fields and is now emerging in the area of tribology. By integrating physics-based knowledge
into machine learning models, PIML offers a powerful tool for understanding and optimizing phe-
nomena related to friction, wear, and lubrication. Traditional machine learning approaches often rely
solely on data-driven techniques, lacking the incorporation of fundamental physics. However, PIML
approaches, for example, Physics-Informed Neural Networks (PINNs), leverage the known physical
laws and equations to guide the learning process, leading to more accurate, interpretable and transfer-
able models. PIML can be applied to various tribological tasks, such as the prediction of lubrication
conditions in hydrodynamic contacts or the prediction of wear or damages in tribo-technical systems.
This review primarily aims to introduce and highlight some of the recent advances of employing
PIML in tribological research, thus providing a foundation and inspiration for researchers and R&D
engineers in the search of artificial intelligence (AI) and machine learning (ML) approaches and
strategies for their respective problems and challenges. Furthermore, we consider this review to be of
interest for data scientists and AI/ML experts seeking potential areas of applications for their novel
and cutting-edge approaches and methods.

Keywords: artificial intelligence; machine learning; tribo-informatics; physics-informed neural
network; friction; wear; lubrication

1. Artificial Intelligence and Machine Learning in Tribology

The complex interactions between surfaces in relative motion or between surfaces
and flowing media have substantial impacts on the performance, efficiency, and service
life of tribo-technical systems. In recent years, the integration of artificial intelligence
(AI) and machine learning (ML) techniques in tribology has opened up new possibilities
for improving understanding, prediction, and control of friction, lubrication, and wear
phenomena [1,2]. AI refers to the development of intelligent machines that are capable
of performing tasks that typically require human intelligence. ML is a subfield of AI
(see Figure 1) and focuses on the development of experience-based algorithms that allow
for computers to learn and make predictions or decisions (output) based on data (input)
without being explicitly programmed [3]. Some notable ML techniques encompass decision
trees (tree-like structures that make decisions based on feature values) [3], random forests
(combining multiple decision trees to improve prediction accuracy) [4], support vector
machines (aiming to find the best decision boundary between classes in a dataset) [5], and
neural networks, just to mention a few. Among these techniques, artificial neural networks
(ANNs) have gained significant prominence. They consist of interconnected “neurons”,
organized into layers, whereby each neuron receives an input, performs computations, and
passes the result to the next layer. Through training, i.e., adjusting the connections’ weights
and biases, complex patterns in the data can be captured [3,6,7].

Lubricants 2023, 11, 463. https://doi.org/10.3390/lubricants11110463 https://www.mdpi.com/journal/lubricants2
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Figure 1. Classification of the terms artificial intelligence, machine learning, deep learning, data
mining, and physics-informed machine learning. Redrawn and adapted from [8].

All of these ML/AI approaches possess the potential to revolutionize tribology by
enabling more accurate modeling, efficient optimization, and an enhanced control of fric-
tion and wear processes [1]. One of the primary applications of AI and ML in tribology is
predictive modeling by analyzing large datasets, thus identifying patterns and hidden rela-
tionships that may not be apparent through traditional analytical methods [9–12]. Moreover,
AI and ML techniques can facilitate condition-based maintenance and real-time monitoring
in tribological systems when employing respective integrated sensors and data acquisition
systems [13–15]. Furthermore, AI and ML can contribute to designing and optimizing
tribo-systems within vast design spaces [16] or can even contribute to discovering novel
solutions that may not have been considered previously. All of these aspects may lead
to the development of more efficient lubricants [17,18] and materials [19,20], advanced
surface modifications [21,22], manufacturing processes [23,24], or innovative tribo-system
designs [25,26], not only going beyond mere buzzwords, but actually resulting in improved
energy efficiency, reduced emissions, and an enhanced overall system performance [27].

Meanwhile, there is a number of review articles showcasing the usages and many
promises of AI and ML within tribology [1,2,28–31]. However, a challenge remains in the
training of AI/ML models, which relies heavily on the availability of large amounts of
high-quality experimentally [32–38] or numerically [39–42] generated data. Ideally, these
data should be FAIR (Findable, Accessible, Interoperable, and Reusable), meaning it should
be well documented, easily accessible, compatible with different systems, and suitable for
reuse in different contexts [43–45]. However, acquiring such data for scientific or industrial
tribology problems can often be challenging, and these data may not always be readily
available [46,47]. Also, relying on data alone bears the risks of having misunderstood the
scientific problem and not converging towards generalizability.

As an alternative to data-based AI strategies, in situations where there is a scarcity
of available data, ML models can be trained using supplementary data derived from the
application of physical laws, incorporating mathematical models. This approach, known as
physics-informed ML (PIML), thus connects the big data regime, without any knowledge
about the underlying physics, with the area of small data and lots of physics [48] (see
Figure 2). The employment of PIML in tribology is likewise a comparatively new as well
as emerging trend, which has not been covered by other review articles yet. This article
therefore seeks to shed some light on the novel trend of physics-informed ML. The concept
will be briefly introduced in Section 2, the current state of the art will be discussed in detail
in Section 3, and the article will end with some concluding remarks in Section 4.
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Figure 2. Data and physics scenarios. Redrawn and adapted from [48].

2. Physics-Informed Machine Learning

PIML is an approach that combines ML techniques with the principles and constraints
of physics to enhance the accuracy, interpretability, and generalizability of models [48,49].
PIML aims to address the sole dependence on data by incorporating prior knowledge
of physics into the learning process, ensuring that the resulting models align with the
fundamental principles of the domain [48]. Thus, PIML models can capture the underlying
physics, even in cases where the available data are limited, noisy, or incomplete. This
integration allows for models that are not only data-driven, but also consistent with the fun-
damental principles governing the system [48]. By incorporating physics-based knowledge,
it is possible to enhance the predictive accuracy compared to conventional, data-driven ML
approaches. Furthermore, physics-informed models are often more interpretable, which
allows for a better understanding of the underlying mechanisms and optimizing tasks.
Thereby, physics-informed models, once properly trained with a solid understanding of the
physics involved, can be adapted to various applications and environments with relatively
minor adjustments. Finally, by incorporating physical laws, machine learning models are
less likely to make predictions that violate fundamental principles, reducing the risk of
erroneous or unrealistic results, e.g., predicting a negative film thickness in hydrodynamic
contacts, etc. Apart from the observational biases contained in a sufficiently large dataset,
as used to train classical ML models, it may consist of inductive biases through a direct
intervention into the ML model architecture, for example, in the form of mathematical
constraints to be strictly satisfied that are known a priori [48]. Furthermore, learning biases
can be incorporated into the training phase through the careful selection of loss functions,
constraints, and inference algorithms [48]. These can effectively guide the model towards
converging on solutions that align with the fundamental principles of physics [48]. By
incorporating soft penalty constraints and fine-tuning them, it becomes possible to approx-
imately satisfy the underlying physical laws, offering a flexible framework to introduce
a wide range of physics-based biases, expressed through integrals or differential equa-
tions [48]. Observational, inductive, or learning biases are not mutually exclusive and can
be combined synergistically to create a diverse set of hybrid approaches to construct PIML
systems [48].

Even though a variety of approaches are generally available [50], the most common
methodology in PIML is the use of Physics-Informed Neural Networks (PINNs), which com-
bine artificial neural networks with physics-based equations, such as differential equations
or conservation laws [49,51]. During the training phase, these equations are incorporated
into the loss functions of a neural network to guide the learning process, i.e., there is a data-
driven part and a physics-driven part in the loss function. The neural network learns to
approximate both the data-driven aspects and the physics-based constraints simultaneously,
resulting in models that capture the complex interactions between data and physics [49]. As
illustrated in Figure 3, this is achieved by sampling a set of input training data (i.e., spatial
coordinates and/or time stamps) and passing it through the neural network. Subsequently,
the network’s output gradients are computed with respect to its inputs at these locations.
These gradients can frequently be analytically obtained via auto-differentiation (AD) and
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are then used to calculate the residual of the underlying differential equation. The residual
is then incorporated as an additional term in the loss function. The aim of including this
“physics loss” in the loss function is to guarantee that the solution learned by the network
aligns with the established laws of physics.

 

Figure 3. Graphical representation of a PINN approach.

Another approach in PIML involves the utilization of probabilistic models, such as
Gaussian processes or Bayesian inference, to incorporate physical priors and uncertainties
into the learning process [48]. These models enable the quantification of uncertainty and
the propagation of physical constraints through the machine learning framework [48].

The applications of PIML are wide-ranging and can be found in various scientific
and engineering domains. It has been employed in fluid dynamics for flow prediction
and turbulence modeling [52–54], in material science to predict material behavior [55–58]
and discover new materials [59], in structural mechanics [60,61], medical imaging [62,63],
and many other fields where physical laws play crucial roles. By integrating physics-
based knowledge into machine learning models, PIML also offers a powerful tool for
understanding and optimizing tribological phenomena and thus represents a very recent
and emerging trend in the domain of tribology.

3. Physics-Informed Machine Learning in Tribology

3.1. Lubrication Prediction

PIML can be applied to various tribological tasks, for example, the prediction of
lubrication conditions and the optimization of lubrication processes. By considering the
governing equations of fluid dynamics and incorporating experimental or simulation data,
ML models can learn to predict the lubricant film thickness, pressure, and/or shear stress
distribution. As such, Almqvist [64] implemented a PINN in MATHWORKS Matlab to solve
the Reynolds boundary value problem (BVP) in a linear slider, assuming a one-dimensional
flow of an incompressible and iso-viscous fluid. The rather simple feedforward neural
network consisted of one input node (coordinate x), one hidden layer (i.e., a single layer
network) with ten neurons, as well as one output node (see Figure 4a), and employed the
sigmoid activation function. The Reynolds BVP was described by a second-order ordinary
differential equation:

∂

∂x

(
H3 ∂p

∂x

)
=

∂H
∂x

, for 0 < x < 1 (1)
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with the dimensionless film thickness H(x) and the dimensionless pressure p(x). The
pressure at the boundaries was chosen to be zero (p(0) = 0, p(1) = 0). The Reynolds BVP
was then condensed to

H3 p′′ + H3′p′ − H′ = 0 for 0 < x < 1 , (2)

[
p(0)
p(0)

]
= 0 , (3)

and the loss function was defined as

L =

[(
H(x)3 p′′ + H(x)3′p′ − H(x)′

)2
]
+ p2(0) + p2(1) (4)

Figure 4. (a) Topology of the employed PINN to solve Reynolds BVP and (b) comparison of the PINN
prediction for a linear converging slider with the exact solution. Reprinted and adapted from [64]
with permission from CC BY 4.0.

After establishing the partial derivatives of p” and p(1) with respect to the weights
and bias instead of the commonly employed AD, Almqvist [64] used the PINN approach
to solve for the dimensionless pressure in a linear slider with a converging gap of the form
H(x) = 2 − x and compared the result to an exact analytical solution (see Figure 4b). Thereby,
an overall error of 6.2 × 10−5 as well as errors of 4.1 × 10−4 at x = 0 and −4.0 × 10−4 at
x = 1 were obtained. It is worth noting that this approach does not offer advantages
neither with respect to accuracy nor efficiency compared to the established finite difference
(FDM) or finite element method-based solutions, but it presents a meshless approach,
and not a data-driven approach [64], thus overcoming the “curse of dimension” [65].
Furthermore, cavitation effects were not considered by this formulation, and the study was
limited to solving the one-dimensional Reynolds equation for the pressure at a given film
thickness profile.

Inspired by the pioneering work from Almqvist [64], several authors have taken
up the idea and extended the PINN approach. As such, Zhao et al. [66] solved for the
two-dimensional Reynolds equation:

∂

∂x

(
H3 ∂p

∂x

)
=

L
B

∂

∂y

(
H3 ∂p

∂y

)
− 6

∂H
∂x

(5)

for a slider bearing with the length L and width B as well as zero-pressure conditions at the
edges. The film thickness was described as

H(x) =
θL
h0

(1 − x) + 1 (6)
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with the inclination of the slider θ and the outlet film thickness h0. The PINN was pro-
grammed in Julia language and followed the examples of [49,67]. The authors studied the
influence of the number of training epochs (i.e., the number of complete iterations through
the model training process, where the model learns from the available physics-based knowl-
edge, constraints, or equations, making incremental adjustments to its parameters in an
effort to improve its performance) as well as the influences of the layer and neuron numbers
on the predicted pressure distribution. They reported that the maximum values converged
fairly well, while the pressure at the boundaries of the domain as well as the global loss
took some more epochs (see Figure 5a). Furthermore, Zhao et al. [66] compared different
PINN topologies without hidden layers, with one hidden layer, as well as with two hidden
layers with 16 neurons each. As depicted in Figure 5b, while the pressures in the central
region were somewhat comparable, the PINN without hidden layers displayed strongly
fluctuating pressures at the edges; thus, it strongly diverged from the zero-pressure bound-
ary conditions. In turn, the differences between the PINNs with one hidden layer and two
hidden layers were neglectable. Similarly, using fewer neurons in the hidden layers (e.g.,
four) led to undesired pressure fluctuations at the boundary of the domain, while using
either 16 or 32 nodes did not affect the results in a significant way (see Figure 5c). The
authors concluded that a PINN topology with 16 neurons in one hidden layer as well as
1000 training epochs allow for a satisfactory solution of the Reynolds equation.

Figure 5. Pressure distribution (a) after 100 training epochs (left), 500 (middle) and 1000 (right)
training epochs, (b) after training without hidden layers (left), with one hidden layer (middle), and
with two (right) hidden layers (16 neurons each) as well as (c) after training with 4 (left), 16 (middle),
and 32 neurons in one hidden layer. Reprinted and adapted from [66] with permission from CC
BY 4.0.

7
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Moreover, Zhao et al. [66] integrated the PINN into an iterative solution process
(Figure 6a) for the pressure and film thickness distribution, thus balancing an externally
applied load W: ∫

Ω
p(x, y)dxdy =

Wh2
0

ηUL2B
, (7)

whereby η is the lubricant viscosity and u the sliding velocity. Zhao et al. further verified
this developed iterative PINN approach against the results obtained using the finite element
method (FEM) as well as the experimentally measured values obtained by means of optical
interferometry in a slider-on-disk setup (see Figure 6b). Generally, an excellent agreement
was observed. Even though the pressure at the boundaries did not strictly meet the zero-
pressure condition in the case of the PINN (deviations up to 3.4%), an excellent correlation
between the PINN and FEM prevailed in the majority of the domain (Figure 6c), which was
manifested in an overall error of 1.5% between the two.

Figure 6. (a) Flow chart of the iterative PINN approach for hydrodynamic contact. (b) Outlet film
thickness at different sliding velocities for the PINN method compared to FEM simulation as well as
experimental results. (c) Pressure distribution predicted using the PINN (left) and the FEM (right).
Reprinted and adapted from [66] with permission from CC BY 4.0.

Li et al. [68] employed a PINN to solve the Reynolds equation to predict the pressure
field and film thickness of a gas-lubricated journal bearing (assuming incompressibility) in
order to subsequently calculate the aerodynamic characteristics under variable eccentricity
ratio conditions (see Figure 7a,b). The authors compared the results with an FDM solution
and reported that the PINN could capture the flow field structure quite well (Figure 7c,d).
Thereby, the convergence accuracy was reported to be improved by changing the weight
values of different loss items as well as by employing a second-order optimizer to fine-tune
the results. Moreover, the authors performed a comprehensive comparison (Figure 7e,f)
among three different learning strategies (unsupervised and supervised learning driven
by data from FDM, semi-supervised learning with sufficient data, and semi-supervised
learning with a small number of noisy data) with respect to the prediction accuracy, i.e., the
difference between the predicted results and true physics, and the physics interpretability,
which describes the degree to which the results meet the physical equations. It was observed
that the data-driven supervised learning method had the best prediction accuracy without a
sharp loss increase in the boundary cases, followed by semi-supervised learning, and finally,
unsupervised learning. In turn, the supervised learning method did not meet the Reynolds
equation and had no interpretability, while the unsupervised and semi-supervised methods
satisfied the physics conservation equation with small losses. However, the accuracy
of the semi-supervised approach tended to be reduced with noisier data, but not the
interpretability. Li et al. [68] concluded that the learning method generally should be
chosen based upon the prediction accuracy requirement for the actual application as well
as the amount of available data. In situations where there is a lack of experimental or
high-precision numerical solution data, the unsupervised learning approach offers a direct
solution to approximate the prediction value of the flow field. Thus, it becomes possible
to obtain an estimation without relying on specific data or prior knowledge. However,
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when there is a limited amount of data available, the semi-supervised learning method can
be employed to achieve more accurate prediction outcomes. This considers both solution
accuracy and physics interpretability, leading to improved results and eliminating the
need for simulations in each individual case, which is typically required by conventional
numerical methods. In contrast, when complete field physics values are directly provided,
the data-driven method can accurately predict the flow field for unknown conditions
without possessing physical interpretability.

 

Figure 7. (a) Structure of a gas-lubricated journal bearing. (b) PINN topology to solve the Reynolds
equation. (c) Comparison of flow field and (d) aerodynamic characteristics between PINN (prediction)
and FDM (true). (e) Loss function curves against testing data as well as (f) L2 loss comparison
for pressure and film thickness at different eccentricities for semi-supervised, unsupervised, and
supervised learning methods. Reprinted and adapted from [68] with permission.

Yadav and Thakre [69] also employed a PINN to study the behavior of a fluid-
lubricated journal as well as a two-lobe bearing and compared the obtained results against
an FEM model. Even though the authors provided few insights and details on the em-
ployed model and its implementation, they reported a quite good correlation between the
PINN and FEM at various load cases, with errors below 6% and 5% with respect to the
predicted eccentricity and friction coefficient.
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Xi et al. [70] investigated the application of PINNs to predict the pressure distribution of
a finite journal bearing and compared the results when employing soft or hard constraints for
the boundary conditions (see Figures 8a and 8b, respectively). The models were implemented
in the Python library, DeepXDE, whereby the ANN consisted of three hidden layers with
20 neurons each, and tanh was used as the activation function. The PINN was trained to
minimize the loss function using the Gradient Descent Method, and the Adam optimizer was
used to obtain the weights. The Dirichlet boundary condition was employed for the Reynolds
equation in the case of the soft constraint (Figure 8a). Furthermore, the authors converted
the boundary condition into a hard one (Figure 8b) by modifying the neural network, in
which the boundary condition could be satisfied. Also, the boundary condition was no longer
part of the loss function. Thus, the hard constraint met the pressure boundary condition in
a mathematically exact manner and sped up the convergence. The authors compared the
developed approaches as well as the FDM results when assuming both constant and variable
(temperature-dependent) viscosity, whereby a good agreement was reported.

In the aforementioned studies, the cavitation effects were neglected since they reduce
the complexity. Rom [71] extended the idea of using PINNs for lubrication prediction
towards the consideration of cavitation by introducing the fractional film content θ to the
Reynolds equation,

∂

∂x

(
H3 ∂p

∂x

)
+

∂

∂y

(
H3 ∂p

∂y

)
= 6ηu

∂Hθ

∂x
(8)

which was solved with the following underlying constraints:

p ≥ 0, 0 ≤ θ ≤ 1, p(1 − θ) = 0. (9)

This means that the computational domain was split into two sub-domains, i.e., the full
film region with the conventional Reynolds equation (p > 0, θ = 1) and the cavitated region
(p = 0, θ < 1). A priori, the boundary in between the two regions is free and unknown, which
makes it complex for conventional algorithms. In turn, strictly dividing both domains is not
necessary for PINNs when covered by suitable boundary conditions. Rom [71] specified
these problem-/application-specific conditions for the example of journal bearings (see
Figure 8a). The author first employed a residual neural network (ResNet) (see Figure 8b),
and training was conducted to minimize the error with respect to the mentioned boundary
conditions as well as the residual (Reynolds equation divided by H), which was derived
via AD. Moreover, the approach was extended to not only develop a PINN for one specific
problem (fixed set of parameters), but to account for variable parameters; in this case, the
variable eccentricity was the parameter, which was also propagated as the input parameter
through the ResNet (extended PINN) (see Figure 8c). This led to a certain generalizability
of the model. The loss function consisted of three losses related to the predictions of p and
θ on the boundaries as well as three global losses. The neural network parameters were
initialized via Glorot initialization and then optimized using a limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm. Tanh was chosen as the activation function
and for the output layer. While the fractional film content was between zero and one, this
required scaling of the input variables as well as re-scaling of the pressure with an arbitrary
chosen upper boundary to obtain dimensional results. Since abrupt jumps and the fractional
film content can complicate training, Rom [71] proposed to adaptively add collocation
points during the training, i.e., refining the region around the maximum pressure and the
boundary between the pressure and cavitation region. The author compared the obtained
results for the standard and extended PINNs against the FDM solutions and found a pretty
good agreement (see Figure 8d–g). Using a total of 20 neurons in six hidden layers proved
to achieve the best results. The errors in between the prediction for the maximum pressure,
load carrying capacity, and frictional force at different eccentricities were below 1.6%, 0.3%,
and 0.2%, respectively, thus verifying certain generalizability (Figure 8g). However, some
minor differences were observed, especially at the transition from the pressure to cavitated
region (Figure 8d,e), which were attributed to the high resolution of the FDM region, while
the PINN encountered difficulties with the jump in the fractional film content.
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Figure 8. (a) Cartesian domain for a journal bearing with respective boundary conditions. (b) Stan-
dard and (c) extended PINN architecture used to solve the Reynolds equation with respective
boundary conditions to consider cavitation. Comparison and error between extended PINN and
FDM with respect to the (d) pressure and (e) the fractional film content. Pressure and fractional film
content along the contact length for (f) the training values of the eccentricity and (g) eccentricity
values not employed for training. Reprinted and adapted from [71] with permission.
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To overcome the manual or computationally expensive initial value threshold selection
as well as the weight adjustment/optimization of Rom’s approach, Cheng et al. [72] very
recently presented a PINN framework for computing the flow field of hydrodynamic
lubrication by solving the Reynolds equation while involving cavitation effects by means
of the Swift–Stieber model [73,74] as well as the Jakobsson–Floberg–Olsson (JFO) [75,76]
model. The authors introduced a penalizing scheme with a residual of non-negativity and
an imposing scheme with a continuous differentiable non-negative function to satisfy the
non-negativity constraint of the Swift–Stieber approach. To address the complementarity
constraint inherent to the JFO theory, the pressure and cavitation fractions were considered
as the outputs of the neural network, and the Fischer–Burmeister (FB) equation’s residual
enforced their complementary relationship. Chen et al. then employed multi-task learning
(MTL) techniques (dynamic weight, uncertainty weight, and projecting conflicting gradient
method) to strike a balance between optimizing the functions and satisfying the constraints.
This was shown to be superior to traditional penalizing schemes. To finally assess the
accuracy of their approach, the authors studied the setup of an oil-lubricated 3D journal
bearing at a fixed eccentricity with Dirichlet boundary conditions, showing very low errors
compared to the respective FEM models.

3.2. Wear and Damage Prediction

Apart from predicting the lubrication phenomena in hydrodynamically or aerodynam-
ically lubricated contacts, PIML has been employed for wear prediction. Haviez et al. [77]
suggested the use of a semi-physical neural network when addressing fretting wear and
facing scarce datasets due to testing costs and efforts, thus overcoming the drawbacks of
purely data-driven ML. To this end, the authors experimentally generated 53 datasets using
a fretting wear tester. The two-step semi-PINN was trained without backpropagation or
any regularization method simply by introducing (approximate) physical considerations
about energy dissipation, (

Ed
μ

)
= α0Nα1 δα2 Fα3 (10)

and asperity contact to estimate the wear volume,

V = α

(
Ed
μ

)β

(11)

according to Archard’s law, whereby μ is the coefficient of friction, N is the number of
fretting cycles, δ is the sliding amplitude, F is the normal force, and α, α1, α2, α3, α, and β are
the fitting parameters to be adjusted according to the input–output relations obtained from
the experiments (see Figure 9). Following linearization by taking the logarithmic approach,
a single-layer ANN with an exponential activation function and a simple least squares
approximation were used to determine the unknown parameters. Despite its simplicity, the
authors reported a good generalizability of the suggested approach in terms of the relative
quadratic error (RQE) on the new testing data, outperforming conventional ANNs when
trained with small data, which might feature overfitting. Yet, it should be considered that
fitting an ANN to rather simple analytical functions might be an unnecessary complication
compared to other regression methods.

Yucesan and Viana [78] suggested a hybrid PIML approach consisting of a recurrent
neural network to develop a cumulative damage model to predict the fatigue of wind
turbine main bearings. Thereby, the physics-informed layers were used to model the
comparatively well-understood physics, i.e., the bearing lifetime, while a data-driven layer
accounted for the aspects, which have so far been beyond the scope of physical modeling,
i.e., grease degradation (see Figure 10). The reason was because the input conditions, such
as the loads and temperatures, are fully observed over the entire time series, while grease
conditions are typically only partially observed at distinct inspection intervals. The model
takes the bearing fatigue damage increment.
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where the number of passed cycles is nt, the total operational hours is ti, the velocity is
Ni, the basic dynamic load rating is C, the equivalent dynamic bearing load is P, and the
reliability and life modification factors are a1 and aSKF. In contrast, the grease damage
increment Δdt

GRS, i.e., the degradation of viscosity and increasing contamination, was
implemented via a multilayer perceptron. The recurrent neural network then took the
wind speed WSt (mapped to equivalent bearing loads) and bearing temperature T as
inputs, thus updating the respective parameters and calculating the cumulative wear.
The authors employed their approach to several load cases from real wind turbine data
(10 min average operational and monthly grease inspection data for 14 turbines) and
demonstrated that the general trends regarding bearing damage and grease degradation
could be covered fairly well. Thereby, it was shown that the selection of the initialization
of the weights of multilayer perceptron is crucial, and that a set of initial weights that is
far away from optimum would not lead to accurate predictions. However, this can be
improved by “engineering judgement-based weight initialization” [78], i.e., by performing
a sensitivity analysis on the general influence trends of the inputs, thus selecting favorable
initial weights.

 

Figure 9. Semi-PINN two-level structure used to predict fretting wear. Reprinted from [31] with
permission from CC BY 4.0.

Figure 10. Hybrid PINN for main bearing fatigue and grease degradation. Reprinted from [78] with
permission from CC BY 3.0.
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Similarly, Shen et al. [79] proposed an approach for bearing fault detection that inte-
grates principles of physics with deep learning methodologies. The approach consisted of
two integral components: a straightforward threshold model and a convolutional neural
network (CNN). The threshold model initiated the assessment of bearing health statuses
by applying established physics principles associated with bearing faults. By following
this initial evaluation, the CNN autonomously extracted significant high-level features
from the input data, effectively utilizing these features to predict the bearing’s health
class. To facilitate the incorporation of physics-based knowledge into the deep learning
model, the authors developed a loss function that selectively enhanced the influence of the
physics-based insights assimilated by the threshold model when embedding this knowl-
edge into the CNN model. To validate the efficacy of their approach, Shen et al. conducted
experiments using two distinct datasets. The first dataset comprised data collected from
18 bearings operating in the field of an agricultural machine, while the second dataset
contained data from bearings subjected to testing in the laboratory at the Case Western
Reserve University (CWRU) Bearing Data Center.

Ni et al. [80] recently presented a physics-informed framework for rolling bearing
diagnostics, whereby data were collected from a test rig under varying operating condi-
tions, such as different speeds and loads. The primary difficulties were extracting robust
physical information under these diverse conditions and integrating it into the network’s
architecture. To this end, a first layer was created using cepstrum exponential filtering,
emphasizing the modal properties in the signal. The modal properties, being linked to
the system characteristics rather than specific operating conditions, offered robustness to
varying conditions. The layer served to establish a network that can operate effectively
across diverse operating scenarios, including transitions from healthy to faulty states or
changes in fault locations. Another layer based on computed order tracking (COT) con-
verted time domain signals into angle domain signals, removing the influence of rotational
speed variations and allowing for the extraction of distinctive bearing fault features un-
der conditions of variable or time-varying speeds. Following the initial layers, a parallel
bi-channel Physics-Informed Residual Network (PIResNet) architecture was implemented.
The processing in the one channel was initiated with the domain conversion layer, followed
by the inclusion of a wide kernel CNN layer for the purpose of mitigating high-frequency
noise. Subsequently, two residual building blocks (RBBs) and max pooling layers were
sequentially introduced. In contrast, the other channel commenced with a modal-property-
dominant-generated layer aimed at enhancing the modal properties that were closely tied
to the intrinsic characteristics of the system, making them less susceptible to changes in the
operating conditions. The remainder of this channel mirrored the configuration of the other
with the objective of automatically extracting complex high-dimensional features from the
modal-property-dominant signal. Upon completing their respective processes, both chan-
nels were flattened and combined. Following this fusion, the fully connected and softmax
layers were used for the purpose of classification. The effectiveness of this approach was
verified through experiments involving bearings operating under varying speeds, loads,
and time-varying speed conditions. Comprehensive comparisons confirmed the excellent
performance of the PIResNet in terms of high accuracy, adaptability to different load and
speed scenarios, and resilience to noise.

Li et al. [81] presented a PIML framework to predict machining tool wear under vary-
ing tool wear rates, consisting of the three modules of piecewise fitting, a hybrid physics-
informed data-driven model, and automatic learning (meta-learning) (see Figure 11a).
Initially, a piecewise fitting strategy was adopted to estimate the empirical equation pa-
rameters and to calculate the tool wear rate in initial, normal, and severe wear states.
Subsequently, the physics-informed data-driven (PIDD) model inputs were determined
using the parameters derived from the piecewise fitting approach. Utilizing a cross physics–
data fusion strategy, i.e., fusing the data and the physical domain, these inputs, along
with the local features, were then mapped to the tool wear rate space, thus creating the
physics-informed model. Finally, meta-learning was employed to acquire an understand-
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ing of the dependable correlations between the tool wear rate and force throughout the
tool’s lifespan. To enhance interpretability and maintain the physical consistency of the
PIML model, a physics-informed loss term was formulated, which served to improve the
interpretability of the meta-learning process while ensuring that the PIML model adhered
to the governing fundamental physical principles. The authors compared the developed
approach for multiple sensory data (vibration, acoustic emission, etc.) and the tool flank
wear observations from conducted cutting experiments with various deep learning and
conventional machine learning models. Thereby, the proposed PIML framework could rel-
atively accurately predict the tool wear trends and featured a substantially higher accuracy
than a bi-directional backward gated recurrent unit (Bi-GRU) neural network, a CNN, long
short-term memory (LSTM), and support vector regression (SVR) (see Figure 11b).

 

Figure 11. (a) Proposed PIML framework and (b) predicted tool wear in x-direction of the proposed
model compared with various ML approaches. Reprinted and adapted from [81] with permission.

4. Concluding Remarks

To sum up, PIML has gained significant attention in various scientific fields and is now
emerging in the area of tribology. By integrating physics-based knowledge into ML, PIML
offers potential for understanding and optimizing tribological phenomena, overcoming
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the drawbacks of traditional ML approaches that rely solely on data-driven techniques. As
discussed within Section 3 and summarized in Table 1, PIML can be applied to various
tribological tasks.

Table 1. Overview of PIML approaches reported in the literature with their fields of application.

Field of Application PIML Approach Year Reference

Lubrication prediction

Using PINN to solve the 1D Reynolds BVP to predict the pressure
distribution in a fluid-lubricated linear converging slider 2021 [64]

Using PINN to solve the 2D Reynolds equation to predict the pressure and
film thickness distribution considering load balance in a fluid-lubricated

linear converging slider
2023 [66]

Using supervised, semi-supervised, and unsupervised PINN to solve the 2D
Reynolds equation to predict the pressure and film thickness distribution

considering load balance and eccentricity in a gas-lubricated journal bearing
2022 [68]

Using PINN to solve the 2D Reynolds equation to predict the behavior of
fluid-lubricated journal as well as two-lobe bearings 2023 [69]

Using PINN with soft and hard constraints to solve the 2D Reynolds
equation to predict the pressure distribution in fluid-lubricated journal

bearings at fixed eccentricity with constant and variable viscosity
2023 [70]

Using PINN to solve the 2D Reynolds equation to predict the pressure and
fractional film content distribution in fluid-lubricated journal bearings at

fixed and variable eccentricity considering cavitation
2023 [71]

Using PINN to solve the 2D Reynolds equation to predict the pressure and
fractional film content distribution in fluid-lubricated journal bearings at

fixed eccentricity considering cavitation
2023 [72]

Wear and damage prediction

Using semi PINN to find regression fitting parameters for Archard’s wear
law based upon small data from fretting wear experiments 2015 [77]

Using hybrid PINN to predict wind turbine bearing fatigue based upon a
physics-informed bearing damage model as well as data-driven grease

degradation approach
2020 [78]

Using physics-informed CNN with preceding threshold model for rolling
bearing fault detection 2021 [79]

Using physics-informed residual network for rolling bearing fault detection 2023 [80]

Using PIML framework consisting of piecewise fitting, a hybrid
physics-informed data-driven model, and meta-learning to predict tool wear 2022 [81]

As such, PINNs have been employed for lubrication prediction by solving the
Reynolds differential equation. Starting with the 1D Reynolds equation for a converg-
ing slider, in only two years, the complexity has already been tremendously increased,
now covering the 2D Reynolds equation, journal bearings with load balance and variable
eccentricity, and cavitation effects. A common limitation of PINNs is that a low loss in
terms of the residual of the partial differential equation does not necessarily indicate a
small prediction error. Therefore, in the future, it will be crucial to gain experience with
these novel techniques to find the most effective algorithms, configurations, and hyperpa-
rameters. Future work should also be directed towards expanding the PINN’s capabilities
by replacing the Reynolds equation with formulations that consider nonstationary flow
behavior, lubricant compressibility, or shear-thinning fluids, thus addressing a wider range
of application scenarios and obtaining more accurate solutions in various lubrication con-
texts. Moreover, further input parameters should be incorporated into the Reynolds or film
thickness equation. After training, which undoubtedly would be more complex and time-
consuming, this would ultimately allow for extensive parameter studies to be conducted
for optimization tasks, e.g., of textured surfaces [82], and facilitate faster computation,
making it promising for solving elastohydrodynamic problems where the pressure and
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film thickness need to be computed repeatedly in an iterative procedure until convergence
is achieved [71]. Thereby, the computational efficiency and overall accuracy might further
be improved by parallel neural networks and extreme learning machines [83,84] as well as
advanced adaptive methods, e.g., residual point sampling [85].

With regard to wear and damage prediction, semi or hybrid PIML approaches have
been employed so far, combining empirical laws and equations with experimentally ob-
tained data. Since testing costs and efforts are generally high or data are simply scarce,
these approaches tend to feature advantages compared to purely data-driven ML methods
in terms of the prediction accuracy. Since wear processes are inherently strongly statistical
and underly scatter, future work might incorporate the Bayesian approach within PIML for
uncertainty consideration and quantification. Thereby, a prior distribution is augmented
over the model parameters, representing the initial belief about their values. By combining
this prior distribution with the observed data, a posterior distribution is obtained, repre-
senting the updated beliefs about the parameters given the data. This would ultimately
favor the handling of limited and noisy data as well as the ability to quantify uncertainty,
providing valuable insights into the reliability of predictions. Furthermore, models used
with the aim of predicting damage in real-word tribo-technical systems have so far mainly
focused on rolling bearings. Future research should seek to explore the applicability of
PIML to other mechanical systems like gears. Such investigations could broaden the scope
of the employed method’s use towards vibration-based gear and surface wear propagation
monitoring.
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Abstract: A small sample size and unbalanced sample distribution are two main problems when
data-driven methods are applied for fault diagnosis in practical engineering. Technically, sample
generation and data augmentation have proven to be effective methods to solve this problem. The
generative adversarial network (GAN) has been widely used in recent years as a representative
generative model. Besides the general GAN, many variants have recently been reported to address its
inherent problems such as mode collapse and slow convergence. In addition, many new techniques
are being proposed to increase the sample generation quality. Therefore, a systematic review of GAN,
especially its application in fault diagnosis, is necessary. In this paper, the theory and structure of
GAN and variants such as ACGAN, VAEGAN, DCGAN, WGAN, et al. are presented first. Then,
the literature on GANs is mainly categorized and analyzed from two aspects: improvements in
GAN’s structure and loss function. Specifically, the improvements in the structure are classified into
three types: information-based, input-based, and layer-based. Regarding the modification of the
loss function, it is sorted into two aspects: metric-based and regularization-based. Afterwards, the
evaluation metrics of the generated samples are summarized and compared. Finally, the typical
applications of GAN in the bearing fault diagnosis field are listed, and the challenges for further
research are also discussed.

Keywords: generative adversarial network (GAN); bearing fault diagnosis; data augmentation; loss
function modification; GAN structure improvement; GAN review

1. Introduction

Rotating machinery has many applications in practical engineering, in which bearing
is one of the critical components [1–3]. Since bearings usually work in an extremely harsh
environment, they are prone to wear, cracks, and other defects, affecting the equipment’s
normal operation and even leading to huge economic losses and casualties. Therefore,
detecting and diagnosing the bearing fault in time is very important.

Bearing fault diagnosis means determining the health status of the bearing based
on monitoring data. Commonly used monitoring data include vibrations signal [1], tem-
perature signal [4], current signal [5], stray flux [6], acoustic emission [7], and oil film
condition [8]. Among them, the vibration signal is the most widely used in bearing fault
diagnosis as it has many advantages, such as low cost, high sensitivity, good robustness,
almost no response lag, and it is easy to install [1]. Traditional bearing fault diagnosis
is a knowledge-driven approach in which experienced engineers use signal processing
techniques to analyze vibration signals and determine the health status of bearings. There-
fore, traditional methods are entirely human-dependent and challenging for online fault
diagnosis. The advent of the industrial Internet has made massive data monitoring a reality.
As a result, data-driven fault diagnosis methods ensue. Many researchers have successfully
applied machine learning (ML) theory to bearing fault diagnosis and established diagnostic
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models to realize the automatic detection and identification of bearing faults. This field is
also known as intelligent fault diagnosis [9]. When using traditional ML methods such as
k-nearest neighbor (kNN), artificial neural network (ANN), and support vector machine
(SVM) for bearing fault diagnosis, the diagnostic model can establish a link between the
bearing fault characteristics and bearing health status, thereby automatically identifying
the health status of the bearing by calculating the fault characteristics of the input data [10].
Technically, the traditional ML methods still require the manual extraction and selection of
valid fault features from the collected data. Deep learning (DL), a branch of ML, enables
automatic feature extraction from the collected data, linking the raw monitoring data
directly to the health status of the bearing. Commonly used DL networks include convolu-
tional neural network (CNN), stacked autoencoder (AE), long short-term memory (LSTM),
deep belief network (DBN), and recurrent neural networks (RNNs). To date, DL has been
massively studied in prognostics and health management (PHM) [11–13]. The success of
the aforementioned data-driven fault diagnosis approaches is based on the premise that
there are sufficient labeled data to train the diagnostic model. However, this assumption is
usually unrealistic in practical engineering scenarios. For example, bearings operate under
normal conditions for most of their life cycle, with a small percentage of fault conditions.
Therefore, most bearing monitoring data are health data. The lack of fault data leads to two
main problems. The first is the small sample problem, which refers to the small sample size
of the fault data. The second is the data imbalance problem, which means the imbalanced
distribution of sample size among measurement data from different bearing health states.
Both of these two problems will lead to low diagnostic accuracy. Therefore, bearing fault
diagnosis under small samples and imbalanced datasets is a very significant and promising
research topic.

Data augmentation is an effective solution to address the small sample problem and
the data imbalance problem. Commonly used bearing fault data augmentation methods are
divided into oversampling techniques, data transformations, and generative models. As a
generative model, GAN is one of the most popular methods for fault data augmentation.
This paper will review the aforementioned fault data augmentation methods focusing
on GANs. GANs are initially utilized to generate images in the field of computer vision.
Liu et al. [14] first introduced GAN to bearing fault diagnosis. In recent years, many
researchers improved the training technique and evaluation method of GAN to better
apply it to bearing fault data augmentation. Based on our review of existing literature and
our experience, we divide these improvements into three categories: improvements in the
network structure, improvements in the loss function, and improvements in the evaluation
of generated data.

Although there have been several review papers published related to data-driven
machinery fault diagnosis, they focus on the whole artificial intelligence technology in
mechanical fault diagnosis [1,9,11]. These papers cover both traditional machine learning
methods and deep learning and have a wide range of study objects, including bearings,
gearboxes, induction motors, and wind turbines. Furthermore, they focus on the improve-
ments in the diagnostic model. As one of the key techniques to improve the accuracy of
fault diagnostic models, data augmentation, especially data synthesis using GAN, has
developed rapidly in recent years. Therefore, it is necessary to review the research in the
field of bearing fault data generation, summarize the existing outcomes, and give possible
prospects for future exploration.

The motivation of the study is to provide a systematic review of GAN, including theory,
development, problems, and prospect. As presented in Figure 1, the rest of the review
is organized. The research methodology and initial analysis are described in Section 2.
Section 3 introduces three common methods for data augmentation. Section 4 focuses
on the improvements and applications of GAN in the field of bearing fault diagnosis.
Specifically, the improvements in GAN are categorized into structure improvement and
loss function improvement. The evaluation metrics for the sample generation quality of
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GAN are also discussed in this section. Finally, the conclusions and prospects are given
in Section 5.

Figure 1. Structure of review analysis.

2. Research Methodology and Initial Analysis

2.1. Research Methodology

To ensure the quality of the literature, the Web of Science Core Collection database
was selected for the literature search in this paper. Using the topic keywords “bearing fault
diagnosis AND (data augmentation OR data synthesis OR data generation)”, we initially
obtained a total of 160 English journal and conference articles [15], as shown in Figure 2a.
The search results include research articles published up to October 2022. To collect the
literature as comprehensively as possible, the topic keywords “bearing fault diagnosis
AND oversampling” and “bearing fault diagnosis AND generative adversarial network”
were adopted to supplement our search results. The search results [16] of the latter are
shown in Figure 2b. In addition, several relevant articles were found and included in our
analysis after citation analysis. We first skimmed all the articles for the literature analysis to
filter out the irrelevant ones. The remaining articles were further analyzed and categorized
for study.
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Figure 2. Publications related to data augmentation and GANs (from 2013 to 2022). (a) Publications
related to bearing data augmentation. (b) Publications related to bearing fault diagnosis and GANs.
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2.2. Initial Literature Analysis

Figure 2a shows that there has been an increasing number of studies on data aug-
mentation for bearing fault diagnosis in the last decade. This reflects the fact that there
is a lack of fault data in practice and the necessity to address this problem. According
to Figure 2b, research on bearing fault diagnosis and GANs started in 2018 and rapidly
became a research hotspot. From 2018 to 2022, the number of publications per year has
grown substantially. Keyword co-occurrence analysis was performed using VOSviewer [17].
As shown in Figure 3, the initial research hotspot for GAN is the combination with CNN.
At this time, the popular DCGAN was applied to bearing fault diagnosis. On the other
hand, CNNs were commonly used as fault classification models. The next hot topic was
the application of GAN as a data augmentation technique to generate fault data to address
the small sample and imbalanced data problems, with fault classification problems being
the most studied application scenario. Another preferred research direction was improving
the training process for GANs. In recent years, transfer learning (TL) has become a popular
research issue related to GAN.

Figure 3. Results of keywords’ co-occurrence analysis.

3. Data Augmentation Methods for Bearing Fault Diagnosis

Training bearing fault diagnosis models require a large amount of fault data. However,
fault data are usually lacking in practical engineering. Using data augmentation techniques
to generate fault data is an effective solution. Data augmentation is the process of creating
new similar samples for the original dataset, which can discover the unexplored space of
the input data. This helps reduce overfitting when training a machine learning or deep
learning model and enhances the generalization performance. Based on our analysis of
the existing literature, the data augmentation methods for bearing fault diagnosis are
divided into oversampling techniques, data transformations, and GANs. In the following,
the introduction of these three data augmentation methods will be presented.

3.1. Data Augmentation Using Oversampling Techniques

Oversampling is a simple and effective method for data augmentation. The most basic
oversampling method is random oversampling [18], in which new samples are generated
by randomly replicating the samples of the minority class. However, this method does not
increase the amount of information in the dataset and may increase the risk of overfitting.
To overcome this problem, Chawla et al. [19] further proposed the synthetic minority
over-sampling technique (SMOTE), which generates new samples by linear interpolation
between two original samples. However, this method does not consider the probability
distribution of the original data. Therefore, adding generated samples to the original dataset
may lead to a change in its distribution. In addition, the new dataset may not involve real
fault information. Although the two above methods can generate samples of the minority
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class, the synthetic samples cannot provide more fault information. Consequently, they
are not feasible in bearing fault diagnosis. Usually, researchers use the two methods as
benchmarks to demonstrate the superiority of their new methods [20].

SMOTE is a pioneer oversampling method, based on which many new oversampling
techniques have been proposed and successfully improved bearing fault diagnosis accuracy.
Jian et al. [21] presented a novel sample information-based synthetic minority oversampling
technique (SI-SMOTE). It evaluates the sample information based on the Mahalanobis
distance, thereby identifying informative minority samples. The original SMOTE is merely
utilized to generate new samples of informative minority classes. Hao et al. [22] proposed
the K-means synthetic minority oversampling technique (K-means SMOTE) based on the
clustering distribution. This uses the K-means algorithm to filter out target clusters. As a
result, only the samples of selected clusters are synthesized.

In addition, researchers have developed other oversampling methods that have proven
effective in bearing fault diagnosis. For example, Razavi-Far et al. [23] developed a novel
imputation-based oversampling technique to generate new synthetic samples of the mi-
nority class. Their approach generates a set of incomplete samples representative of the
minor classes and uses the expectation maximization (EM) algorithm to produce new
synthetic samples of the minor classes. To overcome the problem of multi-class imbalanced
fault diagnosis, Wei et al. [24] proposed the sample-characteristic oversampling technique
(SCOTE). It transforms the problem into multiple binary imbalanced problems.

3.2. Data Augmentation Using Data Transformations

The data transformation methods are inspired by data augmentation techniques in
computer vision, in which image transformations such as flipping and cropping are often
utilized to obtain new samples to enrich the training set. For example, when using vibration
signals for the intelligent fault diagnosis of bearings, there are usually two types of input
data. The first one is the original vibration signals, which can be directly fed into the
machine learning or deep learning model, and the model learns the features of the time
series. The other one is images. The vibration signals are first converted into images.
This not only enables the utilization of the feature extraction capability of the deep neural
network such as CNN for images but also introduces commonly used image augmentation
techniques to the field of bearing fault diagnosis.

Raw vibration signals are one-dimensional time series. To construct datasets, it is
necessary first to clip time series using the overlapping segmentation method. With the
length of the sample and the length of overlap defined, a large number of samples can be
obtained. Zhang et al. [25] first proposed this method and verified that the augmented
dataset could improve the fault diagnosis accuracy. Kong et al. [26] proposed a novel sparse
classification approach to diagnose planetary bearings in which overlapping segmenta-
tion is embedded to augment the vibration data. Inspired by image data augmentation,
researchers also use similar tricks to enhance the obtained dataset. The most intuitive
way is to add Gaussian white noise to the samples. Based on the analysis of the retrieved
literature, most of them used this method. Qian et al. [27] first sliced the vibration signal to
form a dataset, 25% of which was added with Gaussian noise. Subsequently, the samples
were mixed to train their model. Faysal et al. [28] went one step further by proposing a
noise-assisted ensemble augmentation technique for 1D time series data. Other commonly
used image transformation methods have also been proven effective on time series data,
such as translation, rotation, scaling, truncation, and various flipping operations [29–34].
Considering the inherent characteristics of vibration signals, it is also an effective method to
rearrange the data points of samples. For example, the samples can be equally divided into
two parts to form two groups. New samples can subsequently be obtained by randomly
recombining the data from the two groups [35]. Ruan et al. [36] proposed a method called
signal concatenation to further increase the number of samples. The original samples are
divided into several parts, which are augmented, respectively, and concatenated to form
new samples finally.
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Some researchers also convert vibration signals into images to diagnose bearing faults.
One option is to rearrange the time series into a two-dimensional form and represent
them as images. Subsequently, commonly used image augmentation techniques such as
flipping can be utilized to double the size of the dataset [37]. Another common option is to
use signal processing techniques to transform the vibration signal into a time–frequency
spectrogram. For example, Yang et al. [38] introduced the image segmentation theory to
augment planetary gearbox-bearing fault spectrogram data fed to the subsequent fault
diagnostic model. Specifically, the researchers proposed wavelet transform coefficients
cyclic demodulation to obtain a 2D spectrogram of the original vibration signal. They
divided the spectrogram into small blocks and defined the overlapping length. This
generates smaller spectrograms to compose balanced datasets.

3.3. Data Augmentation Using GANs

According to the purpose of the task, ML/DL models can be generally classified into
two categories: discriminative and generative models. Typical discriminative tasks include
regression and classification, whereas generative models are widely used to synthesize
data. GAN is a kind of generative model. Since it was proposed by Goodfellow et al. [39]
in 2014, it has become the most popular method for data augmentation. In contrast to
other generative models, such as variational autoencoder (VAE), the idea of adversarial
training was introduced in GAN. It consists of two neural networks called discriminator
and generator. The structure of a general GAN is shown in Figure 4a.

Generator G is used to generate realistic samples from random noise z. The dis-
criminator D aims to distinguish between real samples x and generated samples G(z).
The adversarial learning of GAN is like a zero-sum game. In the beginning, the discrimina-
tor can easily distinguish fake samples from real samples because the samples generated
from random noise are also random. However, if the GAN is well trained, the discriminator
will no longer be able to judge the authenticity of the samples, and the generator can be
used to synthesize realistic samples. Essentially, two data distributions are mapped here,
from the distribution of random noise to that of real samples. In the training process,
all losses are calculated based on the output of the discriminator. Since the task of the
discriminator is to judge the authenticity of the input, it can be regarded as a binary clas-
sification problem. Therefore, the binary cross-entropy is used as the loss function. First,
the discriminator needs to be optimized while the generator is fixed. If 1 denotes true
and 0 denotes false, the optimization objective of the discriminator can be formulated as
Equation (1), which means to judge the real samples as true and the generated samples
as false. After the discriminator is optimized, the discriminator is fixed and the generator
needs to be optimized. The optimization goal of the generator is that the discriminator
judges the generated samples as true, which can be formulated as Equation (2).

max
D

L(D) = Ex∼pdata [log D(x)] +Ez∼pz [log(1 − D(G(z)))] (1)

min
G

L(G) = Ez∼pz [log(1 − D(G(z)))] (2)

where D(x) denotes the probability that an original sample is judged to be real data and
D(G(z)) is the probability that a generated sample is judged to be fake data.

GAN is initially applied to computer vision to augment the image data [40]. However,
as mentioned in Section 2.2, GAN was first introduced to bearing fault diagnosis in 2018 [14]
and has become a popular research topic in recent years. Wang et al. [41] then used GAN
to generate mechanical fault signals to improve the diagnosis accuracy. Section 4 will
introduce the improvements and applications of GANs in bearing fault diagnosis in detail.

26



Lubricants 2023, 11, 74

(a) Structure of the general GAN

(b) Structure of the CGAN

(c) Structure of the ACGAN

(d) Structure of the VAEGAN

(e) Structure of GAN with adaptive input

(f) Structure of the C-DCGAN

Figure 4. Structure of general GAN and variants.
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4. Improvements and Applications of GANs in Bearing Fault Diagnosis

The original GAN has three primary problems: unstable convergence, model collapse,
and vanishing gradient. To overcome these problems and enhance the quality of sam-
ple generation, many variants of GAN have been proposed in recent years. We classify
them into two categories: network structure-based improvements and loss function-based
improvements. Apart from this, the quality evaluation of the generated samples is a mean-
ingful topic. At the end of this section, the applications of GANs in bearing fault diagnosis
are summarized.

4.1. Improvements in the Network Structure

According to different improvement ideas, we further classify the network structure-
based improvements into three categories: information-based improvements, input-based
improvements, and layer-based improvements.

4.1.1. Information-Based Improvements

The input to the generator of a general GAN is random noise, which can easily lead to
mode collapse. When the mode collapse happens, the GAN’s generator can only produce
one or a small subset of the different outputs. To address this problem, Mirza et al. [42]
proposed the conditional GAN (CGAN). CGAN adds conditional information to the dis-
criminator and generator of the original GAN. The input to CGAN will be a stitching
of conditional information with the original input. This additional information such as
category labels can control and stabilize the data generation process. By setting different
conditional inputs, the samples of different categories can be generated. The other idea is
to improve the discriminator so that it can judge the not only authenticity but also output
the class of the samples like a classifier. Auxiliary classifier GAN (ACGAN) introduces an
auxiliary classifier to the discriminator, which can not only judge the authenticity of the
data but also output the class of the data, thereby improving the stability of the training and
the quality of the generated samples [43]. The role of the auxiliary classifier is to predict
the category of a sample and pass it to the generator as additional conditional information.
ACGAN enables a more stable generation of the realistic samples of a specified category.
Both CGAN and ACGAN enhance the performance of the general GAN by providing more
information. That is why they are regarded as an information-based structural improve-
ment in this paper. Their structures are presented in Figure 4b,c. The original CGAN and
ACGAN were successfully applied to bearing fault diagnosis. Wang et al. [44] utilized
CGAN to generate the spectrum samples of vibration signals. The use of category labels
as condition information to generate the samples of various categories of bearing faults
proved to be effective. In [45], ACGAN was directly utilized to generate 1D vibration
signals. Experimental results revealed that generated vibration samples improved the
accuracy of the bearing fault diagnostic model from 95% to 98%. Some researchers were
inspired by the idea of providing more information by the addition of classifiers or other
modules. Zhang et al. [46] designed a multi-modules gradient penalized GAN. A classi-
fier as an additional module was added to the Wasserstein GAN with a gradient penalty
(WGAN-GP). In [47] and the generator was integrated with a self-modulation (SM) module,
which enables the parameter updating based on both the input data and the discriminator.
This makes the convergence of the training faster. These papers demonstrate that the idea
of designing and integrating more modules concerning the structure of GAN with the goal
of providing more useful information is feasible.

4.1.2. Input-Based Improvements

In the general GAN, random noise is fed into the generator to synthesize realistic
samples. This may not be reasonable for specific data distributions. Some researchers
have made innovative improvements to the structure of the input of the generator, thereby
improving the quality of the generated samples. Larsen et al. [48] combined the VAE and
GAN and proposed VAEGAN. VAE is an earlier proposed generative model consisting of
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an encoder and a decoder. The encoder maps the input data to points in the latent space,
which are converted back into points in the original space by the decoder. By learning
a latent variable model, VAE can be used to generate more data. In a VAEGAN model,
the encoder is used to encode existing data, and the encoded latent vectors are used as
input to the generator or decoder instead of the random noise. VAEGAN utilizes the
latent variable model of VAE to generate the data and uses the discriminator of GAN
to evaluate the authenticity of the generated samples. The advantage of VAEGAN is
that it can generate high-quality samples and can operate in the latent variable space,
such as performing sample interpolation and other modifications. Figure 4d shows the
structure of the VAEGAN. Rathore et al. [49] applied VAEGAN to generate time–frequency
spectrograms and balanced the bearing fault dataset. The experiment verified that the
generated samples are more reasonable and of higher quality. There are a lot of other
alternatives to random noise out there. For example, Zhang et al. [50] proposed an adaptive
learning method to update the latent vector instead of sampling from Gaussian distribution,
realizing adaptive input instead of random noise, as shown in Figure 4e. By using different
distributions to generate the latent vector’s digits, a better combination effect can be
produced. Improving the input structure of the discriminator is, likewise, a good starting
point. In [51], the input of the discriminator was changed from real data to latent encoding
by the encoder. The mutual information between real data and latent encoding was
constrained by the proposed variational information technique, which limited the gradient
of the discriminator and ensured a more stable training process.

4.1.3. Layer-Based Improvements

Considering CNN’s powerful feature extraction capability, convolutional layers were
introduced into a GAN called deep convolutional GAN (DCGAN) and applied to image
augmentation [52,53]. The original generator of DCGAN is shown in Figure 5. DCGANs
have also proven to be effective in vibration signal augmentation. Luo et al. [54] integrated
CGAN and DCGAN into C-DCGAN, as shown in Figure 4f. The augmented data suc-
cessfully improved the accuracy of the bearing fault diagnosis. Based on the DCGAN,
a multi-scale progress GAN (MS-PGAN) framework was designed in [55]. This concate-
nates multi-DCGANs, which share one generator. Through progressive training, high-scale
samples can be generated from low-scale samples. Imposing the spectral normalization
(SN) on the layers is another useful trick. Tong et al. [56] proposed a novel auxiliary classi-
fier GAN with spectral normalization (ACGAN-SN) to synthesize the bearing fault data,
in which spectral normalization was added to the output of each layer of the discrimina-
tor. The introduction of the spectral normalization technique makes the training process
more stable.

Figure 5. Structure of the original DCGAN generator [53].

The three above cases of layer-based improvements reveal that: (1) convolutional
neural network can improve the performance of GAN and produce good results in bearing
fault data generation; (2) concatenating multiple neural networks can generate high-scale
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samples of high quality; and (3) proposed layer normalization methods such as spectral
normalization are worth trying.

4.2. Improvements in the Loss Function
4.2.1. Metric-Based Improvements

The original GAN uses J-S divergence to measure the distance between real and
generated data distributions. However, it has a drawback that J-S divergence is a fixed
value if the distance between distributions is too far, and thereby cannot measure how close
two distributions are. This causes vanishing gradient in the training process [57]. To solve
this problem, Arjovsky et al. [58] proposed Wasserstein GAN, in which J-S divergence was
replaced by Wasserstein distance. As a result, the loss function of the generator and the
discriminator can be formulated as follows:

LG
WGAN = −EpG(z) [D(G(z))] (3)

LD
WGAN = −Epx [D(x)] +EpG(z) [D(G(z))] (4)

where x and G(z) represent the real and generated data, respectively. D(.) is the probability
that the data are judged to be real. Compared to the loss functions of the original GAN,
the implementation of the Wasserstein distance discards the operation of logarithms in the
loss functions [59].

WGAN has been proven effective in many bearing fault diagnosis studies.
Zhang et al. [60] proposed an attention-based feature fusion net using WGAN as the
data augmentation part. The experimental results verified the feasibility of the scheme
under small sample conditions. In [61], a novel imbalance domain adaption network was
presented for rolling bearing fault diagnosis, in which WGAN was embedded. The data
imbalance between domains and between fault classes in the target domain was consid-
ered. WGAN was used to enhance the target domain datasets. However, the performance
of WGAN is still limited because of weight clipping. To overcome this problem, Gulra-
jani et al. [62] combined WGAN with the gradient penalty strategy (WGAN-GP), which is
successful in image augmentation. The difference between WGAN-GP and WGAN is that
a regularization term is added to the loss function of the discriminator. The loss function of
the generator remains the same.

LG
WGAN−GP = LG

WGAN (5)

LD
WGAN−GP = LD

WGAN + λLgp (6)

Both WGAN and WGAN-GP use the Wasserstein distance to assess the difference
between the generated samples and the training samples, which is superior to the J-
S divergence, and WGAN-GP adds a gradient penalty on top of WGAN to eliminate
the problem of gradient explosion in the network. The discriminator’s loss function
incorporates a gradient penalty in addition to the judgment of real and fake samples,
smoothing the generator and decreasing the risk of mode collapse.

Apart from the Wasserstein distance, Mao et al. [63] proposed the least squares GAN
(LSGAN), which uses the least squares error to measure the distance between the generated
and real samples. The objective functions of the discriminator and generator are as follows:

min
D

L(D) = Ex∼px (D(x)− b)2 +Ez∼pz(D(G(z))− a)2 (7)

min
G

L(G) = Ez∼pz(D(G(z))− c)2 (8)

Since the discriminator network’s goal is to distinguish between real and fake samples,
the generated and real samples are encoded as a and b, respectively. The objective function
of the generator replaces a with c, indicating that the discriminator treats the generated
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samples as real samples. It has been proven that the objective function is equivalent to the
Pearson χ2 divergence in a particular case. In [64], LSGAN was used to generate traffic
signal images. The results of the comparison experiments show that LSGAN outperforms
WGAN and DCGAN in such an application scenario. In [65], Anas et al. reported on a new
CT volume registration method, in which LSGAN was employed to learn the 3D dense
motion field between two CT scans. After extensive trials and assessments, LSGAN shows
higher accuracy than the general GAN in estimating the motion field. LSGAN can alleviate
the problem of vanishing gradient during training and generate higher-quality images
compared to the general GAN. However, based on our literature research, its application in
the field of bearing fault diagnosis was not prevalent. This may be due to the fact that it is
not suitable for the generation of bearing fault data. For example, LSGAN shows a worse
performance than DCGAN in [66].

Energy-based GAN (EBGAN) [67] introduces an energy function into the discriminator
and trains the generator and discriminator by optimizing the energy distance. The discrim-
inator assigns low energy to the real samples and high energy to the fake samples. Usually,
the discriminator is a well-trained autoencoder. Instead of judging the authenticity of the
input sample, the discriminator calculates its reconstruction score. The loss functions of the
discriminator and the generator can be formulated as follows:

L(D) = Ex∼Pdata

[
D(x) + [m − D(G(z))]+

]
(9)

L(G) = Ez∼Pz [D(G(z))] (10)

where m is a positive margin used for the selection of energy functions and [·]+ = max(0, ·).
Yang et al. [68] combined EBGAN and ACGAN in their proposed bearing fault diagno-
sis method under imbalanced data and obtained good sample generation and classifica-
tion performance.

Boundary equilibrium GAN (BEGAN) [69] is a further improvement on EBGAN.
The main contribution is the introduction of the ratio between the autoencoder reconstruc-
tion error and the degree of boundary balance of the generator and discriminator to the loss
function. The new loss function balances the competition between the generator and the
discriminator, resulting in more realistic generated samples. The loss functions of BEGAN
can be formulated as follows:

L(D) = Ex∼Pdata [D(x)− ktD(G(z))] (11)

L(G) = Ex∼Pz [(1 − D(G(z)))] (12)

where kt is a weighting coefficient to balance the performance of the generator and
the discriminator.

Relativistic GAN (RGAN) [70] is another well-known variant of GAN, whose primary
idea is to turn the discriminator’s output into relative authenticity, i.e., the degree to
which the discriminator finds the generated samples to be more realistic than the real
ones. RGAN optimizes the model using the relative authenticity loss function and has
been demonstrated to converge more easily and be more effective in creating high-quality
images. However, RGAN still lacks relevant research in the field of bearing fault diagnosis.

This subsection examines various well-known metric-based improvements for the loss
function and their effective applications, particularly in bearing fault diagnosis. The loss
functions of the aforementioned GAN variants, as well as the general GAN, are all compara-
ble in that they calculate a certain distance between two distributions, with the optimization
goal of minimizing this distance. Much of the literature has verified the validity of the
Wasserstein distance in the field of bearing fault diagnosis. However, there are still a
number of alternatives that require further research.

31



Lubricants 2023, 11, 74

4.2.2. Regularization-Based Improvements

Directly applying WGAN-GP to bearing fault diagnosis rarely yields satisfactory re-
sults. However, the idea of adding regularizations to the loss function has been proven
effective in bearing fault diagnosis. In [71], a new GAN named parallel classification
Wasserstein GAN with gradient penalty (PCWGAN-GP) is presented, in which the Pearson
loss function was introduced to enhance the performance of the GAN. It can generate the
faulty samples of bearings with healthy samples as input. The maximum mean discrepancy
(MMD) is a commonly used metric to measure the similarity between domains in transfer
learning. Inspired by this, Zheng et al. [55] introduced the MMD to the loss function of
WGAN-GP as a new penalty. The experimental results verified the effectiveness of this
method in bearing fault sample augmentation. Ruan et al. [72] added the error of fault
characteristic frequencies and the results of the fault classifier to the loss function. The im-
provement in sample quality is evident in the envelope spectrum. In [50,51], the proposed
reconstruction module or representation matching module maps the distribution between
real and generated data. The calculated difference is sensitive to the data class and can
provide additional constraints on the generator. The collected regularizations to the loss
function are listed in Table 1.

Table 1. Regularization to the loss function of various GANs.

Number Loss Formulation Source

1 PCWGAN-GP PC
(

x̃k
j , x̄k

)
=

1
n

n

∑
j=1

∑M
m=1

(
x̃k

j,m − x̃k
j,m

)(
x̄k

m − x̄k
m

)
√

∑M
m=1

(
x̃k

j,m − x̃k
j,m

)2
√

∑M
m=1

(
x̄k

m − x̄k
m

)2

[71]

2 MS-PGAN MMD2[DX , DY ] =

∥∥∥∥∥∥ 1
x

x

∑
i=1

f (xi)− 1
y

y

∑
j=1

f (yi)

∥∥∥∥∥∥
2

[56]

3 FCFE Lfrequency =
N

∑
i=1

(∣∣∣Mi
real − Mi

fake

∣∣∣+ ∣∣∣Fi
real − Fi

fake

∣∣∣) [72]

4 WCGAN-HFM HFM = ∑
l

ωl · |Dl(x | y)− Dl(G(z | y))| [73]

5 Entropy H(G(z)) = Ez∼Pz

[
‖z − En(G(z))‖2

]
[74]

(1) M is the dimension of generated samples, x̃k
j,m denotes the mth element in the j-th sample with the category

of k, and x̄ represents the mean value of x. (2) Maximum mean discrepancy (MMD) measures the similarity
between two distributions in transfer learning. The value of MMD2 was used as the MMD penalty between the
source domain Dx and the target domain Dy. (3) N denotes the maximum order of FCF. M stands for the i-th
order FCF amplitude from the real and generated sample. F represents the i-th order FCF frequency from the
real and generated sample. (4) ωl is the weighting factor of the l-th layer loss. Hierarchical feature matching
(HFM) provides additional information from the perspective of differences between classes. (5) En is an encoder
with parameters and En(G(z)) denotes the intermediate layer feature of the generated sample output by the
discriminator. The entropy reflects the diversity of generated samples.

Adding regularizations to the loss function usually provides more information and
constraints, which helps to stabilize the GAN training and improve the quality of the
generated samples. On the other hand, knowledge of physics, such as bearing fault
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mechanisms, can be combined with the loss function of the general GAN, which can not
only refine the quality of the generated samples but also make them more interpretable.

4.2.3. Summary

Based on our analysis, there are two kinds of methods to improve the loss function:
metric-based improvements and regularization-based improvements. The former is to
adopt a new metric to replace the original J-S divergence, thereby more efficiently measuring
the similarity between data distributions. The Wasserstein distance is such an excellent
example. WGAN and its variants have been used a lot in bearing fault diagnosis. Other
GAN variants, such as LSGAN, EBGAN, BEGAN, and RGAN, require more investigation
in the field of bearing fault diagnosis. However, proposing entirely new metrics requires
advanced mathematical knowledge, which is a challenging work. The improvements in
the loss function by adding regularization terms are more popular. Introducing more
constraints can effectively stabilize the training of GANs and enable the generation of
high-quality samples. The introduction of physical knowledge as a regularization term into
GAN has also been shown to be feasible and deserves more research.

4.3. Evaluation of Generated Samples

The samples generated by GANs are not really collected from mechanical equipment.
Therefore, to ensure their feasibility as training data, it is necessary to evaluate the quality
of the generated samples, which can be considered in three aspects: similarity, creativity,
and diversity.

High similarity means that the generated and real data have the most similar distri-
butions possible. This is the most essential requirement for generated data. Based on our
analysis of the existing literature, the evaluation methods concerning their similarity can
be divided into two categories: qualitative methods and quantitative metrics.

Qualitative methods refer to the comparison of data visualizations, including the time
and frequency domains. This method enables an initial evaluation of the similarity between
samples. In the time domain, the most intuitive evaluation method is to compare the wave-
forms of the generated signal and the real signal. Amplitude and peaks should be noticed.
In the frequency domain, it is valuable to check the fault characteristic frequencies (FCFs),
which are crucial for bearing fault diagnosis [71,72]. In addition, the features extracted from
real and generated samples can be compared using the t-distributed stochastic neighbor
embedding (t-SNE) technique as a qualitative approach to validate the usability of the
generated samples [44,57,71].

To further accurately quantify the similarity, some indicators have been proposed.
Cosine similarity (CS) can measure the similarity between two sequences. In [72], cosine
similarity was adopted as the time domain similarity metric to evaluate the quality of the
generated bearing fault samples. However, a relatively small cosine similarity value can
be obtained if the samples are too long. The maximum mean discrepancy (MMD) was
initially used to measure the similarity between domains in transfer learning. In [55], it is
introduced to measure the similarity between the generated and real samples. In [56,60,71],
the correlation between the spectra of real samples and those of generated samples was
calculated by the Pearson correlation coefficient (PCC). The K-L divergence and the Wasser-
stein distance calculate the similarity between data distributions, which can also be used to
quantitatively characterize the quality of the generated samples [47,49,56]. Some bearing
fault diagnosis schemes first use signal processing techniques such as short-time Fourier
transform (STFT) to convert the original vibration signal into a time–frequency spectro-
gram, and the features are extracted from the spectrograms for subsequent fault diagnosis.
Since the GAN is used to directly generate images, it is reasonable to assess the quality
of the generated images. In [49], the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) were utilized to investigate the quality of the generated
samples. Furthermore, the GAN-test can be conducted to measure the feasibility of the
generated data [71]. The real and generated data can be treated as the training and test sets,
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respectively. The accuracy of the diagnostic network shows the variation between real and
generated data. The collected metrics for similarity evaluation are listed in Table 2.

Table 2. Evaluation metrics for the sample generation quality of GAN.

Number Metric Formulation Source

1 CS
cos θ =

�m ·�n
|�m| · |�n|

[72]

2 MMD MMD[F, p, q] = sup
f∈F

(
Ex∼p[ f (x)]− Ex∼q[ f (x)]

) [56]

3 PCC
PCCX,Y =

cov(X, Y)
σXσY

[57,60,71]

4 KLD
DKL(P‖Q) = ∑

x∈X
P(x) log

(
P(x)
Q(x)

) [51]

5 WD
WD(P1, P2) = inf

γ∼(P1,P2)
E(x,y)∼γ[‖x − y‖] [57]

6 PSNR
PSNR = 10 log10

(
MAX2

I

MSE2

)
[51]

7 SSIM SSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) [51]

(1) m and n stand for two time series. (2) F denotes a given set of functions, p and q are two independent
distributions, x and y obey p and q, respectively, sup denotes an upper bound, and f () denotes a function
mapping. (3) X and Y are two variables, σX and σY are the standard deviations of X and Y, respectively. (4) P
and Q are two probability distributions in the same probability space, and X is the relative entropy from Q to P.
(5) P1 and P2 are two probability distributions, and γ is a joint probability distribution. (6) MAXI represents the
image with the maximum valid value of the pixel in the image, and MSE is the mean squared error estimated
over two images.. (7) μx , μy, σx , σy, σxy are the mean, standard deviation, and cross-covariances of the x and y. C1,
C2, and C3 are the regularization constants.

Creativity and diversity are further requirements for generated data. The former
means that the generated signals are not duplicates of the real signals, and the latter
requires that the generated signals are not duplicates of each other. In [73], the SSIM and
entropy were adopted to quantify the creativity and the diversity of the generated images.
Specifically, the SSIM was used to cluster similar generated samples, and the entropy of
these clusters reflects their diversity. The entropy can be formulated as follows:

Entropy = −
m

∑
i

pi log pi (13)

where m is the number of clusters and pi denotes the probability that the i-th cluster belongs
to non-replicated clusters. The duplication occurs when the SSIM is equal to or greater
than 0.8. Greater cluster entropy indicates that the generated signals are more diverse.
However, there is still a lack of studies evaluating the creativity and diversity of bearing
vibration signals.

4.4. Applications of GAN in Bearing Fault Diagnosis

Small sample and data imbalance are two main challenges encountered in data-driven
bearing fault diagnosis. In practical engineering, the collected fault data are usually
insufficient. On the one hand, machinery and its components are in a healthy status under
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normal production conditions. On the other hand, they cannot remain faulty for long.
Therefore, it is expensive or even impractical to obtain sufficient fault data for the training
of diagnostic models. Meanwhile, the probability of various faults, including inner ring
faults, outer ring faults, and many other faults, varies due to the inherent characteristics of
bearings and different working environments. Therefore, the collected fault data are also
unbalanced. The two problems restrict the performance of various ML/DL models and lead
to relatively low diagnosis accuracy. An intuitive and widely used solution is to synthesize
samples artificially, resulting in a sufficient and balanced dataset. The commonly used data
augmentation approaches in bearing fault diagnosis, including traditional oversampling
methods and data transformation methods, were covered in previous sections of this paper.
As a generative model, one of the most fundamental and important applications of GAN is
data augmentation. It is a very promising alternative method for generating bearing fault
data. Bearing fault data can be classified into two types based on data dimensions, namely
one-dimensional fault data and two-dimensional fault data. The raw vibration signal is
one-dimensional time series. GANs are able to directly generate one-dimensional vibration
data [45,75]. As the frequency domain of the vibration signal contains a wealth of fault
information, in many cases, the raw vibration data are converted from the time domain
into the frequency domain. GAN can also be used to generate one-dimensional spectrum
data [76,77]. As GAN has its origins in image processing from computer vision, there is no
doubt that GAN can also be used to synthesize two-dimensional fault data. One option is
to reshape one-dimensional fault data into two-dimensional data [72], while another is to
utilize GAN to generate the two-dimensional time–frequency spectrograms of vibration
signals [78].

The variety of working conditions is another key issue for data-driven bearing fault
diagnosis. Differences in equipment and operational conditions have an impact on the
diagnostic model’s generalization performance. GAN can also be applied to transfer
learning. Transfer learning refers to the application of a previously trained model to a new
task to achieve better performance [79,80]. GAN or the idea of adversarial learning can
be integrated into a general transfer learning method to improve the performance of the
transfer learning method [27,36,81]. For example, Pei et al. [82] combined WGAN-GP and
transfer learning in their proposed rolling bearing fault diagnosis method. Using fault
data from only one working condition as the source domain, the fault diagnosis of the
target domain under different working conditions is achieved. On the other hand, GAN
enables the data transfer between the source and target domains. In [61], Zhu et al. applied
adversarial learning to achieve a balance between the data distributions of source and
target domain.

From the perspective of application scenarios, promising experimental results have
been demonstrated in the two main tasks of bearing fault diagnosis: fault classification
and remaining useful life (RUL) prediction. Fault classification is the basic task of fault
diagnosis, including the classification of different fault types [74] and the classification
of faults of different severity levels [78,83]. To improve the accuracy of bearing RUL
prediction, there have also been some studies on the generation of bearing aging data using
GANs [84–87].

In summary, starting from the challenges encountered in practical engineering, GAN
can not only be used as a data augmentation technique to address the problem of small
sample and data imbalance problems, but can also be applied to transfer learning to
improve the ability of models in across-domain diagnosis. Starting from the application
scenarios of bearing fault diagnosis, GAN contributes to two major tasks: fault classification
and RUL prediction.

5. Conclusions

5.1. Summary

The small sample and data imbalance problems seriously hinder the deployment of
DL-based techniques in bearing fault diagnosis. Apart from traditional data augmentation
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techniques such as oversampling and data transformation, GAN is the most promising
method to enable the artificial synthesis of high-quality samples. This paper first reviewed
the development of traditional data augmentation methods for bearing fault diagnosis.
Subsequently, the recent advances of GANs in bearing fault diagnosis are introduced in
detail. Firstly, we divide the improvements of GANs into two primary categories: the
improvements in the network structure and the improvements in the loss function. For the
former, we further summarized them into three types: information-based, input-based,
and layer-based improvements. Likewise, the improvements of loss function are divided
into two categories: metric-based improvements and regularization-based improvements.
Additionally, we also reviewed the commonly used evaluation methods for generated
samples. Finally, we work through the applications of GANs in bearing fault diagnosis. To
give an overview of the comparison, Table 3 summarizes the advantages and disadvan-
tages of typical GANs, which can be used to guide the choice of GANs under different
application scenarios.

Table 3. Advantages and disadvantages of typical GANs.

Number Type Advantages Disadvantages

1 CGAN To generate samples with specific attributes such
as specific categories.

A large amount of training data with labels
are required.

2 ACGAN With auxiliary classifier, different classes of
samples can be generated.

(1) Complex training; (2) Limited quality of
generated samples.

3 VAEGAN The generated samples can be controlled by
the autoencoder.

The training is relatively more difficult.

4 DCGAN The powerful feature extraction capability of CNN
is exploited.

More computational resources are required for
the training.

5 SNGAN Exploding and vanishing gradient can be
solved effectively.

(1) Slow training speed; (2) Limited diversity of
generated samples.

6 WGAN Wasserstein distance provides a better measure of
the difference between distributions.

The training is not stable enough.

7 WGAN-GP With gradient penalty integrated into WGAN,
the stability is improved.

More training time and computational resources.

8 LSGAN Effectively solves the problems of exploding
gradient and vanishing gradient.

Excessive penalization of outliers may lead to a
reduction in the diversity of samples
being generated.

9 EBGAN (1) Energy-based loss function allows better
interpretability; (2) Improved stability and
diversity of sample generation.

(1) Quite complex to implement and train;
(2) Prone to mode collapse.

10 BEGAN Mode collapse can be effectively alleviated. (1) A relatively complex architecture; (2) Sensitive
to hyperparameters.

11 RGAN With relativistic loss, the quality of sample
generation is improved and mode collapse
is reduced.

(1) A relatively complex architecture; (2) The
relativistic loss is difficult to interpret.

5.2. Outlook

• Explainability from physics
Due to the black-box properties of DL models, the generated samples lack physical
interpretability. Based on our literature research, most studies do not take physical
knowledge into account in their models. Although there is a large body of literature on
physics-guided neural networks [88,89], there is still a lack of research on introducing
physical knowledge into GANs. From our point of view, physics-guided GAN can
be studied from two perspectives in the field of bearing fault diagnosis. Based on
the taxonomy of improvements of GAN in this paper, the first idea belongs to the
improvement of the network structure. For example, the bearing fault mechanism
model can be integrated into GAN. The second idea aims to improve the loss function
by adding physically interpretable regularization terms to the original loss function.
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• Advanced evaluation metrics
To date, the evaluation of the generated samples is not comprehensive. Almost all of
the literature we researched only considered the similarity of the generated samples
to the real samples. Apart from similarity, the creativity and diversity of the generated
samples should be taken into account to achieve a more comprehensive evaluation.
More appropriate evaluation metrics deserve further investigation.

• Application for RUL prediction
Based on our collation of the literature, there are still a number of promising variants or
improvements in GAN that have not yet been applied to bearing fault diagnosis, which
deserve further research. For the application in bearing fault diagnosis, the majority
of reported GAN variants possess the potential to achieve satisfying results, even
under imbalanced or small datasets through sample generation. However, concerning
RUL prediction, it is quite another matter. In contrast to fault samples, which have
obvious features such as different fault characteristic frequencies for different fault
types, samples in the aging period do not have such distinct one-to-one features.
Therefore, generating aging samples for bearing during the degradation process with
GAN remains an open question. Improving the GAN to generate aging samples for
RUL prediction under a dataset with limited run-to-failure trajectories is a challenging
but rewarding research topic.
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Abbreviations

The following abbreviations are used in this manuscript:

ACGAN Auxiliary classifier GAN
ACGAN-SN Auxiliary classifier GAN with spectral normalization
AE Stacked autoencoder
ANN Artificial neural network
BEGAN Boundary equilibrium GAN
CNN Convolutional neural networks
CS Cosine similarity
CGAN Conditional GAN
C-DCGAN DCGAN integrated with CGAN
DBN Deep belief network
DCGAN Deep convolutional GAN
DL Deep learning
EM Expectation maximization
EBGAN Energy-based GAN
FCFs Fault characteristic frequencies
GAN Generative adversarial network
KLD K-L divergence
LSTM Long short-term memory
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LSGAN Least squares GAN
ML Machine learning
MMD Maximum mean discrepancy
MS-PGAN Multi-scale progress GAN
PCC Pearson correlation coefficient
PCWAN-GP Parallel classification WGAN with gradient penalty
PHM Prognostics and health management
PSNR Peak signal-to-noise ratio
RGAN Relativistic GAN
RNN Recurrent neural network
RUL Remaining useful life
SSIM Structural similarity index measure
STFT Short-time Fourier transform
SCOTE Sample-characteristic oversampling technique
SI-SMOTE Sample information-based SMOTE
SM Self-modulation
SMOTE Synthetic minority over-sampling technique
SNGAN Spectral normalization GAN
SVM Support vector machine
TL Transfer learning
VAE Variational autoencoder
VAEGAN GAN combined with VAE
WGAN Wasserstein GAN
WGAN-GP WGAN with the gradient penalty
kNN k-nearest neighbor
t-SNE t-distributed stochastic neighbor embedding
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Abstract: This technical note focuses on the application of deep learning techniques in the area
of lubrication technology and tribology. This paper introduces a novel approach by employing
deep learning methodologies to extract features from scanning electron microscopy (SEM) images,
which depict wear particles obtained through the extraction and filtration of lubricating oil from a
4-stroke petrol internal combustion engine following varied travel distances. Specifically, this work
postulates that the amalgamation of ensemble deep learning, involving the combination of multiple
deep learning models, leads to greater accuracy compared to individually trained techniques. To
substantiate this hypothesis, a fusion of deep learning methods is implemented, featuring deep
convolutional neural network (CNN) architectures including Xception, Inception V3, and MobileNet
V2. Through individualized training of each model, accuracies reached 85.93% for MobileNet V2 and
93.75% for Inception V3 and Xception. The major finding of this study is the hybrid ensemble deep
learning model, which displayed a superior accuracy of 98.75%. This outcome not only surpasses the
performance of the singularly trained models, but also substantiates the viability of the proposed
hypothesis. This technical note highlights the effectiveness of utilizing ensemble deep learning
methods for extracting wear particle features from SEM images. The demonstrated achievements of
the hybrid model strongly support its adoption to improve predictive analytics and gain insights into
intricate wear mechanisms across various engineering applications.

Keywords: tribology; lubrication; wear particle; ensemble deep learning; convolution neural network

1. Introduction

The integration of machine learning (ML) techniques offers the potential to revolution-
ize lubricant oil or wear particle image analysis, thus potentially contributing to lubrication
interval decisions and enhancing equipment longevity and operational efficiency [1]. ML,
a subset of artificial intelligence (AI), equips systems with the ability to autonomously
learn from data and improve their performance over time [2]. In the area of tribology
and lubrication technology, ML holds the promise of analysing intricate datasets derived
from real-world operating conditions to derive more accurate and contextually relevant
lubrication interval strategies [2,3]. This deviation from rule-based and static approaches to
adaptive and data-driven decision making has the potential to mitigate the adverse effects
of under- or over-lubrication, resulting in reduced friction, wear, and maintenance costs.

Deep learning (DL), a subset of ML, involves the use of artificial neural networks
(ANN) to model and solve intricate problems. Its ability to handle large datasets and
capture intricate patterns has led to remarkable advancements in diverse domains. In
tribology, DL techniques offer the promise of enhanced predictive capabilities, quicker
analysis of complex data, and novel insights into the underlying mechanisms governing
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friction, wear, and lubrication. Thereby, it is estimated that patterns and relationships
between the (micro-) wear particles and the health of, for example, engines, as well as the
prediction of the distance travelled by a vehicle can be identified. This might facilitate a
more precise detection of wear particles and contaminants, potentially leading to engine
damage and the prediction of the remaining useful life (RUL), as well as maintenance
scheduling. As such, Hu et al. [4] employed ML to predict the mileage of a vehicle based on
the wear particles present in the engine oil. Thereby, the researchers used a support vector
machine (SVM) to classify the wear level and then used a linear regression model to predict
the mileage with an accuracy of around 90%. Moreover, Sun et al. [5] employed deep
learning methods for detecting and classifying wear of tungsten-carbide-copper matrix
composites with high accuracy, whereby the algorithms learned from scanning electron
microscopy (SEM) images.

Ensemble deep learning involves combining multiple DL models to improve accuracy
and reduce overfitting by reducing the variance or errors that may be present in any
one model; this has already been successfully employed in other disciplines [6,7]. In
ensemble DL, the individual models are typically neural networks that are trained on
different subsets of the data or with different configurations. Once the models are trained,
the predictions made are combined in various ways to produce the final output. This
can be performed using a simple average or weighted average of the individual model
predictions, or by using more complex methods such as stacking or boosting. Ensemble
DL are increasingly attracting attention, especially in competitions such as the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). Winning models in such competitions
often incorporate ensemble techniques due to their ability to improve the generalization
ability of models, particularly when training data are limited or noisy. By leveraging the
ability of convolution neural networks (CNNs) to extract features from images and classify
them accurately, several studies have demonstrated the importance of utilizing this tool
to detect relevant features [8–10]. Generally, CNNs are useful for image classification
problems due to their capability to learn and extract meaningful features from input images
automatically [11]. CNNs process images through multiple convolutional layers that enable
them to learn different levels of features from input images in a hierarchical manner. Low-
level features, such as, edges and corners and high-level features, such as shapes and objects,
can be extracted from CNNs more effectively than traditional ML algorithms. Additionally,
CNNs can handle the spatial dependencies between pixels in an image that are crucial for
recognizing objects and patterns accurately. Overall, the powerful capabilities of CNNs
make them an effective tool for image classification, contributing to their widespread use
in various applications, such as computer vision, self-driving cars, medical image analysis
and many others.

To summarize, ML methods are increasingly being employed in the context of tribology
and have the potential to revolutionize wear particle image analysis to correlate features
with the components’ health. In this context, this contribution is based on the hypothesis
that ensemble deep learning methods can identify relevant features from SEM images of
wear particles with higher accuracy than individually trained ML and DL methods, thus
representing a prospective tool for identifying patterns and relationships between the wear
particles and the components’ health, predicting the RUL and improving maintenance
practices. To this end, we employed a SEM image dataset from the wear particles present in
the lubricating oil at different conditions of a 4-stroke petrol engine, artificially increased the
size of the image collection by data augmentation, and trained an ensemble DL model made
up of Inception V3, Xception, and MobileNet V2, as well as trained the three mentioned
methods individually and compared their prediction accuracies.

2. Materials and Methods

2.1. Experimental Procedure, Data Acquisition and Augmentation

The experimental data were obtained using a newly bought scooter’s air-cooled and
BS IV compliant single-cylinder 4-stroke petrol engine (TVS Motors, Chennai, Tamil Nadu,
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India) with overhead cam, 109.7 cm3, a max. power of 5.88 kW, a max. torque of 8.4 Nm, and
a force of 1755 N. The scooter was regularly operated in the field at speeds of 700–900 min−1

and the distance travelled by the vehicle was tracked through global positioning system
(GPS) and odometer readings. For engine lubrication, new and fully formulated SAE
10W-30 lubricating oil was utilized. A 10 ml syringe with a 110 mm-long, 3 mm-diameter
tube was put into the lubricating oil tank to collect the lubricant samples (Figure 1a). Oil
samples were collected from the engine at regular intervals of 300 km, 600 km, 900 km,
and 1200 km (Figure 1b) and wear particle studies were carried out. To this end, oleic acid,
acting as a dispersant, was mixed with extracted oil in a ratio of 1:10, ultrasonicated for
30 min to ensure a steady dispersion of wear particles, and then filtered using the filtergram
technique (Figure 1c). The employed filtering flask had a 10 mm outlet conduit, a capacity
of 250 ml, and a rubber tubing connecting it to the vacuum pump (VE-115N, Value, Zabrze,
Poland). The flask’s entrance was sealed with a laboratory rubber stopper with a hole that
could be filled with a Buchner funnel containing PTFE filter paper (Nupore, Ghaziabad,
Uttar Pradesh, India) with a diameter of 47 mm and a pore size of 2 μm. Following the
filtering procedure, the filter paper was removed from the Buchner funnel and dried for an
hour in a warm oven (WIST, Palghar, Maharashtra, India) at 35 ◦C. The wear particles were
first removed from the filter paper using conductive carbon adhesive tape and subsequently
analyzed using SEM imaging (Supra 55, Carl Zeiss, Oberkochen, Germany). The SEM
images, as shown in Figure 1d, were collected using an electron current of 100 nA, an
accelerating voltage of 0.02–30 kV, and a working distance of 8.5 mm. The images were
then categorized/labelled and stored as *.jpg to create a uniform dataset at a scale of 10 μm.
Subsequently, the dataset was transformed into binary images using Mathworks Matlab
to enhance interpretability and expanded artificially by data augmentation [9] to yield
a total of 400 images (100 per class) through various image transformation techniques,
including rotation, shifting, flipping, adding noise, warping, blurring, zooming, etc., using
AI [10] to obtain sufficient data for training. The resulting augmented dataset, which is
made available under https://github.com/Sangharatna786/SEM-Images.git (accessed on
22 August 2023), was further split into 80% for training and 20% for testing the CNNs
(Figure 1e), whereby the objective of the CNN was to correctly classify the wear particles to
the engine condition.

2.2. Deep Learning

The employed DL CNNs were composed of artificial neurons in multiple convolution,
pooling, as well as fully linked layers and utilized convolution to scale down the SEM
images into a more manageable size without losing information. Thereby, the input pictures
were run through a number of convolutional layers, each of which applies a different set
of filters to the input image to extract key features. These filters were learned during the
training process to typically capture simple features, such as edges and corners in the
lower layers, and more complex features, like shapes and patterns in the higher layers.
Generally, more complex features can be recognized with the growing number of layers.
The spatial size of the convolved features could be decreased by the pooling layer, lowering
the dimensions allowed to decrease the computational costs of data processing. After the
convolutional layer, the output was passed through one or more fully connected layers to
perform the classification task [12]. The final output was a probability distribution over
the possible classes. Within the scope of this contribution, we employed three different
CNN models, namely Inception V3, Xception, and MobileNetV2. These models, which are
described in more detail in the following, reflect different advantages in terms of extraction
capability, computational efficiency, and model size; these choices align with the specific
needs of wear particle feature extraction from SEM images, where diverse particle sizes and
complex patterns demand a range of architectural strengths while considering practical
deployment and computational demands.
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Figure 1. (a) Sampling lubricant from the engine, (b) lubricating oil samples after various intervals,
(c) lubricant sample filtration setup, (d) representative SEM images of wear particles after various
intervals, and (e) schematic of an image-processing CNN.

2.2.1. Inception V3

The deep neural network architecture Inception was introduced by Google in 2015
and is intended for tasks requiring picture recognition [13]. Inception V3 (GoogleNet V3) is
based on a combination of convolutional layers of different sizes and pooling operations
that extract features from the input image at different scales. At the onset of the network,
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the architecture employs a "stem" module, which comprises a series of convolutional
and pooling layers that work together to decrease the spatial dimensions of the input
image and increase the number of channels in the feature maps. InceptionV3 also uses a
series of “Inception” modules that include multiple parallel convolutional and pooling
operations of different sizes and aspect ratios. These operations are concatenated together
along the channel dimension, allowing the network to capture features at different scales
and resolutions. In addition, Inception V3 uses batch normalization and regularization
techniques such as dropout and weight decay to improve the training stability and prevent
overfitting. Thus, it is effective at capturing both fine-grained and global features in
images due to its multi-scale approach and balance between model size and performance.
Inception V3 has attained leading-edge results on various image identification benchmarks.
Additionally, the architecture has been utilized as a feature extractor for different vision
tasks, such as object detection and segmentation, and has been incorporated into well-
known DL frameworks like TensorFlow 2.14.0 and PyTorch 2.1.0 + vu118.

2.2.2. Xception

Xception is a deep neural network architecture proposed by Google in 2016, extending
the Inception architecture to use depth-wise separable convolutions in place of standard
convolutions [14]. This means a factorization of standard convolutions that split the convo-
lution into two separate operations: a depth-wise convolution, where one filter is applied
to each input channel, followed by a point-wise convolution, where the output of the
depth-wise convolution is subjected to a linear combination of 1 × 1 filters. This keeps the
convolution’s accuracy high while reducing the number of parameters and calculations.
The Xception architecture replaces each Inception module with a series of depth-wise sepa-
rable convolution blocks. Each block comprises a depth-wise convolution layer, followed
by a batch normalization layer, a rectified linear unit (ReLU) activation layer, a pointwise
convolution layer, another batch normalization layer, another ReLU activation layer, and a
skip connection that adds the input to the output of the convolution. These blocks can be
stacked to form a deep network that can learn intricate feature representations using fewer
parameters and computations than traditional convolutional networks, providing strong
feature extraction capabilities, especially when dealing with complex patterns in images.

2.2.3. MobileNetV2

MobileNet is a deep neural network architecture designed by Google in 2018 for
mobile and embedded vision applications that require low latency and low power con-
sumption [15]. MobileNetV2 uses a combination of depth-wise separable convolutions and
linear bottleneck blocks to reduce the number of parameters and computations required
for inference, while increasing the nonlinearity and preserving the information flow, thus
maintaining high accuracy on image classification tasks. MobileNetV2 also introduces a
new inverted residual structure that improves the accuracy and efficiency of the network.
The inverted residual block consists of a linear bottleneck layer, followed by a depth-wise
separable convolution and another linear bottleneck layer. The input and output of the
block are connected by a shortcut connection that skips the depth-wise separable convolu-
tion, similar to the ResNet architecture. MobileNet V2 is significantly smaller and faster
compared to models like Inception V3 and Xception. Also, it is a feature extractor that
has been pre-trained on the Image Net dataset and may be adjusted for a range of vision
tasks, including facial recognition, semantic segmentation, and object detection. MobileNet
V2 has been implemented in popular DL frameworks, such as TensorFlow and PyTorch,
and has achieved state-of-the-art results on mobile and embedded platforms with limited
computational resources.

2.2.4. Transfer Learning and Fine-Tuning

Transfer learning is a technique that involves utilizing pre-trained models
(Sections 2.2.1–2.2.3) as the starting point for a new model on a different task [16]. The
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rationale behind this approach is that the pre-trained model has already learned informa-
tive features from a vast dataset and these features can serve as a foundation for learning
new features in a related task with less data and computational resources. Fine-tuning is a
specific type of transfer learning that entails further training of the pre-trained model on the
new task by adjusting the weights of some or all of its layers, whereby the degree of fine-
tuning is dependent on the similarity between the initial and new tasks. After transferring
pre-trained weights for Inception V3, Xception, and MobileNet V2, the model architectures
were adjusted in accordance with the collected dataset. Generic image features were used
in the initial layers of the pre-trained models, while domain-specific features were used
for training in the following levels. Thereby, a minimum learning rate was applied for the
pre-trained models to extract picture characteristics in the first few layers and encourage
slow learning in the following ones. According to the chosen test circumstances, fully
linked layers of pre-trained networks with 1000 neurons were changed and fixed to six
neurons. A detailed specification of the pre-trained CNNs that were finally employed is
summarized in Table 1.

Table 1. Detailed specification of pre-trained networks employed in this study.

Deep Learning Model Number of Parameters Depth

Inception V3 23.8 Million 159

Xception V2 22.9 Million 71

MobileNet V2 3.4 Million 53

2.2.5. Ensemble Learning

In order to enhance the overall performance, ensemble learning was utilized by com-
bining the outputs of three pre-trained DL models Inception V3, Xception, and MobileNet
V2 in accordance with [17]. As depicted in Figure 2, the features obtained from these
models were concatenated and passed through a dropout layer with a 0.5 dropout rate,
followed by a classification layer. The dropout layer helped to prevent overfitting while
reducing computational time.

Figure 2. Workflow of the adopted ensemble deep learning approach.

3. Results and Discussions

The overall test accuracies of Inception V3, Xception, and MobileNet V2 when trained
individually were 93.75%, 93.75%, and 85.93%, respectively. Thus, these models already
feature superior accuracy compared to other ML approaches, such as SVM, when employed
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in a comparable scenario [4] (however, it should be noted that the underlying data were
different and a direct comparison is not fair). The training (blue) and validation (orange)
accuracies, as well as losses over training epochs for the three pre-trained models, are
depicted in Figure 3a–f, whereby smooth curves could generally be observed. Furthermore,
confusion matrices comparing the predicted and actual classes (i.e., travelled distances) of
the testing data in its rows and columns as illustrated in Figure 4a–c were employed to
assess the level of prediction of each model. Despite featuring good overall accuracy, the
MobileNet V2 featured more than double or even triple the number of misclassifications
(12), which indicates a lack of confidence throughout the classification in all four categories
(300, 600, 900, and 1200 km), in comparison with Inception V3 (5) and Xception (4).

Figure 3. Training and validation (a,c,e) accuracies and (b,d,f) losses for the individually trained
(a,b) Inception V3, (c,d) Xception, and (e,f) MobileNet V2 deep learning approaches.
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Figure 4. Confusion matrices for the testing data using the individually trained (a) Inception V3,
(b) Xception, and (c) MobileNet V2 deep learning approaches.
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In comparison to the individually trained DL approaches, the ensemble methods
combining the three pre-trained deep neural networks featured a superior accuracy of
98.75%, which points towards a higher generalizability of the technique. This can also be
seen in the initially already very high and fast converging training (blue) and validation
(orange) accuracies, as well as losses over training epochs as shown in Figure 5a,b. As can
be seen from the confusion matrix in Figure 6, the ensemble method only featured one
misclassification that occurred in one of the classes (where the vehicle had travelled 600 km)
and achieved perfect classification in all other classes. These findings suggest that the
image features of these classes were well learned during training. The superiorness can be
attributed to the ensemble’s ability to capture a broader range of patterns and relationships
within the data. Additionally, the model diversity mitigates the risk of overfitting by
preventing it from memorizing the training data. The proposed model employed depth-
wise separable convolution layers, which implemented the factorization concept resulting
in reduced design dimensions and computational costs. These findings indicate that the
proposed model may outperform each model regarding classification accuracy.

Figure 5. Training and validation (a) accuracies and (b) losses for employed ensemble deep
learning approach.

Figure 6. Confusion matrix for testing data using the ensemble deep learning approach.
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4. Conclusions

The increasing integration of ML methodologies within the area of tribology shows
great potential, for example, in reshaping decisions pertaining to lubrication intervals.
This advancement carries the capacity to significantly augment equipment longevity and
amplify operational efficacy. A promising avenue for future research involves scrutinizing
wear images to discover meaningful correlations between wear particles, contaminants, and
overall component health. In accordance with our investigation, predicated upon the hy-
pothesis that ensemble DL can yield more precise prognostications of pertinent parameters
in contrast to individually trained DL convolutional neural networks (CNNs), this technical
note aimed to contribute to this trajectory. Leveraging SEM images depicting wear particles
sourced from a diverse array of distances covered by an IC engine, our methodology en-
compassed the utilization of various pre-trained and fine-tuned CNN architectures, namely
Inception V3, Xception, and MobileNet V2. These individual models yielded commendable
classification accuracies for distance estimation of 93.75%, 93.75%, and 85.93%, respectively.
In contrast, the collaborative framework of ensemble learning, harnessing the collective
outputs of these three pre-trained DL models, resulted in a remarkable predictive accuracy
of 98.75%. Notably, this ensemble model exhibited a substantial reduction of up to 91%
in misclassifications, attributable to its inherent capacity to encapsulate a wider spectrum
of patterns within the data, all while mitigating overfitting concerns and preserving a
commendable level of generalizability. Thus, we postulate that the application of ensemble
DL strategies emerges as a sanguine avenue for assessing the condition of lubricating oils
by analysing wear particles. This, in turn, has significant implications for prognosticating,
for example, the RUL of equipment, as well as refining the landscape of maintenance
practices. From a research and understanding point of view, one of the primary drawbacks
of ML approaches as used within this study is the lack of interpretability in “black-box”
models. They generate results based on complex mathematical operations and patterns
that are often difficult to decipher, making it challenging to gain insights into the underly-
ing mechanisms. These models do not incorporate prior domain knowledge or physical
principles explicitly, which can result in a disconnect between the extracted features and the
actual phenomena being observed. This limitation can hinder the model’s ability to provide
accurate explanations or insights. Future research should, therefore, focus on making the
models more transparent and interpretable. Yet, the presented approaches already can
perform image feature extraction at high speed and scale. It should be emphasized that this
technical note sought to demonstrate the applicability of one exemplary use case scenario.
However, potential applications are not limited to analyzing wear particles from SEM
images, but can be extended to extract features from any sort of images from tribo-technical
systems, e.g., for predicting the wear mechanisms or surface conditions from SEM [6] or
even optical microscopy images, etc., where we also assume that the presented ensemble
deep learning technique features superior accuracy compared to other approaches. To fully
exploit the (commercial) potential, the approach should be integrated into actual predictive
maintenance systems automotive, aerospace, manufacturing, and energy sectors. Addi-
tionally, future work can focus on real-time analysis, user-friendly interfaces, cloud-based
solutions, and data integration for a holistic view of equipment health.
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Abstract: Friction behaviour is an important characteristic of dynamic seals. Surface texturing is
an effective method to control the friction level without the need to change materials or lubricants.
However, it is difficult to put the manual prediction of optimal friction reducing textures as a function
of operating conditions into practice. Therefore, in this paper, we use machine learning techniques for
the prediction of optimal texture parameters for friction optimisation. The application of pneumatic
piston seals serves as an illustrative example to demonstrate the machine learning method and results.
The analyses of this work are based on experimentally determined data of surface texture parameters,
defined by the dimple diameter, distance, and depth. Furthermore friction data between the seal and
the pneumatic cylinder are measured in different friction regimes from boundary over mixed up to
hydrodynamic lubrication. A particular innovation of this work is the definition of a generalised
method that guides the entire machine learning process from raw data acquisition to model prediction,
without committing to only a few learning algorithms. A large number of 26 regression learning
algorithms are used to build machine learning models through supervised learning to evaluate the
suitability of different models in the specific application context. In order to select the best model,
mathematical metrics and tribological relationships, like Stribeck curves, are applied and compared
with each other. The resulting model is utilised in the subsequent friction optimisation step, in which
optimal surface texture parameter combinations with the lowest friction coefficients are predicted
over a defined interval of relative velocities. Finally, the friction behaviour is evaluated in the context
of the model and optimal value combinations of the surface texture parameters are identified for
different lubrication conditions.

Keywords: supervised learning; regression techniques; surface texturing; dynamic seals

1. Introduction

Friction is defined as the force of resistance acting between the contact surfaces of bod-
ies in relative motion [1]. In total, about 20% of global energy losses are due to overcoming
friction [2]. Therefore, low friction is targeted in many technical systems such as seals or
bearings. In order to reduce friction in tribological systems, it is necessary to understand the
individual factors that influence friction and to develop appropriate strategies to minimise
the friction [1].

On the one hand, material properties, such as the crystal structure [3], hardness [4,5],
elastic and shear modulus [6,7], grain size [8,9], and surface energy [10,11] of the contacting
materials affect the frictional behaviour. On the other hand, the operational conditions, such
as the normal loads [12,13], sliding velocities [14,15], environmental conditions [16,17], tem-
peratures [18], and lubricants [19], have a major influence on the tribological behaviour. Of
particular relevance are surface coatings or modifications of the surface topographies [20],
which both can contribute significantly to the friction behaviour. Surface modifications
involve techniques that artificially alter the structures of the solid surfaces through defined
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properties. This involves texturing the surface either by adding material to create protru-
sions or by removing material, displacing material and using self-moulding techniques
to create dimples [21,22]. Surface modifications can be achieved by changing the surface
roughnesses [23], textures [24], or a combination of both [25].

In order to reduce the friction of a tribological system, the performance of the lubricant
can be improved [26], the lubricant feeding conditions can be adjusted and optimised [27],
special materials and coatings can be used [28], operational conditions can be modified [29],
geometries can be optimised [30], and the contact surfaces can be modified [24]. In addi-
tion, it is possible to combine different processes, such as surface texturing and surface
coating [31,32]. Within this work, surface textured seals are analysed as an example ap-
plication. The textures, applied to the seal surfaces, are defined by the dimple diameter,
dimple distance, and dimple depth. This is why, surface modifications, specifically surface
texturing, are of particular interest. Surface textures have been demonstrated to positively
influence friction and wear under both dry friction conditions [33] as well as boundary [34],
mixed [35], elastohydrodyamic [36], and full-film hydrodynamic lubrication conditions [37].
Surface textures exhibit different beneficial effects on friction, depending on the lubrication
regime. The textures can reduce the real area of contact [38], trap wear particles [39],
accelerate the formation of tribolayers [40], store lubricant [41], draw additional lubricant
into the contact area [25], build-up additional hydrodynamic pressure [42], and locally
increase the fluid film height [43]. However, the mechanisms through which the textured
surface parameters affect the friction performance, such as the texture density or depth, are
still not fully understood and require further investigation [44]. Surface texturing is highly
application dependent and must be evaluated for each tribological system and lubrication
regime. Furthermore, the possible number of parameters for the surface texture design is
immense [45].

In this respect, machine learning is a powerful tool to predict application-dependent
optimum texture parameters and to overcome or reduce time consuming and expensive
trial-and-error approaches [46]. The advantages and potentials of machine learning tech-
niques lie in the handling of high-dimensional problems and the ability to adapt models
to changing conditions with reasonable effort [47], even if the physics behind the tri-
bological system is not fully understood [48]. According to the systematic reviews by
Marian et al. [47] and Paturi et al. [48], the number of tribology papers successfully investi-
gating and applying machine learning techniques is increasing exponentially. For example,
about 46% of the 330 papers evaluated were written between 2018 and 2022 [48]. In addi-
tion, around 76% of the 127 articles quantitatively analysed by Marian et al. were based
on experimentally collected data. The learning algorithm used in about three quarters
of the papers was a neural network category algorithm, making them overrepresented
in the tribological context [47]. So, it is noticeable that authors tend to focus on a few
learning algorithms at an early stage. However, other algorithms can also show comparable
or even better results, as presented in Section 5.2, so these should not be excluded from
the analysis from the outset. Based on the “no free lunch” theorem, it is only possible to
know exactly which model is the most suitable for the present application and data, if it
has been trained and tested [49]. As shown in Section 5.2, it is possible that not only one
algorithm shows good results, but that there are several suitable algorithms. Also, the
numerous application examples cited by Marian et al. [47] show that there is no universally
applicable learning algorithm for tribological problems. According to the “no free lunch”
theorem, the selection of a suitable learning algorithm must, therefore, always be made
individually for the prevailing application and is a challenge in the development of models
in machine learning [50]. It is, therefore, necessary to optimise the selection of texturing
parameters based on data from experiments or simulations, using several machine learning
(ML) algorithms.

Within this paper, the MATLAB Statistics and Machine Learning Toolbox® is utilised to
build regression models. The toolbox contains 26 learning algorithms from seven categories.
As an innovation, all of them are taken into account during the study to make an informed
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model selection based on trained and tested models with various evaluation metrics. The
aim is to be able to quickly identify the best of the 26 models, without having to perform
complex processes such as hyperparameter optimisation of single models, and thus enable
users who are not experts in machine learning to apply the ML methods. For this purpose,
a generalised method is explained on the basis of the selected aspects of the tribological
example application of surface textured pneumatic piston seals. This application serves as
an illustrative example. However, the methodology can also be applied to other surface
textured systems, such as metallic components or rubber parts.

2. Generalised Method for Machine Learning Model Generation and Application

The procedure acquired in this paper for developing machine learning models in the
context of tribological applications is shown in the flowchart below, see Figure 1. Although
this is not a universal and valid method in general, the flowchart shows the most common
methods, provided in the literature, that can be used.

Figure 1. Flowchart of a generalised machine learning development method using standard machine
learning techniques. The illustration shows an overview of the individual steps, which are briefly
explained in the following chapters.

The quality of the recorded data is of great importance, so careful data acquisition
must first be ensured, indicated by the grey step of the flowchart. This step is explained
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more in detail in Section 3 for the example application of surface textured pneumatic piston
seals. Based on this, data analysis and data preparation are necessary, indicated by the
blue steps of the flowchart. Using the prepared data, model building is performed, see the
first orange step of the flowchart. Data analysis, data preparation, and model building are
described in Section 4.

The best model is selected using mathematical performance ratios and partial depen-
dence plots in the context of tribological relationships, like Stribeck curves, indicated by
the second orange step of the flowchart, which is explained more in detail in Section 5. In
addition, this chapter contains the application of the generated model for the selection of
the optimal surface texture parameters, according to the purple steps of the flowchart, and
the preliminary examination of the friction results, depicted by the yellow steps. Based on
the green step of the flowchart, the tribological context of the friction results are discussed
in Section 6.

3. Friction and Seal Surface Texture Data Acquisition

Data acquisition is a process that leads to pre-processed measurement data, highlighted
as the grey step in the flowchart, shown in Figure 1. Within this step, data on friction values
and surface texture parameters of dynamic pneumatic piston seals are measured, which
together form the basis of the machine learning model.

3.1. Friction Measurements

The objective of the experimental testing procedure is to measure the friction forces
between surface textured pneumatic piston seals and a static pneumatic cylinder tube by
utilising a linear test rig, explained in Figure 2. The tribotechnical system considered to
record the friction forces consists of a pneumatic piston seal and a pneumatic cylinder tube,
see Figure 2b.

Figure 2. (a) Universal linear test rig. The carriage, connected to the linear guide, is driven by an
electric motor. The piston rod is connected to the carriage by a force sensor. The piston rod is linked
to the piston, in which the seal is installed. The seal can thus be moved relative to the static pneumatic
cylinder tube at the set velocity. (b) Tribotechnical System. A detailed view of the piston and seal
reveals the tribotechnical system. It consists of the base body (pneumatic piston seal) and the counter
body (pneumatic cylinder tube). The intermediate medium is a lubricating grease.

The nominal external diameter of the seal and internal diameter of the pneumatic
cylinder are equal to 40 mm. The material of the seals, which are manufactured by texturing
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during moulding (TDM) [51], is a fluoroelastomer with a Shore hardness of 80 A (FKM80A).
The pneumatic cylinder tube is made of anodised aluminium. Throughout the test proce-
dure, the same grease is used as in the interfacial medium [52]. An important challenge
during the measurements is the creation of a lubricating film that ensures reproducible
friction force measurements. Care must be taken to ensure that a consistent amount of
lubricant is present inside the pneumatic cylinder for each seal that is measured. This
was achieved by applying a constant mass of lubricant to the seals, cleaning the cylinder
between the measurements of two seals, and applying a constant mass of lubricant to the
cylinder itself. It has also been found that it is beneficial to measure friction on one seal,
starting at the highest velocity and decreasing towards the lowest velocity. The reason for
this is that the lubricant film is thickest at the highest velocities and is more easily dissolved
than built up during the test procedure, which means that conditioning runs between ve-
locities can be reduced. All of the experiments were performed at an ambient temperature
of 20 ◦C. In contrast to the real technical application of a pneumatically driven actuator,
the relative movement between the seal and the pneumatic cylinder was applied by the
linear guide of the test rig. Within the entire test procedure, the pneumatic cylinder was
depressurised. Each seal was tested at 19 test speeds ranging from 1 mm/s to 500 mm/s,
moving at a predefined trapezoidal speed profile, see Figure 3a. The distance to be driven
was selected between 15 mm and 450 mm depending on the velocity of the seal. For each
measurement, the piston was moved in two directions from the start position to the end
position and back again. This corresponded to one test cycle. A total of 12 cycles were
performed for each test speed and seal. This resulted in 228 friction measurement cycles
per seal, consisting of 228 downstrokes and 228 upstrokes.

Figure 3. (a) Trapezoidal velocity profile of the test rig. Within the stationary area of constant velocity,
marked in red, the mean value of the friction force is determined, which is used for further analyses.
(b) Friction force as a function of time. Positive values of friction indicate the downstroke of the test
rig, while negative values indicate the upstroke. The friction force signal shows a bumpy curve, as
the friction distance at the higher speeds is not sufficient to generate a constant value in the friction
force signal.
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A conditioning run is carried out before the 12 measured cycles in order to adjust
the tribological system and, in particular, the lubricant film height to the current velocity.
The temperature in the contact between the seal and cylinder was not recorded. However,
as the measurement results were within the 6 sigma interval and no systematic increase
or decrease in the friction characteristics could be identified over the number of cycles, a
temperature change in the contact was regarded to be negligible for friction evaluation. The
quasi-stationary friction force signal was evaluated from the friction signal at time intervals
where the velocity was stationary, see Figure 3b. To calculate the corresponding friction
coefficients associated with the friction forces, which were further processed in the machine
learning (ML) model, the required normal forces were provided by static FE simulations
of the contact pressure distribution between seal and cylinder. The FE model, which uses
a hyperelastic material model, was not the focus of this work, and was, therefore, not
described in detail.

3.2. Seal Surface Texture Measurements

In contrast with other studies, the machine learning model does not use nominal
texture parameters, but rather the real texture parameters of the pneumatic piston seals
that are measured. The surface analyses of the seals were based on 3D microscope mea-
surements, which were recorded using the method of focus variation. The collected data
were exported as cartesian xyz data points, see Figure 4a. Based on these data points, the
surface was visualised in two different areas—the textured (blue/green) and untextured
(yellow/orange) areas, see Figure 4b.

Figure 4. (a) Microscope surface scan of a textured seal (4 × 4 mm). The circles enclose the triangular
arranged circular dimples. The texture parameters of dimple diameter and dimple distance are
defined by the arrows. (b) Dimple depth information of the microscope scan. The yellow and orange
areas represent the untextured area of the seal surface, while the green and blue areas represent the
dimples with their depth.

On basis of the FE simulations already mentioned in Section 3.1, the contact width
between the seal and pneumatic cylinder tube is calculated, from which the effective contact
area is determined. The texture density, shown in Table 1, therefore only corresponds to
the density in effective contact between the seal and cylinder and neglects the textured
seal area that is not in contact, as it is tribologically irrelevant. The surface textures are
defined by the dimple diameter, distance, and depth. They have a basic circular shape
and are arranged in a triangular pattern. The diameter of the dimples is determined using
circular approximations of the green/blue data points. The dimple depth is the mean value
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of all data points within these approximated circles. In addition, the distance between
the dimples is calculated using the centre points of the approximated circles. This is not
only done for one individual dimple, but for the entire number of dimples, which are
positioned within the measuring area of 4 × 4 mm and the simulated contact width of
l = 643 μm of the seal. The corresponding number of evaluated dimples is specified in
Table 1. The related dimple parameters are determined as the mean values of the given
number of individual measurements. The real texturing density is the ratio of the textured
to untextured area of the analysed seal surface. Because of process tolerances that occur
during the laser and vulcanisation process of the seals, odd values can be seen in Table 1.

The general seal dimensions, more precisely the inner and outer diameters of the seals
and their deviation from nominal values, were not measured and considered, which is
discussed in Section 6 and mentioned in the outlook.

Table 1. Real seal surface texture parameters. The values are the mean value of the specified number
of analysed dimples within the simulated contact width of the seal.

Seal No.
Diameter

in μm
Distance

in μm
Depth
in μm

Texture Density
in %

Number of
Analysed Dimples

1 - - - - -
2 97 195 7.9 20.4 58
3 96 243 8.6 15.3 46
4 100 244 11.4 15.8 43
5 149 244 14.5 34.3 46
6 143 292 12.9 25.2 37
7 147 294 19.3 26.8 37
8 149 294 24.8 27.2 37
9 196 293 23.6 45.0 37

10 199 390 23.3 21.9 28
11 147 293 19.1 26.3 37

4. Data Analysis, Data Preparation, and Model Development

The machine learning algorithms discussed in this paper are classified as supervised
learning. Within this category, regression algorithms were used, which deal with numerical
continuous output values. The training of the algorithms was conducted with a known set
of input data and known responses, which are the data collected in Section 3.1. The data
analysis, data preparation, and model development were guided by the method shown in
Figure 1. For the development of machine learning models, high data quality is an essential
requirement. This started with a comprehensive analysis of the available data to assess their
quality, which included an examination of its structural characteristics and properties (data
analysis). This understanding subsequently facilitated the preparation of the available data
with the aim of improving its quality, as well as its transformation into the desired format
(data preparation) [50,53]. Afterwards, model development began.

In order to be able to evaluate the data quality as part of the data analysis, a data quality
report (DQR) according to [50] was generated in this study for the available measurement
data. The report took the total number of numerical values, data completeness, cardinality,
minimum and maximum values, first and third quartiles, median and arithmetic mean,
and the standard deviation into account, which is shown in Table A1 of the Appendix A. It
was found that there were no missing values in the features studied, that the data had a
uniform character, and that there were no irregularities in the other indicators of the data
quality report. Interquartile ranges (IQRs) were calculated to identify individual data points
that represent mathematical outliers [53,54], which require a more detailed and individual
examination. Based on this examination, it becomes apparent that the identified outliers
were only default values for the test series or the texture parameters, specifically friction
values, that can be evaluated as being feasible with the help of the physical relationship of
the Stribeck curve. The sliding velocity can be used as an illustrative example. In Figure 5
it is visible that the sliding velocity was not sampled uniformly. The lower velocities were
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sampled more finely than the higher velocities. As a result, the higher values were marked
as mathematical outliers, although they were not physically outliers. Therefore, all these
data points were used for further analysis. The IQR calculated for the features can be found
in Figure A1 of the Appendix A.

In the context of data preparation, dimensionality is particularly important. Data sets
with high dimensionality lead to increased complexity, computational effort, and the risk
of overfitting [55,56]. For this reason, it is more useful to have many data points for each
feature, but not a larger number of features, because only features with a high significance
add value to the model and its accuracy [56].

In order to reduce the number of features while preserving the most relevant informa-
tion, principal component analysis (PCA) is used as a feature extraction method to assess
dimensionality. As this is a requirement for PCA, the existing data sets are standardised so
that the values of each feature are within the interval [−1; 1] and have an arithmetic mean
of zero as well as a standard deviation of one. According to the first principal component,
the feature of sliding velocity has the greatest influence on the coefficient of friction, since it
explains 85.34% of the variance. According to the second principal component, the texture
parameters dimple diameter, dimple distance and dimple depth have the greatest influence,
because they explain 13.40% of the variance. As a result, the analysis shows that the first
two principal components already explain 98.74% of the variance. The features that have
been examined are shown in Table 2. Based on the principal component analysis, features
with little influence on the variance of the original data can be removed.

Table 2. Coefficients of the first two principal components (PC 1 and PC 2) for the examined features.
The remaining features after PCA are highlighted in bold letters. Cycle and direction of motion
are removed.

Feature
Sliding
Velocity

Cycle
Direction
of Motion

Dimple
Diameter

Dimple
Distance

Dimple
Depth

Texture
Density

PC 1 (85.34%) 1.00 0.00 0.00 0.00 0.00 0.00 0.00
PC 2 (13.40%) 0.00 0.00 0.00 0.55 0.83 0.09 0.00

The model is built using recursive feature elimination (RFE) according to the cross-
validation (CV) procedure. For this purpose, the training data is divided into a training
set and a test set. In this model development, 10% of the training data was used as test
data. To ensure that the quality of the generated model does not depend on the division
of the training data into training and validation sets, a variant of cross-validation called
k-fold cross-validation (KFCV) is used [53,56]. For model development, the training data
is divided into k subsets. In this study the cross-validation procedure is performed with
k = 5 or k = 10 subsets, depending on the number of records.

During the RFE process, features are eliminated iterative as part of model development,
which is outlined in Section 5.2. The minor influence of the cycle and the direction of motion,
as already observed in the PCA (see Table 2), can be confirmed. Hence, these features are
eliminated. The friction coefficients per seal and velocity are averaged over the measured
up and down cycles, which is possible due to the symmetry of the seal, so that the up
and downstroke force is nearly identical. The feature texture density is not removed from
the training data, since it is directly related to the dimple distance and diameter. This
reduces the number of data sets to N = 190 (10 surface textured seals and 19 tested sliding
velocities), leaving M = 5 features.

A total of 26 learning algorithms, shown in Table 3, are used for model development
using MATLAB Statistics and Machine Learning Toolbox®.
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Table 3. Summary of all algorithms studied by category: Supervised Learning—Regression. Algo-
rithm 16, which is chosen to build the best model within the prevailing application, is highlighted by
underlining, compare also Table 4. The four colored algorithms correspond to the curves of Figure 6.

Category No. Algorithm

Linear Regression Models 1 Linear
2 Interactions Linear
3 Robust Linear
4 Stepwise Linear

Regression Trees 5 Fine Tree
6 Medium Tree
7 Coarse Tree

Support Vector Machines 8 Linear SVM
9 Quadratic SVM

10 Cubic SVM
11 Fine Gaussian SVM
12 Medium Gaussian SVM
13 Coarse Gaussian SVM

Gaussian Process Regression Models 14 Squared Exponential
15 Matern 5/2
16 Exponential
17 Rational Quadric

Kernel Approximation Models 18 SVM Kernel
19 Least Squares Kernel Regression

Ensembles of Trees 20 Boosted Trees
21 Bagged Trees

Neural Networks 22 Narrow Neural Network
23 Medium Neural Network
24 Wide Neural Network
25 Bilayered Neural Network
26 Trilayered Neural Network

Figure 5. Stribeck curves from two different surface texture parameters, compared with the untex-
tured reference. The single data points were provided with error bars.
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Figure 6. Pre-Comparison of the predicted Stribeck curves, based on the best algorithm each within
the four best model categories according to the performance indices using seal sample 8 as an example.
The curves are only based on the first model epoch, considering the maximum dataset before RFE.
The individual data of the first epoch are specified in Table A2. The results of the last epoch after RFE
can be found in Table 4.

Table 4. Comparison of the last epoch of the four algorithms, shown in Figure 6. The features
cycle and direction of movement were already removed after recursive feature elimination (RFE),
resulting in an implementation with averaged friction coefficients as described above. Only these four
algorithms were evaluated up to the last epoch. The other algorithms from Table 3 were discarded
due to poor metrics in the first epoch.

No. Algorithm (Category) MSE R2

5 Fine Tree (Regression Trees) 0.00050 0.78870
16 Exponential (Gaussian Progress Regression Models) 0.00009 0.96077
18 SVM Kernel (Kernel Approximation Models) 0.00320 −0.4098
25 Bilayered Neural Network (Neural Networks) 0.00070 0.68924

5. Friction Measurement Results and Machine Learning Model

5.1. Preliminary Examination of the Friction Results

From the friction coefficients per seal and sliding velocities described in Section 3.1,
Stribeck curves were generated for the qualitative preliminary investigation. According to
the principal component analysis (PCA) of Section 4, the features direction of the motion
and cycle were not significant. Therefore, the friction coefficients per seal and velocity
were averaged. Figure 5 shows the exemplary Stribeck curves of textured seals 3 and 10
compared with the untextured reference seal 1, compared with Table 1.

The curves represent the average friction coefficients per seal, while the error bars mark
the 6 sigma interval at the test velocity, to obtain 99.7% as the confidence interval. It can
be seen that the textured seals had higher friction coefficients in the boundary and mixed
friction regime than the untextured reference. In addition, the area of mixed friction was
more pronounced and extended over a larger velocity interval depending on the texture
parameters. On the other hand, the Stribeck curve of seal 3 shows that texturing could lead
to lower friction coefficients in the hydrodynamic friction region. The texture parameters
of seal 3 were proven to be advantageous in a direct comparison with the textures of
the 9 other textured seals, as the associated Stribeck curve has the lowest coefficients of
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friction in the hydrodynamic friction regime due to a lower slope. In contrast, the texture
parameters of seal 10 resulted in high friction coefficients in all of the friction regimes. This
shows that surface texturing did not automatically lead to an improved friction behaviour.
In addition, the qualitative preliminary examination of the collected measurement data
indicated the need for a model to identify optimal and discrete texture parameters and to
fathom tribological relationships in a factual context.

5.2. Machine Learning Model

The model was built using the MATLAB Statistics and Machine Learning Toolbox® by
recursive feature elimination according to the k-fold cross-validation method, see Section 4.
The training data were based on the measured friction and surface data of 10 textured
pneumatic piston seals, whose texture was characterised by dimples with a circular basic
shape in a triangular pattern, compared with Section 3.2. The maximum dataset con-
sisted of N = 4560 records (228 + 228 piston strokes multiplied with 10 textured seals) and
M = 7 features according to Table 2, each with an associated friction coefficient output. In
the first model generation step, one model was generated for each of the 26 learning algo-
rithms specified in Table 3 using the MATLAB toolbox. In this process, k = 10 folds were
used in the k-fold cross validation (KFCV). Furthermore, 10% of the records were separated
as the test dataset, from which the mathematical evaluation metrics MSE and R2 [53,57]
were calculated. As an example, Figure 6 shows different Stribeck curves, predicted by four
different algorithms based on seal 8, in comparison with the measured friction values of seal
8. The related performance indices of the four models are summarised in the legend. The
figure clarifies that the evaluation of the models using solely mathematical evaluation met-
rics was inadequate. The Regression Tree and Kernel Approximation models showed the
best performance indices, but were unable to reproduce the known dependency between
the velocity and friction coefficient as a Stribeck curve with the available experimental data.
In particular, the Kernel Approximation Model showed a clear overfitting. Only at discrete
test velocities could the friction coefficients be accurately predicted. In addition to the
performance indices, it was advisable to evaluate the models on the basis of known partial
dependencies, which represented the dependence between the target response, friction
value, and at least one feature. The Gaussian Process Regression and Neural Network
models not only showed good performance indices, but also reproduced the partial depen-
dence between velocity and friction coefficient as a Stribeck curve according to Figure 6.
Especially in case of non-parametric models, a priori selection of learning algorithms was
not advisable, as it was difficult to estimate how they reacted to the training data. As in
Figure 6, the overfitted kernel approximation model showed similar correlations in other
partial dependencies, which could be visualised using partial dependence plots (PDP).
For example, the correlation between the dimple diameter and friction coefficient was
unknown, but a strongly fluctuating correlation with many deflections was not expected
from a tribological point of view.

The recursive feature elimination within the first model generation showed that the
features direction of movement and cycle were not significant. The method thus confirmed
the results of the principal component analysis of Section 4. The final model generation
was, therefore, performed with the averaged friction coefficients, as described in Section 4.
The training data consisted of N = 190 records and M = 5 features. For model building,
k = 5 folds were used. Further, 10% of the records were separated as the test dataset in
order to be able to determine the performance indices on the basis of unknown data. The
comparison of the last epoch of the performance indices of the four algorithms, shown
in Figure 6, is provided in Table 4. It is clear that the neural network, which had both
good mathematical metrics and a good representation of tribology in the form of the
Stribeck curve, had poor MSE and R2 values in the last epoch. Therefore, throughout the
course of model development and evaluation, an exponential Gaussian Process Regression
model, underlined in Table 3, with the following features emerged as the best model in the
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applications context: velocity, dimple diameter, dimple distance, dimple depth, and real
texture density inside the contact area.

The GPR model reveals the following performance indices: MSE = 0.00009 and
R2 = 0.96077. The performance indices of the model with a reduced number of features of
M = 5 were almost identical to those of the maximum dataset of the first model generation.
The MSE even improved slightly. The friction coefficients could thus be predicted with
a high degree of certainty for discrete texture parameters at different sliding velocities.
As shown previously, the model was able to reproduce the known dependency friction
velocity as a Stribeck curve. Further evaluation of the model performance, e.g., using a
residual plot, showed no anomalies that would indicate a poor model fit [57].

To identify optimal texturing parameters, the selected machine learning model was
used to predict friction coefficients for discrete combinations of feature values within the
intervals of the training data. Thus, there was no prediction by extrapolation. The generated
Stribeck curves could be used to evaluate the tribological behaviour of the textured seals
within different friction regimes. Figure 7 shows the prediction interval (grey area), in
which the model could create predictions for the feature intervals specified in Table 5,
compared with the mean friction curve of the untextured reference seal 1. It can be seen
that there was no texture parameter combination, based on the model, that led to lower
friction coefficients in the boundary and mixed friction regime.

Figure 7. Model evaluation: comparison of the untextured reference seal 1 to the model prediction
interval (grey area) and Stribeck curves, predicted by the model, of the identified optimum texture
parameters for each friction regime.

Table 5. Feature intervals used for the machine learning model evaluation.

Feature Unit Min. Max. Resolution

Velocity mm/s 1 500 19 values
Diameter μm 95 205 5
Distance μm 190 400 10
Depth μm 5 30 1
Texture density % 15 45 1

No texture emerged as a global optimum from the parameter study carried out.
Three predicted Stribeck curves could be identified, each of which could be considered
as an optimum in one of the friction states. The corresponding texture parameters are
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summarised in Table 6. From the model prediction, it can be seen that all three texture
parameters led to lower friction coefficients in the hydrodynamic friction region compared
with the untextured reference. However, low friction coefficients in the hydrodynamic
friction regime were at the expense of increased friction coefficients in the boundary and
mixed friction regions. In addition, the transition to hydrodynamic friction was shifted
to higher speeds, so that boundary and mixed friction were more pronounced over a
larger velocity interval. These results were consistent with the preliminary examination, as
explained in Section 5.1.

Table 6. Optimal texture parameters for each friction regime according to the machine learning model
prediction. Friction increase and friction reduction are related to the untextured reference seal 1. The
data are based on the values from the graphs of Figure 7, taking into account the discrete values, as
specified in Table 5.

No. Optimum
Diameter
in μm

Distance
in μm

Depth
in μm

Texture
Density in %

Max. Friction
Increase (Velocity)

Max. Friction
Reduction (Velocity)

1 Boundary/Mixed friction 145 290 13 25 362%
(5 mm/s)

35%
(500 mm/s)

2 Mixed/Hydrodyn. friction 95 240 9 16 390%
(5 mm/s)

44%
(500 mm/s)

3 Hydrodyn. friction 145 290 19 26 526%
(5 mm/s)

47 %
(500 mm/s)

The optimum texture in the transition zone from mixed friction to hydrodynamic
friction No. 2 from Table 6 can be identified as a compromise between Nos. 1 and 3. At the
maximum velocity of 500 mm/s, the maximum predicted friction coefficient reduction was
approximately 44%. In addition, the predicted friction coefficient of μ = 0.044 at a velocity
of 50 mm/s for these texture parameters was the lowest within the entire predictions of the
machine learning model.

As mentioned above, the chosen textures on which the model was based were asso-
ciated with a significant increase in the friction coefficients in the boundary and mixed
friction regions. As can be seen in Table 6, there was a maximum increase in the friction
coefficient of 526% at a low speed of 5 mm/s. So, it became clear that the improvement in
the frictional behaviour strongly depended on the surface texture and especially on the
operational conditions such as the sliding velocity of the seal.

6. Tribological Discussion of the Machine Learning Model Results

The Gaussian process regression (GPR) model, which was the most suitable model
for the present application and the existing data in a tribological context, reproduced the
property of a Stribeck curve, as explained in Section 5. Based on this property and the
mathematically metric values specified in Section 5.2, the validity of the model could
be assumed. As described, suitable surface textures significantly reduced friction in a
hydrodynamic lubrication regime. However, an increase in friction was observed in the
boundary and mixed friction regions.

There are several possible reasons for this behaviour, which is contrary to most of the
literature, where the dimples showed a reduction in friction over nearly the entire range of
operational conditions, e.g., due to their improved micro-hydrodynamic pressure build up
or their lubricant storage effect [21,37,58–62]. In fact, however, the dimples could not only
serve as a source of lubricant and thus support hydrodynamic film formation, but also as a
sink in the event of mixed friction or insufficient lubrication. At low sliding velocities or
during idle periods, lubricant collected in and around the dimples, causing the roughnesses
of the untextured areas of the seal to be in contact with the roughnesses of the pneumatic
cylinder tube surface for a longer period of time, which increased the frictional force in
the mixed friction area. This effect increased with the viscosity of the lubricant, which was
consistent with the present friction measurements, as a grease with a higher viscosity was

65



Lubricants 2024, 12, 20

used. Untextured seals, therefore, have the advantage that less lubricant was required to
separate the contact surfaces in this lubrication condition [63].

Another possibility for increasing friction at low speeds, where the surfaces were not
completely separated from each other as in the hydrodynamic lubrication state, was based
on the texturing during moulding (TDM) manufacturing method of the seals. During
production, the negative of the desired dimple texture was applied to the metallic mould
by laser ablation. During the vulcanisation process, the texture is directly transferred from
the mould to the rubber surface, so that protrusions in the mould became dimples in the
seal. The resulting removal of material from the metal mould increased the outer diameter
of the seals by an amount equal to the depth of the dimples [51]. This increased the contact
pressure between the seal and the pneumatic cylinder tube and thus the friction.

A third possibility for friction increase in the boundary and mixed lubrication regimes
was the texture-parameter-dependent wiping effect of the dimples, where at low sliding
speeds and, therefore, low film heights, the lubricant was wiped off and the edges of the
dimples interlocked with the cylinder surface. The negative contribution of the three effects
to friction described above has not yet been studied and quantified in detail, and will be the
subject of future research. For this purpose, the tests were to be repeated in a glass cylinder.
By recording the dynamic contact between the seal and the glass cylinder with the help
of a high-speed camera, lubricant sinks and wiper effects could be detected. In addition,
the tests were repeated with different pistons, in which the fit between the inner diameter
of the seals and the outer diameter of the pistons was varied. This changed the contact
pressure between the seal surface and the internal cylinder surface, allowing manufacturing
tolerances to be simulated with defined dimensions. Consequently, their effect on friction
could be analysed.

On the other hand, the positive friction-reducing effects of the dimple textures in the
hydrodynamic lubrication regime were evident for nearly all of the textured seals analysed
in this paper (see the grey area of Figure 7). Textures with extremely large diameters, espe-
cially distances above 200 μm and 395 μm, were an exception, due to their inappropriate
aspect ratio [64]. This indicates that a positive effect of the dimples was present, but that
there was a limit to the positive properties of the dimples with their effect of increasing
hydrodynamic pressure build-up for the prevailing specific application of a pneumatic
piston seal [25].

It can also be seen that the slope of the Stribeck curve of the textured seals, and
therefore the friction coefficient, was generally lower in the hydrodynamic lubrication
regime, even though the lubricant was exactly the same in all of the tests. This behaviour
could be explained by the advantageous choice of the texturing parameters, which reduced
the shear stress inside the lubricant film by increasing the lubrication film thickness due
to the increased dimple-induced micro-hydrodynamic pressure build up, which further
separated the contacting surfaces [19,65]. In addition, this behaviour was supported by the
lubricant storage effect of the dimples, so that sufficient lubricant was provided to separate
the surfaces [34,64].

The modelling was exclusively based on the measured values recorded in Section 3.
An extension to include measured values such as seal diameter tolerances, temperature, or
other disturbing influences could change the results of the methodology in such a way that
another of the 26 algorithms analysed was classified as the most suitable for the prevailing
application, which will be analysed in future work.

7. Conclusions

The generalised method, presented in this paper, represents essential steps for building
regression models through supervised learning, using experimental measured friction and
surface texture data as an illustrative example of pneumatic piston seals. In particular, the
parallel use of a large number of 26 different machine learning algorithms in the context
of an exhaustive search led to good results, even when fundamental correlations in the
prevailing data were unknown. The individual steps can be automated, so that the method
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is even suitable for identifying trends in ongoing experiments or production processes and
for intervening at an early stage if targets are possibly missed. For example, the ML model
can be used to identify the operating conditions within the limits of velocity parameters
tested, where the surface textures reveal the maximum friction reduction compared with
the untextured reference. This is even possible for a texture parameter combination that
has not been physically tested.

The approach of this work reveals that machine learning models should be checked
as much as possible using different evaluation metrics and should be classified in the
specific applications context. Machine learning techniques are particularly treacherous for
inexperienced users, as they usually produce good results according to the mathematical
performance indicators R2 and MSE, but may fail to represent the underlying physics,
as represented by Stribeck curves. The strength of the generalised method, presented
in this paper, lies in its ability to reduce factual relationships to the essential influencing
parameters in order to reveal even fundamental physical relationships.

Because it can be fully automated, the method can provide early insights, particularly
in tribological testing, that can be directly incorporated into testing procedures and spec-
imen optimisations for the targeted optimisation parameter, such as friction. As Marian
et al. pointed out in their systematic review that the automation of data collection and pro-
cessing could additionally be applied to existing data and completed projects to extend or
test relationships and conclusions through machine learning [47]. The generalised method
presented in this paper, which is based on common standard machine learning procedures
and a large variety of learning algorithms, is a novel and strong tool for the realisation of
this approach. The main subjects and findings of the paper are listed below:

1. A novel machine learning methodology is developed to build several ML models and
select the most suitable model that reliably predicts optimal surface texture parameters
for different operating conditions such as lubrication regimes;

2. Both mathematical metrics and tribological relationships in the form of the Stribeck
curve are taken into account to determine the most suitable ML model;

3. Surface textured pneumatic piston seals are used as an example application in
this study;

4. Friction measurements of the seals and surface texture measurements of the real parts
serve as the basis of data for ML modeling

5. For the example application and the underlying data, a Gaussian process regression
(GPR) model has proven to be the best model in terms of mathematical metrics and
the tribological representation of the Stribeck curves;

6. Depending on the prevailing friction regimes and surface textures, friction reductions
of up to 47%, and friction increases of up to 526% could be identified for the surface
textures, compared with an untextured reference surface;

7. The advantage of the method is that a large number of 26 ML models can be compared
and the best one selected without having to perform complex processes such as
hyperparameter optimisation of individual models, so that a large number of users
can use the method without being ML experts.
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The following abbreviations are used in this manuscript:

CV Cross validation
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PCA Principal component analysis
PDP Partial dependence plot
RFE Recursive feature elimination
SPLOM Scatterplot matrix
SVM Support vector machine
TDM Texturing during moulding

Appendix A

Table A1. Data Quality Report.

Feature
Number
of Values

Missing
Values

Cardinality Minimum 1st Quartil

Sliding velocity in mm/s 3990 0 19 1.00 5.00
Cycle 3990 0 11 1.00 4.00
Direction of motion 3990 0 2 −1.00 −1.00
Dimple diameter in μm 3990 0 10 96.51 100.35
Dimple distance in μm 3990 0 10 195.76 243.54
Dimple depth in μm 3990 0 10 7.91 11.41
Real texture density 3990 0 10 0.15 0.20
Friction coefficient 3990 0 3990 0.03 0.08

Feature Mean Median
3rd

Quartil
Maximum

Standard
deviation

Sliding velocity in mm/s 89.21 10.00 100.00 500.00 145.94
Cycle 6.24 6.00 9.00 11.00 3.04
Direction of motion −0.50 −1.00 1.00 1.00 1.00
Dimple diameter in μm 142.57 147.23 149.23 199.10 34.74
Dimple distance in μm 278.20 292.59 293.60 389.86 48.99
Dimple depth in μm 16.55 16.79 23.32 24.78 5.99
Real texture density 0.26 0.26 0.27 0.45 0.08
Friction coefficient 0.12 0.11 0.16 0.42 0.06

Table A2. Summary of all algorithms and their performance indices within the first model epoch
with the full dataset according to Section 5.2 studied by category: Supervised Learning — Regression.

Category No. Algorithm MSE R2

Linear Regression Models 1 Linear 0.00259 0.27744
2 Interactions Linear 0.00214 0.40334
3 Robust Linear 0.00259 0.27707
4 Stepwise Linear 0.00212 0.40908
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Table A2. Cont.

Category No. Algorithm MSE R2

Regression Trees 5 Fine Tree 0.00001 0.99738
6 Medium Tree 0.00002 0.99337
7 Coarse Tree 0.00011 0.96963

Support Vector Machines 8 Linear SVM 0.00262 0.26978
9 Quadratic SVM 0.00133 0.62854
10 Cubic SVM 0.00146 0.59357
11 Fine Gaussian SVM 0.00057 0.84057
12 Medium Gaussian SVM 0.00104 0.71004
13 Coarse Gaussian SVM 0.00224 0.37614

Gaussian Process Regression 14 Squared Exponential 0.00046 0.87305
Models 15 Matern 5/2 0.00035 0.90343

16 Exponential 0.00014 0.96152
17 Rational Quadric 0.00036 0.90069

Kernel Approximation Models 18 SVM Kernel 0.00003 0.99114

19 Least Squares Kernel
Regression 0.00013 0.96501

Ensembles of Trees 20 Boosted Trees 0.00013 0.96412
21 Bagged Trees 0.00018 0.95081

Neural Networks 22 Narrow Neural Network 0.00015 0.95800
23 Medium Neural Network 0.00008 0.97772
24 Wide Neural Network 0.00005 0.98352
25 Bilayered Neural Network 0.00006 0.98428
26 Trilayered Neural Network 0.00007 0.98161

Figure A1. Boxplots of relevant features for visualising IQR. The lower and upper quartile (blue),
lower and upper whisker (black), median (red line), lower limit (red downward-pointing triangle)
and upper limit of the IQR (red upward-pointing triangles), and outliers (red crosses) are shown. The
features cycle and direction of motion are not considered, as they only represent a numerator and the
numerical representation of the direction.
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Abstract: This study extends the use of Machine Learning (ML) approaches for lubricant film thick-
ness predictions to the general case of elliptical elastohydrodynamic (EHD) contacts, by considering
wide and narrow contacts over a wide range of ellipticity and operating conditions. Finite element
(FEM) simulations are used to generate substantial training and testing datasets that are used within
the proposed ML framework. The complete dataset entails 915 samples; split into an 823-sample
training dataset and a 92-sample testing dataset, corresponding to 90% and 10% of the combined
dataset samples, respectively. The proposed ML model consists of a pre-processing stage in which
conventional EHD dimensionless groups are used to minimize the number of inputs into the model,
reducing them to only three. The core of the model is based on Gaussian Process Regression (GPR),
a powerful ML regression tool, well-suited for small-sized datasets, producing output central and
minimum film thicknesses, also in dimensionless form. The last stage is a post-processing one, in
which the output film thicknesses are retrieved in dimensional from. The results reveal the capabili-
ties and potential of the proposed ML framework, producing quasi-instantaneous predictions that
are far more accurate than conventional film thickness analytical formulae. In fact, the produced
central and minimum film thickness predictions are on average within 0.3% and 1.0% of the FEM
results, respectively.

Keywords: machine learning; Gaussian Process Regression; elastohydrodynamic lubrication;
elliptical contacts; finite elements; film thickness prediction

1. Introduction

The development of new mechanical systems focuses on maximizing their efficiency
and service life. Accordingly, ensuring that machine elements operate in safe conditions
is imperative to build reliable systems with low maintenance requirements. In practice,
machine elements that undergo high loads, namely gears and bearings, are often lubricated
to reduce component wear and optimize system efficiency. For these elements, accurately
quantifying the thickness of lubricant films at the contact level is critical to maximizing
the system uptime and the lifetime of its components while preventing excessive wear
and reduced efficiency. Moreover, suboptimal efficiency is linked to increased energy
consumption, resulting in higher operating costs, and greater greenhouse gas emissions [1].

Many lubricated mechanical components (e.g., gears, bearings, etc.) generally operate
in a regime in which contact surfaces are fully separated by the lubricant, referred to as
the full film separation regime. In many cases, the pressure endured by these machine
elements at the contact level can exceed several gigapascals. In such cases, the solids
in contact can experience elastic deformation in the contact region, a regime known as
“elastohydrodynamic lubrication” (EHL).

In the general elastohydrodynamic (EHD) contact, the solids are approximated (at the
contact level) by ellipsoids, each of different principal radii of curvature, Rx and Ry, in the x-
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and y- space directions, respectively. Under unloaded and dry contact conditions, these solids
share one point of contact, therefore with the name “point contacts”. When loaded, the contact
patch is elliptical (or circular, when Rx = Ry), hence with the name “elliptical contacts” (or
“circular contacts”, respectively). Two types of elliptical contacts can be recognized: wide and
narrow (or slender). For wide contacts, the lubricant entrainment direction is perpendicular
to the major semi-axis of the contact ellipse. Conversely, for narrow contacts, the lubricant
entrainment direction is perpendicular to the minor semi-axis.

With the advent of cost-effective and accessible computational power, modeling and
numerically solving the EHL problem finally became plausible and a more convenient
alternative to laboratory experiments. The EHL problem is multi-physical by nature,
given the multiple physics equations that need to be coupled for accurate simulation
models. Different frameworks were developed to tackle this problem. One well-established
approach is to use the Reynolds equation for hydrodynamic physics, which applies a thin
film assumption to the Navier–Stokes equations, along with the linear elasticity equations
for deformation and Newton’s second law for load balance. This approach is known as the
Reynolds-based approach, and equations can be solved using, for example, Finite Difference
with multigrid [2] or Finite Element Methods (FEM) [3–5]. The latter method is becoming
increasingly popular, due to its inherent strengths, including the adaptability of Finite
Element software into meshes of custom structure and size, the accessibility of such software
packages [6,7], the availability of Model Order Reduction (MOR) techniques, and most
importantly full coupling (i.e., simultaneous resolution of all coupled equations), which
accelerates convergence. Habchi [5] covers a fully coupled FEM model for EHD elliptical
contacts, along with stabilizing formulations to accommodate for high loads. There exists
another approach to modeling the EHL problem, based on Computational Fluid Dynamics
(CFD) [8–10]. It involves solving the Navier–Stokes equations for the hydrodynamic part.
The drawback of this approach is the extremely high computational overhead.

The complex and multi-physical nature of EHL results in a high number of parameters
involved in this problem, covering the geometry and material properties of the contacting
solids, their kinematics, the applied load, and the behavior of the lubricant. To simplify
the analysis of EHD contacts, several sets of dimensionless groups have been proposed,
representing combinations of variables. Hamrock and Dowson [11] introduced three
dimensionless groups, namely, U, G and W, representing the lubricant speed, material
properties, and load parameters of the problem, respectively. Moes [12] further combined
the Hamrock and Dowson set into two dimensionless groups M, representing the load, and
L, representing the material properties. Note that one additional dimensionless number is
necessary in the study of elliptical contacts; that is, the ellipticity ratio of the contact ellipse.

Point-contact EHL simulations are known to be time-consuming, often requiring
several minutes or sometimes hours to converge. This can impede the design process for
engineers developing new mechanical systems. Over the years, various methods were
implemented to reduce the computing time of simulations. One notable method is MOR,
which reduces the size of the arising algebraic system of equations, either through projection
into a reduced solution space [13,14] or through static condensation [15]. Despite the
substantial decrease in computational effort and time, simulations still require considerable
time to converge, particularly for high ellipticity and highly loaded cases.

As an alternative, dimensionless groups have been used to derive simple film thick-
ness analytical equations, based on numerical and/or experimental data. Each set of such
equations was optimized for a particular range of operating values and performed more
poorly in extrapolation. Hamrock and Dowson [16] introduced the first set of analytical
formulas, as a function of the Hamrock and Dowson dimensionless groups and the radii
of curvature of the ellipsoids (Rx and Ry). A more recent set of analytical formulas with
greater range was presented by Nijenbanning et al. [17]. Both sets of equations are re-
stricted to circular and wide elliptical contacts only. Chittenden et al. [18] were the first
to extend their equations to both wide and narrow elliptical contacts, but the range of
application of these equations is rather limited. An extensive review of analytical formulas
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developed for isothermal point contacts and their respective range of interest is provided
by Wheeler et al. [19].

When predicting film thicknesses in EHD contacts, a trade-off has traditionally ex-
isted between accuracy and speed. This limitation can be overcome by adopting specific
data-driven approaches, such as Machine Learning (ML). Although developing sizeable
datasets for ML requires significant time and effort, the resulting predictive models offer
the potential for accurate and real-time film thickness predictions. To fully replace time-
consuming—but accurate—physics simulations, generated models should be carefully
optimized to minimize prediction errors.

ML methods are becoming increasingly popular in physical and engineering sciences.
In recent years, these methods have been introduced into tribology for both classification
and regression problems [20]. One popular classification example is bearing fault detection
and identification, which has been tackled using a variety of ML models. For example,
Kankar et al. [21] used Support Vector Machines (SVMs) [22] and Artificial Neural Networks
(ANNs) [23], while Shen et al. [24] used physics-informed convolutional neural networks
(CNNs). One regression example is the prediction of the remaining useful life of rolling
bearings, which was addressed using, for example, Random Forests [25], and several deep
learning approaches, including Stacked Autoencoder and Recurrent Neural Networks [26]
and Generative Adversarial Networks [27], among others. For regression problems similar
to film thickness prediction, ML methods can benefit from both the speed of analytical
formulas and the accuracy of simulations. Additionally, ML methods can be used to
solve differential equations. For instance, physics-informed neural networks (PINNs),
which do not necessarily require a training dataset, have been used to solve hydrodynamic
lubrication problems [28,29].

In terms of EHL, Marian et al. [30] were the first to employ machine learning models
to predict EHD parameters, namely central and minimum film thicknesses of line and
circular contacts, based on learning datasets generated using FEM simulation results. The
study looked at the performance of Support Vector Regression (SVR) [31], Gaussian Process
Regression (GPR) [32–34], and ANNs. Different input parameters were also tried, namely
the dimensional input variables and the two aforementioned sets of dimensionless groups
(Hamrock and Dowson as well as Moes). It was concluded that GPR models can offer the
smallest prediction error and that dimensionless groups fail to train accurate models. This
is somehow unexpected, given their popular and relatively successful use in analytical
formulas. More recently, Walker et al. [35] worked on predicting the central film thickness
and viscous and boundary friction in EHD line contacts using ANNs.

While the current study similarly utilizes a dataset of simulation results to build
predictive machine learning models for EHL parameters, it is the first to examine central
and minimal film thicknesses for the general case of elliptical contacts.

2. Finite Element Model

The FEM model employed for dataset generation is detailed in this section. It follows
a full coupling or full-system approach [5] and assumes smooth solid surfaces operating
under steady-state, isothermal, and Newtonian conditions, for simplicity. Moreover, a full-
film regime is assumed, with the lubricant entrainment direction being in the x-direction
(i.e., solids are moving at constant surface velocities u1 and u2 in the x-direction). The
contact is subjected to a constant external applied load F.

As previously discussed, the solids are approximated by ellipsoids at the contact level,
as illustrated in Figure 1a. For simpler modeling, an equivalent reduced configuration is
adopted, consisting of a contact between an elastic ellipsoid of equivalent radii of curvature
and solid properties and a rigid flat plane, as shown in Figure 1b. The elastic properties
(i.e., Young’s modulus of elasticity E and Poisson’s coefficient υ) of the equivalent ellipsoid,
as a function of the properties of each solid, are given by the following:
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E =
1

1−υ2
1

E1
+

1−υ2
2

E2

, and υ = 0 (1)

Figure 1. The contact geometry of (a) an actual elliptical contact and (b) a reduced elliptical contact.

The radii of curvature of the reduced configuration, Rx and Ry, would then be written
as follows:

Rx =
Rx,1 Rx,2

Rx,1 + Rx,2
, and Ry =

Ry,1 Ry,2

Ry,1 + Ry,2
(2)

Finally, let R be the equivalent radius of curvature of the reduced geometry, written
as follows:

1
R

=
1

Rx
+

1
Ry

(3)

For a convenient and generalized study, the equations are written in dimensionless
form as a function of the operating conditions and the Hertzian dry contact parameters.
The latter consist of the Hertzian contact pressure ph (i.e., the maximum pressure reached at
the center of the contact) and the semi-axes of the contact ellipse in the x- and y-directions,
ax and ay, respectively. The Hertzian contact pressure is given by the following:

ph =
3F

2 π ax ay
(4)

The ellipticity ratio of the Hertzian dry contact patch θ = ax/ay can be found given the
ratio of the radii D = Rx/Ry. For wide elliptical contacts, where 0 < D ≤ 1 and 0 < θ ≤ 1,
the Hertzian contact parameters are given as follows:

ax =
3
√

3F R θ Ψ1
πE , and ay = 3

√
3F R Ψ1

πE θ2

Where : θ ≈ 1

1+
√

ln(16/D)
2D −√

ln 4+0.16 ln D

Ψ1 ≈ 1 + θ2
[

π
2

(
1 − ln θ

4

)
− 1
] (5)

where Ψ1 is the complete elliptical integral of the first kind. For narrow or slender elliptical
contacts, corresponding to D ≥ 1 and θ ≥ 1, the Hertzian contact parameters are written
as follows:

ax =
3
√

3F R θ2 Ψ1
π E , and ay =

3
√

3F R Ψ1
π E θ

Where : θ ≈ 1 +
√

D ln(16D)
2 −√

ln 4 + 0.16 ln
(

1
D

)
Ψ1 ≈ 1 + 1

θ2

[
π
2

(
1 + ln θ

4

)
− 1
] (6)

75



Lubricants 2023, 11, 497

The dimensionless parameters employed in the governing equations can be defined
using the aforementioned variables as follows:

X = x
ax

, Y = y
ay

, Z = z
ax

H = h Rx
a2

x
, U = u Rx

a2
x

, V = v Rx
a2

x
, W = w Rx

a2
x

,
P = p

ph
, ρ = ρ

ρ0
, μ = μ

μ0

(7)

where u, v, and w are the solid elastic deformations in the x-, y-, and z- directions, respec-
tively, h and p the lubricant film thickness and pressure, respectively, and ρ0 and μ0 the
density and viscosity of the lubricant, respectively, at ambient pressure.

2.1. Governing Equations

The computational domain Ω, shown in Figure 2, is the region over which the elastic
deformation equations are applied. Its boundary includes a bottom domain, denoted as
∂Ωb, and a contact domain, denoted as Ωc, located on the upper surface of Ω, over which
the Reynolds equation is applied. Moreover, given the unidirectional lubricant flow in
the x−direction, the problem is symmetric with respect to an xz−plane, denoted as ∂Ωs,
passing through the center of the contact. As a result of this symmetry, the number of
degrees of freedom (dofs) of the elastic and hydrodynamic parts of the problem is reduced
by half. The dimensionless side length of the domain Ω was taken to be 60 [5], which is
reduced to 30 in the y-direction due to symmetry (−30 ≤ X ≤ 30, −30 ≤ Y ≤ 0, and
−60 ≤ Z ≤ 0). Such large dimensions are required to attain a half-space configuration. The
dimensionless size of the contact domain Ωc was taken as 6 × 3, accounting for symmetry
(−4.5 ≤ X ≤ 1.5, −3 ≤ Y ≤ 0). Note that the origin of the domain is taken at the dry
undeformed point of contact.

Figure 2. Computational domain of the EHD point contact.

The Reynolds equation describes the pressure distribution over the contact domain
Ωc and is written in its dimensionless form as follows:

∂
∂X

(
ε ∂P

∂X

)
+ θ2 ∂

∂Y

(
ε ∂P

∂Y

)
= ∂(ρH)

∂X

Where : ε = ρH3

μ λ with λ = 12 um μ0 R2
x

a3
x ph

(8)

where um = (u1 + u2)/2 is the mean entrainment speed. A zero-pressure boundary
condition (P = 0) is imposed on the boundary ∂Ωc of the contact domain Ωc, excluding
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the symmetry boundary ∂Ωc ∩ ∂Ωs. For the latter, a symmetry condition is required
(∂P/∂Y = 0). Lastly, the dimensionless film thickness H is defined as follows:

H(X, Y) = H0 +
X2

2
+

D
θ2

Y2

2
− W(X, Y) (9)

The linear elasticity equations govern the dimensionless deformations U, V, and W,
in the x-, y-, and z- directions, respectively. The equations are given as follows:

∂2U
∂X2 + θ ∂

∂Y

[
1
2

(
θ ∂U

∂Y + ∂V
∂X

)]
+ ∂

∂Z

[
1
2

(
∂U
∂Z + ∂W

∂X

)]
= 0

∂
∂X

[
1
2

(
θ ∂U

∂Y + ∂V
∂X

)]
+ θ2 ∂2V

∂Y2 + ∂
∂Z

[
1
2

(
∂V
∂Z + θ ∂W

∂Y

)]
= 0

∂
∂X

[
1
2

(
∂U
∂Z + ∂W

∂X

)]
+ θ ∂

∂Y

[
1
2

(
∂V
∂Z + θ ∂W

∂Y

)]
+ ∂2W

∂Z2 = 0

(10)

The boundary conditions of the linear elastic deformation equations are:

∂W
∂Z = − (1+D)

2 Ψ1 θ P and {σt} =
{

τzx, τzy
}
= {∅} over Ωc

U = V = W = 0 over ∂Ωb
V = 0 and {σt} =

{
τyx, τyz

}
= {∅} over ∂Ωs

σn = 0 and {σt} = {∅} elsewhere

(11)

where σn and {σt} are the normal and tangential stresses, respectively (with τij being the
latter’s component in the j direction within a plane having i as normal).

Finally, for the load balance between the external load and the lubricant pressure, the
equation is written as follows: ∫

Ωc
P dΩ =

π

3
(12)

This equation ensures that the correct constant external load F is applied to the contact
by monitoring the value of the rigid body separation term H0. The lubricant adopted for
this study is a well-characterized mineral oil, “Shell T9”, for which the density-pressure
response is characterized by the Murnaghan equation given by the following:

ρ(p) = ρ0

[
1 +

K′
0 p

K00 exp(−βKT0)

] 1
K′0

(13)

with the ambient temperature T0 = 30 ◦C, K′
0 = 10.545, K00 = 9.234 GPa,

βK = 6.09 × 10−3 K−1, and ρ0 = 872 kg/m3 [36]. The viscosity–pressure dependence of
this lubricant is characterized by the modified Yasutomi-WLF model given by the following:

μ(p) = μg exp
[
−2.303C1 (T0−Tg) F

C2+(T0−Tg) F

]
with Tg(p) = Tg0 + A1 ln(1 + A2 p)

F(p) = (1 + b1 p)b2

(14)

where Tg is the glass transition temperature, with Tg0 being its ambient-pressure value,
and with parameters A1 = 188.95 ◦C, A2 = 0.53 GPa−1, b1 = 7.37 GPa−1, b2 = −0.62,
C1 = 15.90, C2 = 14.16 ◦C, Tg0 = −68.47 ◦C, and μg = 1012 Pa·s [36]. Given these values,
the ambient-pressure viscosity μ0 = 0.0125 Pa·s, and the reciprocal asymptotic isoviscous
pressure coefficient [37] α∗ = 21.21 GPa−1.

2.2. Overall Numerical Procedure

The domain Ω was discretized into a mesh of second-order (quadratic) Lagrange finite
elements of a tetrahedral shape (10 nodes). The mesh across the contact domain Ωc was
taken as the two-dimensional projection of the three-dimensional mesh, that is, a mesh of
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6-node Lagrange triangular elements. To decrease the computational time, the mesh was
refined the most at Ωc and made increasingly coarser in further regions of the domain Ω.
Moreover, a mesh refinement process was conducted to ensure grid-independent solutions.

All equations were discretized using FEM and solved simultaneously. Since the
Reynolds equation is a convection-diffusion equation, artifact oscillations may arise in the
high-load solution when using the standard Galerkin formulation [5]. Several formulations
have been introduced to remedy this issue, namely the Streamline Upwind Petrov-Galerkin
(SUPG), Galerkin Least-Squares (GLS), and Isotropic Diffusion (ID) [5]. In the model
employed in this paper, the SUPG stabilizing term is combined with the ID term, which
allows for the resolution of cases with Hertzian pressures of several gigapascals.

Furthermore, the penalty term introduced by Wu [38] was added to the Reynolds
equation to comply with the cavitation boundary condition. The resulting non-linear
algebraic system of equations is then solved using the damped-Newton method [39],
starting from a carefully chosen initial guess. For more details on the FEM modeling of the
EHL problem (convergence criteria, meshing, FEM formulations, etc.), interested readers
are referred to [5].

2.3. Experimental Validation

The FEM model was previously validated against experiments for circular contacts on
numerous occasions, but not for elliptical contacts. Therefore, experimental validation for
wide and narrow elliptical contacts is required.

Experiments were conducted using an optical interferometry roller-on-disc apparatus
in a temperature-controlled environment at 30 ◦C, with a steel roller (E = 210 GPa and
υ= 0.3) against a glass plane (E = 72 GPa and υ= 0.23). For the wide contact experiments,
the roller’s radii of curvature at the point of contact Rx = 13.05 mm and Ry = 84 mm,
and the experiments were conducted for a constant load of F = 150 N, corresponding to a
Hertzian pressure of ph = 0.484 GPa. Under these conditions, the contact ellipticity ratio
θ ≈ 0.295. A total of 20 different values of entrainment speeds ranging from um = 0.05 m/s
to um ≈ 6.458 m/s were considered. For narrow contacts, the roller’s radii of curvature at
the point of contact Rx = 12.7 mm and Ry = 4.82 mm, and the experiments were conducted
for a constant load of F = 13 N, corresponding to a Hertzian pressure of ph = 0.526 GPa.
Under these conditions, the contact ellipticity ratio θ = 1.89. A total of 15 different values
of entrainment speeds ranging from um = 0.8214 m/s to um ≈ 6.46 m/s were considered.
For both cases, the lubricant used was the Shell T9 lubricant. Note that film thickness
measurements for wide contacts extend to much lower speeds compared to slender ones.
This is because the film thickness range covered by the employed test rig is fixed. It spans
from a few tens of nanometers up to slightly less than a micron. Given that the same
lubricant is employed for both wide and slender contacts, with the same inlet temperature,
a wide contact would generate thicker films than a slender one (at similar speeds), allowing
for measurements at smaller entrainment speeds for the former. In addition, for wide
contacts, the higher external load F enhances contact stability, allowing for measurements
of even thinner films (i.e., at even lower speeds).

As can be seen in Figure 3, which shows central and minimum film thicknesses against
mean entrainment speeds on a log-log scale, the FEM model generally complies with the
experimental data, especially at low speeds where the deviation is minimal. For higher
entrainment speeds, the discrepancy is seen to increase, which can be justified by the
prevalence of thermal and shear-thinning effects that were not accounted for in the model.
Coefficient of determination R2 values (between experimental and numerical data) are
reported within Figure 3 for each set.
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Figure 3. Comparison of numerical and experimental central and minimum film thickness variations
as a function of the entrainment speed for (a) wide contacts and (b) narrow contacts.

3. Machine Learning

In general, supervised ML models for regression are algorithms that learn the rela-
tionship between variables in a dataset and predict a continuous target or output variable.
The ML model is provided with input features that will be used to interpret the variation
of the output variable in a learning process known as model training. Once the dataset is
generated or compiled, it is split into at least two datasets: a training and a testing dataset.
A variety of ML models are trained on the former set with varying parameters. Then, the
performance and accuracy of these models are evaluated on the testing dataset based on ap-
propriate evaluation metrics to empirically find the optimal model for a given application.
An important procedure conducted by ML engineers is feature selection, which involves
selecting the necessary input features (here, the relevant EHD parameters) to properly
capture the variation in the outputs (here, the central and minimum film thicknesses). This
section covers the development of the dataset, the feature selection process, the description
of the employed ML model (namely GPR), its underlying choices for the kernel function,
and the employed data standardization techniques and performance metrics.

3.1. Data Generation

Prior to generating the operating conditions of every sample in the dataset, a range of
operating conditions should be specified. The ranges are defined such that every datapoint
belongs to the full-film elastohydrodynamic lubrication regime. In other words, the lubri-
cant film should be sufficiently thick to prevent a surface asperity contact, indicative of the
mixed lubrication regime. In addition, the pressure endured by the components should
not result in plastic deformation, which is avoided in practice as it would lead to failure.
To achieve this, specific ranges for the Hertzian pressure ph, mean entrainment speed um,
and ratio of radii D were established, and the values of the remaining parameters were
calculated accordingly. Moreover, cutoff values for the Moes dimensionless parameters M
and L [12] were set to enforce the same full-film EHL conditions. This additional restriction
ensures that all considered samples remain within the vicinity of the piezoviscous elastic
lubrication regime. Further verification will be applied through the careful visual inspection
of all obtained pressure and film thickness profiles to ensure that they exhibit all typical
characteristics of this regime (i.e., a flat central film thickness region with a minimum
thickness in the vicinity of the side lobes, a near-Hertzian pressure distribution with a zero
pressure gradient on the inlet side to ensure that the chosen inlet length is sufficient to
avoid numerical starvation, etc.). The Moes dimensionless groups are written as a function
of the Hamrock and Dowson dimensionless groups U, G, and W [11], which are given
as follows:

U =
μ0um

2ERx
, G = 2 α∗E, and W =

F
2ER2

x
(15)
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Then, the Moes dimensionless groups are given by the following:

M = W(2U)−3/4, and L = G(2U)1/4 (16)

The ranges of interest of all parameters are presented in Table 1.
To provide representative sampling across the ranges of interest, Latin Hypercube

Sampling (LHS) [40] was employed. LHS is a space-filling design method that maximizes
the minimum distance between all datapoints. Such a method is employed as it is ideal for
ML models to have spaced-out samples.

Two separate datasets, each of 625 points, were generated using LHS. One dataset was for
wide elliptical contacts, and another one was for narrow contacts. Both datasets were generated
for steel–steel contacts, lubricated with Shell T9. The lhsdesign function in MATLAB [41]
generated a unit hypercube, which was then mapped linearly to match the ranges of the
operating conditions in Table 1. Note that argument “Smooth” was set to “off” to obtain
equally spaced steps in each dimension, and the argument “Criterion” was set to “maximin”
to maximize the minimum distance between datapoints, as desired. The distribution of LHS
datapoints of each dataset can be seen in Figure 4a,b for wide and narrow contacts, respectively.
After applying the constraints in Table 1, the former dataset was left with 413 samples, while the
latter had 503 samples. The distribution of constrained LHS datapoints of each dataset is shown
in Figure 4c,d for wide and narrow contacts, respectively. Note that for both wide and narrow
contacts, the low-speed high-load cases and the high-speed low-load cases were filtered out in
the constrained datasets. This is because the former would yield extremely thin films (below
10 nm, roughly) where the direct contact between asperities is likely to occur (mixed lubrication),
while the latter would yield extremely thick films with low pressures and little-to-no solid elastic
deformations (hydrodynamic lubrication). For every simulated case, the values of parameters
M, L, and θ were recorded in a table, along with target variables H∗

c and H∗
m, as detailed in

Section 3.2. The datasets were finally combined into one larger dataset of 915 samples, which
was split into an 823-sample training dataset and a 92-sample testing dataset, corresponding to
90% and 10% of the combined dataset samples, respectively.

 

Figure 4. Distribution of data points across the input space for unconstrained (a) wide and (b) narrow
contacts, as well as constrained (c) wide and (d) narrow contacts.
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Table 1. Operating conditions’ ranges of interest for dataset generation.

Parameter Lower Bound Upper Bound Unit

Ranges of interest
um 0.01 50 m/s
ph 0.4 4 GPa
D 1/12 12 -

Constraints
M 10 3000 -
L 1 20 -

3.2. Feature Selection

Feature selection is a key component in any ML process, consisting of the careful
selection of the input parameters that would be needed for the prediction of specified
outputs. The simplest and most obvious choice for the EHL problem would be a brute-force
approach, whereby all physical inputs of the contact (i.e., kinematics, load, solid and fluid
material properties, etc.) are selected as features. This would result though in a relatively
high number of input parameters, some of which may be correlated. Knowledge of the
EHL problem and its characteristics will turn out to be fundamental in selecting the right
inputs, as will be discussed in what follows.

This study aims to develop ML models that can accurately predict the central and
minimum film thicknesses of EHD elliptical contacts. A common practice in ML is to
reduce the number of input features into a model and hence the popularity of methods,
such as Principal Component Analysis (PCA) [42]. This practice boosts the model’s sim-
plicity and interpretability, as well as its computational efficiency, both in training and
prediction. In this work, the number of input features was minimized based on the existing
knowledge of the EHL problem, its underlying physics, and governing mechanisms. The
Moes dimensionless groups, M and L [12], defined in Equation (16), were exclusively used
as input features for GPR, as this set has the lowest number of dimensionless groups due
to the optimum similarity analysis employed to derive it. This set was also proven to be
relatively successful at film thickness prediction in analytical formulas [19]. Furthermore,
the ellipticity of the contact θ (or the ratio of radii D) is required to convey the shape
or aspect ratio of the contact. The feature selection process is summarized in Figure 5,
where the numbers between brackets refer to the equation(s) defining their corresponding
parameters. This figure details the pre-processing and post-processing phases applied prior
to and following the ML phase. The values of parameters Rx, E, and α∗ were fixed, along
with the density and viscosity models and their parameters for the Murnaghan equation of
state (13) and the modified Yasutomi-WLF Equation (14), respectively. Only parameters
D, ph, and um were varied based on LHS. The number of input features was then reduced
by deriving parameter F using Equation (4) as a prerequisite to finding the Hamrock and
Dowson dimensionless groups, U, G, and W using Equation (15). Then, these groups
were further combined into the Moes dimensionless groups M and L using Equation (16).
Furthermore, these features were transformed into their logarithmic values ln(M) and
ln(L), respectively. At this stage, it is essential to introduce another commonly-adopted
definition for the dimensionless film thickness:

H∗ = h
Rx

√
2U

(17)

This definition is used in the ML process to conform with the Moes dimensionless
groups (M and L) as input parameters. The same M, L, and θ values result in the same
H∗ and not H (not accounting for lubricant compressibility, and assuming an idealistic
exponential viscosity-pressure response) [12]. Analytical formulas featuring this definition
were previously established by Evans and Snidle [43] and Nijenbanning et al. [17]. This
allows the model to be generalized to different solid material properties. A sufficiently
accurate generalization would also be attained for fluids with a non-exponential viscosity–
pressure behavior, by using α∗ to describe their response. The output features H∗

c and H∗
m
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are also transformed into their logarithmic values, ln(H∗
c ) and ln(H∗

m). The logarithmic
transformation is based on analytical formulas indicating a power-law relationship between
the input and output features. It reduces the non-linearity of the problem and allows for
easier and more accurate ML modeling, as will be discussed in Section 4. Dimensional
film thicknesses were then retrieved using Equation (17), and the ML-model-performance
metrics were evaluated based on the output dimensional film thicknesses, as discussed in
Section 3.3. Note that fixing a subset of EHD parameters while maintaining the ability to
generalize onto other values is made possible through the use of dimensionless groups.

 

Figure 5. Diagram illustrating the dataset generation, dimensionality reduction, and feature selection
for this study.

3.3. Gaussian Process Regression (GPR)

Several models may be used for regression given tabular data, each of different work-
ing principles. For the sake of brevity, only GPR [33] will be considered here, given its
superior performance over SVR [31] and its better suitability for limited datasets compared
to ANNs [23]. GPR is a non-parametric—the number of parameters is a function of the
number of training points—probabilistic model that can account for noise and uncertainty.
This model employs a kernel function to capture data nonlinearity. The kernel function
should be carefully selected or designed to inform the model on the relationship and covari-
ance between variables and therefore potentially achieve better performance. The different
kernel function choices that are considered in this work are detailed in Appendix A.

ML models typically have hyperparameters that should be tuned to improve perfor-
mance. Hyperparameters traditionally were fixed before training begins and not altered
during the process. However, models now employ optimization algorithms to fine-tune
some hyperparameters during training. This helps to avoid overfitting and improve gener-
alization to unseen data [44]. In GPR, the hyperparameters include the kernel length-scale,
which can be different for every input feature, and determines the flexibility and sensitivity
of the model (range over which one datapoint can influence other datapoints) and the
kernel signal variance, which controls the scale of the function and the distribution of
data. The values of the kernel hyperparameters are initialized prior to training the models.
Then, through an optimization process, these values are updated until convergence is
reached. In the scikit-learn GPR implementation employed in this work, the l-bfgs-b algo-
rithm [45] maximizes the log marginal likelihood [33], which reduces errors and improves
model accuracy.

In GPR, the predicted function is modeled as a Gaussian process distribution. In other
words, the predicted function does not have one specific parametric form, but rather it is
a distribution over several functions. This allows the model to approximate uncertainty
and noise in data by calculating the standard deviation of predictions. Let x̃ and x̂ be
the sets of values of input features from two sample datasets X̃ and X̂ of dimensions
ñ and n̂, respectively, with x̃i and x̂i being their individual inputs (i = 1 . . . Nf , where
Nf corresponds to the number of input features). A multivariate Gaussian process is
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defined by a mean function m(x) and a kernel function k(x̃, x̂) evaluated for every possible
pairwise combination (x̃, x̂). The former is the expected value for an input x, while the
latter represents the dependence and correlation between inputs x̃ and x̂. A function y(x)
following a Gaussian distribution would then be denoted as follows:

y(x) ∼ N (m(x), k(x̃, x̂)) (18)

In a Gaussian process, any subset of points belonging to the same dataset follows a
joint normal, Gaussian distribution. As such, the training dataset output values ytr and the
testing dataset output values yte are drawn from a joint multivariate Gaussian distribution,
in a GPR model. Initially and before training or observing any data, a prior distribution
over functions is assumed. The prior distribution can be seen as an initial assumption about
the model parameters prior to observing any data. Then, by applying Bayes’ rule [33] and
conditioning to the training dataset, the posterior distribution is obtained. This distribution
combines the prior with the likelihood function, both of which are assumed to be Gaussian.
The latter is derived from training data and reflects the probability of observing the output
value, given the set of input values. The posterior distribution is also a multivariate
Gaussian process representing the updated belief about model parameters, characterized
by a posterior mean function and a posterior kernel function. The posterior mean function
represents the noise-free or average value of predictions, while the posterior kernel function
can quantify noise and uncertainty in predictions. The output (and input) data will be
standardized around a zero mean, as will be discussed later. Accordingly, the mean function
m(x) is taken as zero, allowing for notational and computational simplicity. Note that since
the dataset was developed using deterministic FEM simulations, the data are assumed to
be noise-free (no uncertainty). The noise variance value is negligible, and the uncertainty
of predicted values is not considered, i.e., the posterior kernel function is not considered,
and the predicted output is a specific value and not a range of values. Therefore, to make
predictions, the posterior mean function is simply evaluated for the input values of data
points to be predicted. Given the following prior distribution over functions:

y(x) ∼ N (0, k(x̃, x̂)) (19)

the prior joint multivariate Gaussian distribution between all dataset points (split into
training and testing subsets, denoted by the subscripts “tr” and “te”, respectively) is written
as follows: [

ytr
yte

]
∼ N

([
0
0

]
,
[

k(Xtr, Xtr) k(Xte, Xtr)
T

k(Xte, Xtr) k(Xte, Xte)

])
(20)

and the prediction function of the GPR model for testing datapoints is as follows:

ŷte = k(Xte, Xtr)[k(Xtr, Xtr)]
−1ytr (21)

The GPR prediction, Equation (21), can be seen as a linear regression or weighted
sum equation [32], where every output in ytr is multiplied by a given weight. The weight
stems from the evaluation of the kernel function, and its value is based on the similarity
between the input values of the testing and training points. For a more detailed derivation
of Equation (21), interested readers are referred to [33]. Notice that only two kernel matrices
need to be evaluated for noise-free predictions. The first is k(Xtr, Xtr) for every possible
pairwise combination of training samples, resulting in a matrix of size Ntr × Ntr, where Ntr
is the number of samples in the training set. The second kernel matrix k(Xte, Xtr) evaluates
the kernel function for every possible pairwise combination of samples, where one sample
is from the testing set and the other is from the training set. The size of k(Xte, Xtr) would
be Nte × Ntr, where Nte is the number of samples in the testing set. The computational
complexity is imposed by the inversion of matrix k(Xtr, Xtr), which results in an algorithm
scaling with O

(
N3

tr
)
. For a relatively small dataset of several hundred datapoints, this is
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not a concern. However, it may turn out to be prohibitive for larger datasets. The exact
GPR implementation used in scikit-learn is based on Algorithm 2.1 in [33].

Finally, note that all input features fed into the ML model and the outputs should be
normalized or standardized prior to training and predicting, as detailed in Appendix B.
Also, listed in Appendix B are the performance metrics that are employed in evaluating
the pertinence and accuracy (in comparison with FEM simulation results) of the differ-
ent considered ML model configurations, namely the adjusted R-squared, mean absolute
percentage error (MAPE), and maximum absolute percentage error (MAXAPE). The “error”
terminology in these metrics simply corresponds to output deviations with respect to FEM
simulation results.

4. Results and Discussion

In this section, the performance of different GPR models is evaluated in order to find
an optimal configuration, for which the predictive performance is then compared to that of
a conventional analytical film thickness formula for the central and minimum film thickness
in elliptical EHL contacts.

First, several kernel functions and a combination of these functions were considered,
in order to determine the best performing configuration. The performance of all functions
based on the testing dataset is summarized in Table 2. Clearly, ARD-Matern kernels offer
the best fit, while the ARD-RBF kernel seems to be the worst. Moreover, combining the
ARD-Matern kernel for ν = 3/2 with that for ν = 5/2 further reduces prediction errors
with respect to the FEM simulations. For this configuration, MAPE values drop to 0.31%
and 1.00% only, for the central and minimum film thicknesses of testing points, respectively,
with a MAXAPE of 3.05% and 6.97%, respectively. The corresponding kernel function is
obtained by simply combining or adding the ARD-Matern kernel for ν = 3/2 with that for
ν = 5/2.

Table 2. Performance metrics of GPR models based on the testing dataset for different kernel functions.

hc hm

Kernel Function Adj. R2 (-) MAPE (%) MAXAPE (%) Adj. R2 (-) MAPE (%) MAXAPE (%)

ARD-RBF 0.9871 2.28% 22.02% 0.9841 6.89% 68.20%
RQ 0.9988 0.71% 5.15% 0.9979 1.88% 11.74%

ν = 3/2 0.9995 0.39% 5.33% 0.9987 1.39% 7.66%
ARD-Matern ν = 5/2 0.9990 0.53% 9.12% 0.9975 1.58% 12.86%

ν = 3/2⊕ν = 5/2 0.9999 0.31% 3.05% 0.9992 1.00% 6.97%

One noticeable trend depicted in Table 2 is the larger errors for minimum film thickness
predictions compared to central film thickness. Such a trend is not unusual though, and
it has often been observed in analytical film thickness formulae [19]. This is because the
governing physical mechanisms for the central film thickness are better understood than
those for the minimum film thickness. Even after decades of trials, the quest for a reliable
minimum film thickness formula remains elusive. From the earliest theoretical studies on
EHL, it was identified that the central film thickness is governed by lubricant rheology
in the low-pressure inlet region of the contact, though proper quantification of the inlet
pressure was only recently carried out [46]. This has led to the identification of a single
pressure–viscosity parameter that would govern the central film thickness response in
analytical formulae. There is still no general consensus though on the definition of this
parameter, and several variants have been proposed over the years [47]. Nonetheless, it is
at least clear that central film thickness is governed by the inlet rheology. The minimum
film thickness was also thought to be governed by the inlet rheology. Only recently did
Habchi et al. [48] discover that it is also influenced by the high-pressure rheology in the
central part of the contact. This implies that an additional high-pressure definition for a
pressure–viscosity parameter would be needed—whether in analytical formulae or ML
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frameworks—to properly describe the governing physics of minimum film thickness. Such
a definition is yet to be developed, and it is definitely beyond the scope of the current
work. Nonetheless, once available, it would be straightforward to include as an additional
input feature for analytical formulae or ML models. The lack of a proper understanding
of the governing mechanisms of the minimum film thickness is probably the reason why
corresponding recent analytical formulae have shifted—with somewhat more success—
towards a prediction of the ratio of the central-to-minimum film thickness, rather than a
direct prediction of the minimum film thickness itself [49].

The performance of the best performing model (and kernel) based on the testing
dataset is illustrated in Figure 6. Figure 6a,b show the predicted central and minimum
film thickness values, respectively (using the ML model), compared to their “true” values
(given by the FEM simulations). Note that the closer the predictions are to the diagonal, the
more accurate they are. The performance metrics for each feature are displayed within its
corresponding figure. Clearly, the proposed ML framework is perfectly capable of predict-
ing both the central and minimum film thickness for all considered testing points, with a
slightly better precision for the former. Figure 6c,d show the percentage residuals/errors of
the central and minimum film thickness, respectively, for all testing points, as a function
of their corresponding so-called true value, obtained using the FEM model described in
Section 2. The results reveal that errors are rather scattered, with no significant error bias
towards low, medium, or high film-thickness valuese.

 

Figure 6. Predicted vs. true values and percentage residual plots of central ((a) and (c), respectively)
and minimum film thicknesses ((b) and (d), respectively) for the best-performing ML model.

Next, in order to showcase the benefits of transforming the features M, L, H∗
c , and H∗

m into
their logarithmic values, the models were re-trained using their untransformed/original values.
The corresponding results for the testing dataset are presented in Table 3. In comparison with
the results of Table 2, it can be seen that all models for all kernel functions perform worse when
the scale of input features M and L and outputs H∗

c and H∗
m is linear instead of logarithmic. For

the best-performing model (last row in both tables), the logarithmic transformation reduces the
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MAPE from 0.52% to 0.31% and MAXAPE from 7.48% to 3.05% for the central film thickness.
For the minimum film thickness, MAPE is reduced from 1.50% to 1.00% and MAXAPE from
7.32% to 6.97%. Reductions are more significant for other choices of kernel functions. This shows
the importance of transforming these features into their logarithmic scales, to reduce the ML
model non-linearity. In fact, since the earliest theoretical EHL studies, it has been known that the
film thickness varies as a power function of the Moes parameters M and L (or their underlying
Hamrock and Dowson parameters, G, U, and W), as evidenced by most analytical formulas
using these parameters [19]. Note that the values of the Adj. R-squared can be misleading, as
they are very close to unity despite the large percentage errors. For a more detailed observation
of the performance of this model, Figure 7 shows the same results as Figure 6, but without the
logarithmic transformation.

Table 3. Performance metrics of GPR models using the initial scale (instead of logarithmic) of M, L,
H∗

c , and H∗
m for different kernel functions.

hc hm

Kernel Function Adj. R2 (-) MAPE (%) MAXAPE (%) Adj. R2 (-) MAPE (%) MAXAPE (%)

ARD-RBF 0.9420 4.65% 49.15% 0.8857 36.28% 566.52%
RQ 0.9969 1.06% 8.36% 0.9927 5.38% 30.63%

ν = 3/2 0.9993 0.47% 5.98% 0.9974 2.11% 11.89%
ARD-Matern ν = 5/2 0.9968 0.87% 20.90% 0.9882 6.84% 239.95%

ν = 3/2⊕ν = 5/2 0.9998 0.52% 7.48% 0.9992 1.50% 7.32%

 

Figure 7. Predicted vs. true values and percentage residual plots of central ((a) and (c), respectively)
and minimum film thicknesses ((b) and (d), respectively) for the best-performing ML model, without
logarithmic scaling of M, L, H∗

c , and H∗
m.

Trained ML models can generate thousands of predictions per second, hence offering
a similar speed to analytical formulas, such as, for example, the Hamrock and Dowson
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equations [16] (still probably the most widely used film thickness formulas to date [50],
despite decades of development). It would therefore be interesting to compare the accuracy
of these formulas to that of the proposed ML model, based on the same testing set, as
employed here. Figure 8 shows the performance metrics of the Hamrock and Dowson
formulas, in a similar fashion to Figures 6 and 7. Out of fairness, narrow elliptical contacts
were left out of the testing set, since the Hamrock and Dowson formulas were originally
developed for wide and circular contacts only. Not only are the analytical formulas’
predictions significantly less accurate than the ML model, but they are also mostly of
a non-conservative nature (i.e., they overpredict the film thickness). In addition, the
usual significant loss of accuracy of analytical formulae for the minimum film thickness—
discussed earlier—can be clearly seen in Figure 8b,d. The results of Figure 8 are in general
agreement with those of Wheeler et al. [19] who reported relative deviations in central and
minimum film thickness predictions using the Hamrock and Dowson formulae that are as
high as approximately 22% and 95%, respectively, compared to EHL simulation results.

 

Figure 8. Predicted vs. true values and percentage residual plots of central ((a) and (c), respectively)
and minimum film thicknesses ((b) and (d), respectively) for the Hamrock and Dowson analytical
formulas for wide and circular cases of the testing dataset only.

The superior predictive performance of ML regression frameworks, like GPR, over
analytical film thickness formulas may be attributed to the fact that the former are non-
parametric (i.e., they operate in a functional space of infinite dimensions or, in other
words, with an infinite number of possible regression functions), whereas the latter are
parametric, and they usually rely on a pre-defined single regression function with a certain
fixed number of parameters (e.g., Hamrock and Dowson [16]) or the combination of a
limited number of pre-defined functions (e.g., Nijenbanning et al. [17], which employs
a combination of four pre-defined functions, one for each of the known EHL regimes:
rigid-isoviscous, elastic-isoviscous, rigid-piezoviscous, and elastic-piezoviscous).
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Remark 1. Out of fairness, it should be emphasized that the range of M and L that was originally
covered in developing the Hamrock and Dowson formulas is significantly smaller than the one
covered by the testing dataset. Actually, only a few samples of the testing dataset fall within that
range. Therefore, the current comparison is not entirely fair. Nonetheless, it is quite illustrative,
since it gives the reader an idea of the range of errors that are involved in using such analytical
formulas outside their range of application, a common practice in the EHL literature. In addition, the
Hamrock and Dowson formulas were developed using the simplistic exponential pressure–viscosity
relationship, which fails to accurately capture the high-pressure rheology of typical lubricants.
As such, this would yield relatively inaccurate minimum film thickness predictions, as discussed
earlier. The impact on central film thickness should be minimal, however, as long as the correct
pressure–viscosity coefficient is employed. This is because the central film thickness is governed by
the low-pressure inlet rheology of the lubricant [46], which is well captured, even by such simplistic
rheological models.

5. Conclusions

This study extends the use of Machine Learning (ML) approaches for EHL film thick-
ness predictions to the general case of elliptical contacts by considering wide and narrow
contacts over a wide range of ellipticity and operating conditions. FEM simulations are
used to generate substantial training and testing datasets that are used within the proposed
ML framework. The complete dataset entails 915 samples, split into an 823-sample training
dataset and a 92-sample testing dataset, corresponding to 90% and 10% of the combined
dataset samples, respectively. The proposed ML model consists of a pre-processing stage
in which the conventional EHD dimensionless groups are used to minimize the number
of inputs to the model, reducing them to only three. The core of the model is based on
GPR, a powerful ML regression tool, well-suited for small-sized datasets, producing output
central and minimum film thicknesses also in a dimensionless form. The last stage is a post-
processing one, in which the output film thicknesses are retrieved in a dimensional form.

First, the ML model was tuned to find the most suitable choice/combination of kernel
functions, which was then used to make film thickness predictions for the testing dataset.
The results revealed the power of the proposed ML approach, producing predictions that
are far superior to analytical film thickness formulae in terms of accuracy, for a similar
negligible computational effort. Then, the importance of transforming the input Moes
dimensionless parameters and the output film thicknesses into a logarithmic scale was
quantified. Such a transformation reduces the non-linearity in the ML model, leading to
improved prediction accuracy, since central and minimum film thicknesses are known to
vary as a power function of the Moes parameters.

To conclude, this study constitutes a first approach towards establishing a generalized
ML framework for elliptical EHD contacts, through the use of conventional EHL dimen-
sionless groups, namely the Moes parameters. It was shown that such groups can, in
fact, be employed as input features and produce accurate models, contrarily to what was
suggested by Marian et al. [30]. The generality of the proposed framework is not attributed
to the ML model itself, but rather to the well-known central and minimum film thickness
similitude of EHD contacts with similar values of the Moes parameters. Nonetheless, some
improvements can still be applied to enhance the predictive accuracy. For instance, the
influence of lubricant compressibility may be incorporated either a priori by employing
several density–pressure responses and adding their corresponding parameters to the
input features of the dataset or a posteriori by using a correction factor for the central
film thickness [51,52]. This is because the influence of lubricant compressibility is known
to be restricted to the central film thickness, with no noticeable effect on the minimum
film thickness. Incorporating the influence of compressibility would enhance the accuracy
of central film thickness predictions. As for minimum film thickness predictions, these
could be enhanced through the derivation of a dedicated pressure–viscosity parameter at
high-pressure, to be added as an additional input feature.
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Nomenclature

α∗ Reciprocal asymptotic isoviscous pressure coefficient (Pa−1)
βK Murnaghan EoS isothermal bulk modulus temperature coefficient (K−1)
μ Lubricant low-shear/Newtonian viscosity (Pa·s)
μ Dimensionless lubricant low-shear/Newtonian viscosity
μg Lubricant viscosity at glass transition temperature (Pa·s)
μ0 Lubricant low-shear/Newtonian viscosity at ambient pressure (Pa·s)
μtr, σtr Mean and standard deviation of features within the training dataset
υ Equivalent solid Poisson coefficient
υ1, υ2 Poisson coefficient of solids 1 and 2
Ω Equivalent solid computational domain
Ωc Contact computational domain
∂Ωc Boundaries of Ωc
∂Ωb Fixed boundary of Ω
∂Ωs Symmetry boundary of Ω
Ψ1 Complete elliptic integral of the first kind
ρ Lubricant density (kg/m3)
ρ Lubricant dimensionless density
ρ0 Lubricant density at ambient pressure (kg/m3)
σn Normal component of 3D stress tensor (Pa)
σf , l, α, ν GPR model hyperparameters
{σt} Vector of tangential components of 3D stress tensor (Pa)
θ Contact ellipticity ratio
τij Shear stress in the j-direction within a plane having i as normal (Pa)
ax, ay Hertzian elliptical contact semi-axes in the x, y-directions (m)
A1, C2 Modified Yasutomi-WLF viscosity model parameters (◦C)
A2, b1 Modified Yasutomi-WLF viscosity model parameters (Pa−1)
b2, C1 Modified Yasutomi-WLF viscosity model parameters
D Ratio of contact equivalent radii of curvature Rx and Ry
E Equivalent solid Young’s modulus of elasticity (Pa)
E1, E2 Young’s moduli of elasticity of solids 1 and 2 (Pa)
F Contact external applied load (N)
G, U, W Hamrock and Dowson material, speed, and load dimensionless groups
h Lubricant film thickness (m)
hc Central film thickness (m)
hm Minimum film thickness (m)
Hc, H∗

c Dimensionless central film thickness
Hm, H∗

m Dimensionless minimum film thickness
H0 Dimensionless rigid-body separation
H, H∗ Dimensionless lubricant film thickness
K00 Isothermal bulk modulus at zero absolute temperature (Pa)
K′

0 Pressure rate of change of isothermal bulk modulus at zero pressure
L, M Moes dimensionless material properties and load parameters
m, k Mean and kernel functions
ñ, n̂ Sizes of sample datasets X̃, X̂
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Nf Number of input features
Ntr, Nte Number of samples in the training and testing datasets
p Pressure (Pa)
ph Hertzian contact pressure (Pa)
P Dimensionless pressure
Rx1, Rx2 Principal radii of curvature of solids 1 and 2 in the xz-plane (m)
Ry1, Ry2 Principal radii of curvature of solids 1 and 2 in the yz-plane (m)
Rx Radius of curvature of equivalent elastic solid in the xz-plane (m)
Ry Radius of curvature of equivalent elastic solid in the yz-plane (m)
R Equivalent radius of curvature of reduced contact geometry (m)
Tg Glass transition temperature (K)
Tg0 Glass transition temperature at zero pressure (K)
T0 Ambient temperature (K)
u, v, w Equivalent solid deformation components in the x, y, z-directions (m)
u1, u2 Surface velocities of solids 1 and 2 in the x-direction (m/s)
um Contact mean entrainment speed in the x-direction (m/s)
U, V, W Solid dimensionless deformation components in x, y, z-directions
x, y, z Space coordinates (m)
y, ytr, yte Gaussian distribution for standard, training and testing subsets
ŷte Prediction function of GPR model for testing samples
x̃, x̂ Sample input features
x̃i, x̂i Input i of x̃, x̂
xi Input feature number i
�
x i Normalized value of input feature number i
yi, ŷi, y Output variable i, its predicted and mean values in the testing dataset
X, Y, Z Dimensionless space coordinates
Xtr, Xte Training and testing sample datasets
X̃, X̂ Sample datasets

Appendix A. Kernel Function Definitions

The first step in developing a GPR model is the selection of a kernel function, informing
the model about the smoothness and general patterns in the data. Various kernel or
covariance functions can be employed in GPR, including the Radial Basis function (RBF),
also known as the Exponential Quadratic or Squared Exponential kernel function, the
Rational Quadratic (RQ) function, and the Matern functions [33]. Given the multiple input
features of varying scale/significance for the EHL problem, the Automatic Relevance
Determination (ARD) variation of these kernels will be employed, when possible. ARD
kernels feature a specific length-scale for every input feature and can hence automatically
determine the relevance of every parameter via the optimization process [53]. The ARD-RBF
is written as follows:

k(x̃, x̂)ARD−RBF = σ2
f exp

⎡⎣−1
2

Nf

∑
i=1

(
x̃i − x̂i

li

)2
⎤⎦ (A1)

where σf is the signal variance, Nf is the number of input features, and li is a strictly
positive hyperparameter, known as the length-scale of feature i (li > 0). Version 1.0.2
of scikit-learn does not offer an ARD variation of the RQ kernel; therefore, the RQ kernel
featuring one common length-scale l for all Nf input features will be used instead and is
written as follows:

k(x̃, x̂)RQ = σ2
f

⎛⎜⎜⎜⎝1 +

Nf

∑
i=1

(x̃i − x̂i)
2

2αl2

⎞⎟⎟⎟⎠
−α

(A2)
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where α is the scale mixture parameter, which controls the trade-off between capturing
long-scale variations and short-scale fluctuations. Lastly, the general ARD-Matern kernel
function is written as follows:

k(x̃, x̂)ARD−Matern =
σ2

f

Γ(ν)2ν−1

⎡⎢⎣
√√√√2ν

Nf

∑
i=1

(
x̃i − x̂i

li

)2
⎤⎥⎦

ν

Kν

⎛⎜⎝
√√√√2ν

Nf

∑
i=1

(
x̃i − x̂i

li

)2
⎞⎟⎠ (A3)

where Kv is the modified Bessel function of the second kind [54], Γ is the gamma function,
and ν is an additional strictly positive hyperparameter that controls the function smoothness
(ν > 0). In fact, for ν = 1/2, the function is reduced to the Absolute Exponential kernel [33].
When ν → ∞ , the RBF function is obtained. For ν = 3/2, the kernel is once differentiable
(i.e., the function and its derivative are continuous), and for ν = 5/2, the kernel is twice
differentiable (i.e., the function, its first and second derivatives are continuous). Note that
ν remains fixed during optimization, unlike the length-scale hyperparameters, which are
optimized. More importantly, these kernel functions can be added or multiplied to model
more complex behavior as seen in [34].

Appendix B. Data Standardization and Performance Metrics

The input features fed into the ML model and the outputs should be normalized or
standardized prior to training and predicting. This pre-processing step is a typical practice
in ML and presents two main advantages [55]. The first advantage is that it prevents the
dominance of features of higher values and scale over features of lower values and scale
(i.e., the dominance of M over L and D in EHL, for example). This effect is reflected by
the value of the Euclidean distance employed in the kernels. The second advantage of
this practice is that it can accelerate the convergence of the hyperparameter optimization
algorithm. Moreover, the inversion of matrix k(Xtr, Xtr) becomes a more stable operation
when input data are standardized. Given the zero-mean assumption of the output values
introduced in Equation (19) and for computational reasons, a z-score normalization (or
standardization) is preferred for GPR [56]. The resulting distribution conforms with the
Gaussian distribution, which improves the performance. The scaling transformation centers
the data around zero and normalizes them with respect to the standard deviation. The
normalized value

�
x i for a given feature xi reads as follows:

�
x i =

xi − μtr(xi)

σtr(xi)
(A4)

where μtr(xi) and σtr(xi) correspond to the feature’s mean value and its standard deviation,
respectively, both obtained from the training set only. This transformation is applied to each
of the Nf input features and both output variables individually and to each of the Nte + Ntr
data points of the entire dataset. Every feature has its own mean and variance values and
hence its own transformation equation. Note that when normalizing the testing dataset, it
is important to use the training dataset mean and standard deviation to avoid data leakage,
which indirectly informs the ML model about the testing dataset during training. For
outputs, this transformation is reversed after prediction, by inverting Equation (A4) to
restore the original scale of values.

The performance of trained ML models is assessed using the testing set based on
several metrics. One popular metric used to evaluate the trained models is the R-squared
metric or coefficient of determination [57]. The advantages of this metric include its
generality and dimensionless property, which make comparing different models convenient.
It is calculated over the testing dataset and is given as follows:
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R2 =

Nte
∑

i=1
(ŷi − y)2

Nte
∑

i=1
(yi − y)2

(A5)

where y is the mean value of the output variable obtained from the testing dataset, ŷ is
the predicted output, and y is the true value from the testing dataset, obtained from the
FEM simulations. The upper bound of R2 is the ideal value of +1, and it has no lower
bound (R2 can tend towards −∞). However, this metric suffers from an inherent flaw as
it tends to increase (or remain constant) with the addition of more input features, even
if the added features are not relevant to the problem. The R-squared does not account for
the number and/or relevance of the individual Nf input features. To overcome this, the
adjusted R-squared metric will be used instead, which is given as a function of R-squared and
the number of input features Nf , as follows:

Adj. R2 = 1 − (1 − R2)× (Nte − 1)
Nte − Nf − 1

(A6)

Another metric that will be considered is the mean absolute percentage error (MAPE) [58].
Given that percentage error is commonly used in computational engineering to determine
convergence, mesh independence, and model validity, it can provide familiar insight into the
ML model compliance with the dataset. The MAPE equation is given by the following:

MAPE =
1

Nte

Nte

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100 (A7)

This metric has a lower bound of 0% (its ideal value) but has no upper bound and
can go up to +∞. MAPE is known to be biased towards underpredictions [59]. This suits
the EHL problem, as underpredictions are conservative. Therefore, variants of the MAPE,
such as the symmetric mean absolute percentage error (SMAPE) [60], which overcomes
this “bias” will not be considered. Lastly, the maximum absolute percentage error reached,
MAXAPE, is treated as an additional metric that represents the worst prediction error the
model reaches. Its equation is written as follows:

MAXAPE = max
(∣∣∣∣ ŷte − yte

yte

∣∣∣∣× 100
)

(A8)

Note that evaluating the metrics on the dimensionless or dimensional film thick-
nesses should not result in significant discrepancies. For MAPE and MAXAPE, discrepan-
cies should even be nil. In this work, the metrics were evaluated based on dimensional
film thicknesses.
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Abstract: The application of Artificial Neuronal Networks (ANN) offers better statistical accuracy
in erosion-corrosion (E-C) predictions compared to the conventional linear regression based on
Multifactorial Analysis (MFA). However, the limitations of ANN to require large training datasets
and a high number of inputs pose a practical challenge in the field of E-C due to the scarcity of data.
To address this challenge, a novel ANN method is proposed, structured to a small training dataset
and trained with the aid of synthetic data to produce an E-C neural network (E-C NN), applied for the
first time in the study of E-C wear synergy. In the process, transfer learning is applied by pre-training
and fine-tuning the model. The initial dataset is created from experimental data produced in a
slurry pot setup, exposing API 5L X65 steel to a turbulent copper tailing slurry. To the previously
known E-C scenario for selected values of flow velocity, particle concentration, temperature, pH, and
the content of the dissolved Cu2+, new experimental data of stand-alone erosion and stand-alone
corrosion is added. The prediction of wear loss by E-C NN considers individual parameters and their
interactions. The main result is that E-C ANN provides better prediction than MFA as evaluated
by a mean squared error (MSE) values of 2.5 and 3.7, respectively. The results are discussed in the
context of the cross-effect between the proposed prediction model and the resulting estimation of
relative contribution to E-C synergy, which is better predicted by the E-C NN. The E-C NN model is
concluded to be a viable alternative to MFA, delivering similar prediction with better sensitivity to
E-C synergy at shorter computation times when using the same experimental dataset.

Keywords: erosion-corrosion wear; ANN; multifactorial analysis; synthetic data; erosion-corrosion
data; erosion data; corrosion data

1. Introduction

In the mining industry, slurry pipeline systems are the most cost-effective solution for
long-distance transport of large quantities of particulate solids. However, due to the nature
of the carrier fluid, one of the main threats to a pipeline system, consisting of pipes, pumps,
valves, etc., is the degradation by erosion and corrosion processes acting simultaneously
in a synergistic phenomenon referred to as erosion-corrosion (E-C). In this context, the
challenge is to keep the pipeline integrity to prevent failures that can result in leakage
accidents [1] affecting nearby communities and the environment.

In metallic materials, the wear rate of E-C is defined by the weight loss of the material
due to the physical damage induced by solid particles impacting over the surface and by
the corrosion mechanisms that involve ionic exchange between the surface and the carrier
fluid (electrolyte). In this process, the erosion mechanism is enhanced by corrosion and
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vice versa through a complex synergy resulting in E-C weight loss higher than the sum
of losses by erosion and corrosion separately [2]. The latter is often described in terms of
weight loss by Equations (1) and (2):

Twl = E + C + S, (1)

S = EC + CE, (2)

where Twl , E, C, and S describe the total weight loss by E-C, weight loss by sheer mechanical
erosion (stand-alone erosion), weight loss by sheer electrochemical corrosion (stand-alone
corrosion), and weight loss attributed to the synergy effects, respectively. The synergy S
can be further decomposed into erosion-enhanced corrosion (CE) and corrosion-enhanced
erosion (EC).

A full description of the E-C phenomenon involves a comprehensive analysis of
individual mechanisms as well as their synergistic effects, which can be done in terms of
key variables. These variables can be categorized as those proper of the target material
and those proper of the slurry, comprising the carrier fluid and the suspended particles.
Because the carrier fluid is in motion, its characteristics both as a mechanical medium and
as an electrolyte must be distinguished. A summary of all the variables relevant for the
modeling of erosive wear was presented by Javaheri et al. [3]. In this work, we extend the
scope of relevant variables to explicitly include the synergy with corrosion by compiling
E-C data from the literature [4–20], resulting in the fishbone diagram shown in Figure 1.

Figure 1. Summary of variables relevant to Erosion-Corrosion (E-C) wear.

Because of the apparently unpredictable nature of the wear caused by E-C, it is
considered mandatory to develop a prediction tool capable of estimating the wear rate of
materials exposed to slurry flow. The currently used models have not proven sufficiently
accurate in estimating the service life of slurry transport systems and even revision of design
standards has been advised [21]. However, description of physical problems, such as wear,
commonly involves a deterministic approach, relying on the physical laws and structure–
property relations. Due to the complex nature of the E-C mechanism, a fully deterministic
model for accurate prediction of wear rate remains elusive. Alternative approaches include
stochastic, e.g., [22–25], or statistical modeling. The latter relies on establishing correlations
between key variables to create a multi-factorial predictive framework. These empirical
models, although not including the physics of the phenomena, allow for gaining insight
into the interdependence of factors contributing to the E-C phenomena. By analyzing the
statistical relationships between principal variables, predictions and effective mitigation
strategies can be developed.

The conventional linear regression for multi-factorial analysis (MFA) and response
surface method (RSM) has been primarily applied to the study of E-C phenomena, but re-
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cent studies have demonstrated the potential of Artificial Intelligence (AI)-based prediction
methods, particularly Artificial Neural Networks (ANN), in producing better predictions
in terms of statistical accuracy [26–30]. This method has gained popularity in various
research areas with applications such as financial analysis, logistics management, weather
predictions, etc., showcasing successful outcomes [31] with a substantial number of vari-
ables. However, when employing these new AI-based techniques to E-C wear, two main
challenges arise: the requirement for large training datasets and a high number of inputs.
These restrictions present a significant challenge because scarcity of available data is owed
to the substantial time and resource costs associated with its production [32,33]. This is
an inherent restriction, the impact of which should be evaluated for each particular appli-
cation. Whereas AI-enhanced models have been shown to be applicable in the study of
friction, wear, and roughness evolution [34], which involve physical mechanisms relevant
to E-C, it is estimated as worthwhile to explore and validate its effectiveness specifically for
E-C phenomena.

Whereas machine learning (ML) models have mostly been employed in laboratory
settings to predict abrasion wear measured by pin-on-disc set-up [32], a significant knowl-
edge gap emerges when it comes to their direct application in comprehending E-C wear
mechanisms, particularly in the complex context of turbulent environments. Furthermore,
there remains an unaddressed challenge concerning the scarcity of data for neural network
applications in wear problems. Additionally, existing E-C wear studies are often reliant on
MFA, a tool valued for its capacity to elucidate variable relationships but found lacking
in robustness in predictive interpolation. Both these gaps underscore the need for novel
approaches and models within the field. In this context, the present work introduces a
novel approach to predicting E-C wear by comparing the effectiveness of ANN and MFA
based on linear regressions. The method involves developing an ANN-based predictive
model tailored for small training datasets and exploring its applicability for extreme cases
of factor combinations. In particular, it is hypothesised that ANN can predict the E-C rate
with higher accuracy than the conventional MFA approach on the same E-C dataset. The
previously published experimental E-C dataset [35] is now expanded by incorporating data
of stand-alone erosion and stand-alone corrosion measured in a slurry pot configuration
for six parameters: flow velocity, particle concentration, temperature, pH, oxygen content,
and copper ion content. Both the MFA and ANN models are utilized to predict wear loss,
considering the individual contribution and interaction of the parameters. To overcome
the limited experimental data, a synthetic dataset is generated by interpolating factors and
incorporating predictions from the MFA model. This approach is equivalent to the data
augmentation strategy in ML applications used when there are missing data, unbalanced
data, under-sampling, or small dataset problems [33]. This synthetic dataset is then used to
pre-train the ANN, followed by fine-tuning using the experimental data. The performance
of the MFA and ANN models is compared for stand-alone erosion, corrosion, and com-
bined E-C scenarios. Finally, the relevance of the results is discussed regarding the relative
contribution of synergistic factors.

2. Experiment and Methods

The present study builds on the experimental data of E-C weight loss reported by
Aguirre et al. [35] along with their MFA. The experimental extension consists of including
new data for the stand-alone erosion and stand-alone corrosion mechanisms for E-C wear
weight loss, while maintaining the same levels of the original studies’ variables which
are presented in Appendix A. This extension completes an experimental dataset that
establishes the relationship between the controlled variables of flow velocity (V), particle
content (P), temperature (T), pH, content of dissolved oxygen (DO), and content of copper
ions (Cu2+), and their influence on the effective wear rate, encompassing E-C and the
stand-alone corrosion and erosion. Then, through regression analysis, empirical models are
derived from the dataset to interpolate the variables and generate a larger dataset. This
expanded dataset is used to create and pre-train a Deep Learning Neural Network (DLNN).
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Subsequently, transfer learning is applied to fine-tune the DLNN using the experimental
data. The entire workflow is summarized in Figure 2.

Figure 2. Summary of the work flow, from collection of experimental E-C data to performance
evaluation through MSE.

2.1. Experimental Determination of E-C Wear

The experiment for measuring the weight loss of stand-alone corrosion and stand-
alone erosion was carried out using the same experimental setup and materials as those
reported by Aguirre et al. [35]. The target material were sample cylinders of API 5L X65
steel of 15 mm in diameter and 10 mm in height. Before conducting the experiments, the
API 5L X65 cylinder samples were prepared, polishing their surface with SiC paper, starting
from 320 to 1200 grit, and then thoroughly cleaning them with ethanol in an ultrasonic
bath to remove any contaminants. The cleaned samples were then weighed using an
analytical balance with a precision of 0.1 mg to obtain their initial weight, ensuring accurate
measurement of weight loss during the test. The cylinders were mounted at the rotation axis
of a rotating cylinder electrode (RCE) setup (Figure 3A), allowing for separation of erosion
from corrosion via electrochemical polarization. The stand-alone erosion measurements
were carried out with the corrosion suppressed by applying −1.2 V vs. Ag/AgCl (cathodic
protection) to the target material. The stand-alone corrosion scenarios were implemented
by not adding the solid particles.

Figure 3. Experimental slurry pot: (A) overview of the RCE set-up with location of the test sample in
a pot filled with water for visibility and (B) complete configuration for controlling all the studied
factors. Adapted from [35].

The electrolyte used for preparing the slurry was prepared using distilled water,
sulfuric acid, and sodium hydroxide in concentrations necessary to produce and maintain
the desired pH during the exposure. The values of the pH, temperature, and content of
Cu2+ ions were selected to be relevant for realistic operating environments. The duration
of exposure to erosion or corrosion was 75 min. After exposure, the samples were removed
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and immediately cleaned to remove any residual deposits or contaminants that may have
adhered during exposure. The cleaning procedure consisted of an ultrasonic bath of the
samples for 180 s, first in acetone and then in an inhibiting acid solution (Clark solution
consisting of 1000 mL of hydrochloric acid, 20 g of antimony trioxide (Sb2O3), and 50 g
of stannous chloride (SnCl2)) according to the ASTM standard G1-03 [36]. The cleaned
samples were then carefully weighed again to determine the weight loss. The variability
of the difference in weight before and after exposure was determined to approximate the
statistical experimental error of E-C, stand-alone erosion, and stand-alone corrosion, which
were found to be 0.078, 0.173, and 1.292 mg·cm−2h−1, respectively.

2.1.1. Experiment Design

The test parameters used in the fractional factorial design of the experiments are
summarized in Table 1, indicating the lowest, central, and highest values assigned to each
parameter. The specific values were chosen to cover the range of conditions met during the
practice of handling the slurry from the copper tailing. In particular, the high levels of P and
Cu2+ ions correspond to the worst-case scenario of the residual copper in the tailing. The
high and low levels of dissolved oxygen correspond to fully oxygenated and oxygen-free
electrolytes, respectively, mimicking the oxygen consumption in a closed system handling
slurry.

The design included stand-alone corrosion and erosion experiments. A total of
105 observations are resultant, with 35 observations for each experiment, including the ear-
lier E-C experiment conducted by Aguirre et al. [35] and included in Appendix A Table A3.
Each set of the 35 runs included 32 distinct factor combinations, as well as one combina-
tion representing the factors’ central values. In addition, two replications of the central
combination were added to assess the variability of the results and explain the intrinsic
experimental error. For instance, in stand-alone corrosion, the particle concentration factor
(P) is irrelevant and has been set to 0 since there are no particles involved. Similarly, in the
case of stand-alone erosion, factors such as pH, (P × Cu2+) concentration, and dissolved
oxygen (DO) are not relevant. The experimental results for E and C results are presented in
Appendix A Tables A1 and A2 respectively.

Table 1. Summary of test parameters used for the fractional factorial design of experiment, indicating
the lowest, central, and highest values.

Factor Unit Symbol Low Level Central Level High Level

Velocity m/s V 3 5 7
Particles

concentration wt % P 45 55 65

Temperature ◦C T 25 35 45
pH pH pH 5 8 11

Dissolved oxygen ppm DO 0 5 10
Copper ion

concentration ppm Cu2+ 0 250 500

2.1.2. Multifactorial Analysis of Experimental Data

The experimental results from Table 1 were used to construct a response surface and
develop a polynomial model for predicting wright loss in relation to stand-alone erosion
and stand-alone corrosion as schematized in Figure 4 . Estimation of weight loss within the
range of the input factors was obtained by fitting the experimental data to a polynomial
equation as an output of the multifactorial analysis. The relationship between the input
factors and the resulting erosion and corrosion effects is then quantified by the coefficients
of the polynomial equation, expressing the relative importance of each factor.

The analysis was conducted using the R programming language [37] with specific
libraries to handle the data and calculate the main factor contributions. The “Dplyr” and
“FrF2” [38] libraries were used to process the experimental data and assess the key factors’
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impacts. Additionally, the ” Leaps” [39] library, along with the “regsubsets” function, was
used to determine the best linear regression fitting. This process involved optimizing the
output polynomial by considering the most significant factors based on Mallows’ Cp [40]
and Schwartz’s information criterion (bic) [41]. These criteria were essential for selecting
the most relevant factors and obtaining an accurate regression model for the data. Finally,
the fitting metrics, the multiple R-squared value, and the adjusted R-squared value have
been obtained using the “lm” function contained in the R language default libraries.

Figure 4. Schematic representation of generating the empirical model by MFA using experimen-
tal data.

2.2. E-C Neural Network

The model of E-C wear based on the neural network was obtained by the development
of model architecture, followed by transfer learning consisting of stages of pre-training and
fine-tuning. Since the amount of experimental data was insufficient for developing an NN
model, synthetic data were generated in addition.

2.2.1. Model Architecture

In this study, the GridSearchCV tool from the Scikit Learn library [42] was used to
generate and assess various combinations of hyperparameters, i.e., the main parameters
used for setting up the NN. The hyperparameter grid encompassed options for the number
of layers (ranging from 2 to 6), number of nodes in the first layer following the input layer
(128, 64, 32, and 16), a single node in the last layer to select particular mode (erosion–
corrosion, erosion, corrosion), activation functions (sigmoid, relu, tanh, and softmax),
loss functions (Poisson, Hinge), and batch size (3 and 10). The optimal architecture was
determined using experimental data, as schematized in Figure 5. The selection of this
architecture was guided by its ability to accurately model and predict E-C wear within
the particular context of this study. It represents the combination of hyperparameters that
demonstrated the highest performance and predictive accuracy for the weight-loss data.

The input layer and output layers were defined by the experimental problem, with
six input parameters available in this case to derive one output parameter (wear rate). In
order to facilitate a more efficient convergence and improve the accuracy of the NN model,
two additional input parameters were incorporated: corrosion activation and erosion
activation (attaining the value of 0 or 1 for deactivate or activate, respectively), obtaining
eight input parameters in total. Although these parameters do not have the physical
meaning of an experimental factor, they are crucial in enhancing the model’s performance
by adding information on whether the combination of input factors corresponds to the
experimental run of stand-alone erosion, stand-alone corrosion, or the full E-C scenario.
The inclusion of corrosion and erosion activation parameters aids the learning process of
the NN because these parameters act as conduits, facilitating exploration of the input space
and accelerating the convergence of the model’s results. Their presence helps the NN to
better model complex interactions between the different wear mechanisms in the sense that
faster convergence and enhanced overall predictive capability of the network is observed.

100



Lubricants 2023, 11, 431

Figure 5. Schematic representation of the NN architecture after GridSearchCV optimization process.

2.2.2. Pre-Training Using Synthetic Data

The training process employed a two-step approach to optimize the NN model’s
performance. In the initial step, the model was pre-trained using an extended dataset
that combined the original experimental data with synthetically generated ones. The pre-
training phase provided the model with a broader scope of E-C patterns by exposing it to
the most diverse range of scenarios represented in the synthetic data.

The original dataset consisted of 105 observations, with 35 observations per E-C, stand-
alone erosion, and stand-alone corrosion, respectively. In order to enhance the dataset
and capture a broader range of variations, 1395 synthetic data points were generated,
resulting in a consolidated dataset of 1500 observations. The synthetic data were included
to ensure a comprehensive dataset for training the ANN model. The synthetic data were
generated by fitting a robust polynomial model derived from the results of stand-alone
erosion and stand-alone corrosion experiments, as well as the erosion–corrosion findings.
This polynomial model provided an effective means of interpolating the experimental data
and extrapolating them to unexplored regions of the input space, as shown schematically
in Figure 6.

The synthetic data set were used for the pre-training stage, and in this case only, was
divided into subsets of Training (75%) and Validation (25%) in order to find the best epoch
number to avoid an overfitted model. For the resulting architecture, the best relationship
on MSE between Training and Validation was in the 135 epoch, obtaining a validation MSE
of 2.5 at epoch 135 and MSE of 17.9 at epoch 136, which is indicative of a starting point of
overfitting for this synthetic dataset.
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Figure 6. Schematic representation of generating synthetic data using not measured values of factors
(*) in the range of experimental factors except for the very experimental values.

2.2.3. Fine-Tuning, Validation and Evaluation

After pre-training, the model underwent fine-tuning using a curated dataset derived
solely from the original experimental data, without any synthetic data. The aim of fine-
tuning was to improve the model’s performance and enable it to capture the specific
nuances and characteristics present in the experimental conditions. Progress during the
fine-tuning process was monitored through a validation subset to minimize prediction
errors. The E−C NN model resulting from this process was then evaluated using a separate
test subset.

The experimental dataset, consisting of 105 observations, was first shuffled to ensure
randomness and eliminate potential bias. The shuffled dataset was then divided into three
subsets: 50% for fine-tuning training (53 observations), 25% for validation (26 observations),
and 25% for testing (26 observations).

During the fine-tuning process, the model learned from the input–output patterns in
the data and adjusted its internal parameters to minimize prediction errors until reaching a
satisfactory level of convergence.

The validation subset served as an independent dataset to assess the model’s per-
formance during training. However, as it is incorporated into the training process, its
evaluation can become biased. To provide an unbiased evaluation of the model’s perfor-
mance, the testing subset was used as a benchmark. This subset allowed assessment of the
model’s ability to accurately predict E-C weight loss using unseen data, providing insights
into its reliability and robustness.

For the fine-tuning stage, the model was trained during 50 epochs, which was the
optimum for this hyperparameter delivered by the GridSearchCV algorithm [42] without
producing overfitting. The MSE values obtained during the validation stage and for the
test sub-dataset were 3.6 and 6.9.

2.2.4. Sensibility Analysis of E-C NN

To analyse the sensitivity of the E-C NN model to each parameter, a systematic process
was followed. The training and fine-tuning process for the E-C NN model was repeated
34 times, with each iteration predicting the wear rate for all experimental combinations.
After obtaining the 34 predictions for the experimental wear rates, the results were averaged
to obtain a single prediction for each wear rate.

Next, the average prediction was evaluated using the fractional factorial design algo-
rithm to assess the independent effects of each factor on the E-C, erosion, and corrosion as
stand-alone wear rate and to be comparable with the main effects of experimental factors.
This analysis allowed us to understand the individual contribution of each factor and their
significance in influencing the wear rate. It is important to remark that the most relevant
factors to E-C were identified as the parameters that exhibited the most significant changes
in the predicted weight loss.
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3. Results

3.1. MFA Model of E-C Wear

Figure 7 summarizes the main effects of E-C obtained experimentally by Aguirre et al. [35],
demonstrating that the velocity (V), temperature (T), and content of dissolved oxygen (DO)
are the significant factors as determined by MFA (Equation (3)):

(E − C)rate = −7.880 + 0.811V + 0.0726P + 0.054T + 0.032DO + 0.013Cu2+ + 0.037V × DO − 0.0002P × Cu2+ (3)

The derived equation represents a parametric relationship between the E-C rate and
the importance of the influencing factors. The units of the variables are summarized in
Table 1. The units of the coefficients are chosen to rescale the respective variable to the
units of wear rate ((mg·cm−2h−1)). Positive coefficients indicate a positive correlation,
suggesting that an increase in these factors leads to an increase in the E-C wear rate.
Conversely, negative coefficients indicate a negative correlation, indicating that an increase
in those factors results in a decrease in the E-C rate. The interaction terms, such as (V × DO)
and (P × Cu2+), take into account the combined effects of multiple factors on the E-C rate,
which can be either synergistic or antagonistic when positive or negative, respectively.
The variability of the E-C rate determined for the standard deviation of the central levels
is approximately 0.078 (mg·cm−2h−1), which is comparable to the statistical error of the
experiment, visualised in Figure 7 as a gray band. This indicates that the obtained results
are reliable and within an acceptable range of variability. An extended description of the
experimental procedure, data collection, data analysis, and the derivation of the MFA
model is provided in the work of Aguirre et al. [35].

Figure 7. Main effects of experimental factors on the E-C rate. The range of experimental standard
deviation is marked in gray. Adapted from [35].

3.2. MFA Model of Stand-Alone Erosion Wear

In an analogy to the E-C main effects shown in Figure 7, the results specific to stand-
alone erosion are presented in Figure 8. The experimental standard deviation of the erosion
data is approximately 0.173 (mg·cm−2h−1), which is higher than that of the E-C data. The
significant main effects are those of velocity, particle content (P), and oxygen content (DO).
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Figure 8. Main effects of experimental factors on the stand-alone erosion rate. The range of experi-
mental standard deviation is marked as a gray stripe.

The linear model of stand-alone erosion with second-order terms obtained in an
analogy to Equation (3) by MFA is given by Equation (4):

Erate = −0.0128P − 0.0117V2 + 0.002P × V2. (4)

The residual standard error of this fitted erosion MFA model is 1.328 (mg·cm−2h−1),
the multiple R-squared value is 0.8438, and the adjusted R-squared value, accounting for
the number of predictors and degrees of freedom, was calculated to be 0.8276. The average
deviation of the observed erosion rate values from the predicted values indicates that
approximately 84.38% of the variability in the erosion rate can be explained by the model.
The metrics suggest that the linear model with second-order terms provides a reasonable fit
to the data, as evidenced by the relatively low residual standard error and high R-squared
values. The experimental error visualised in Figure 8 as a gray band indicated that the
effect of the temperature pH and content of Cu2+ is not relevant.

3.3. MFA Model of Stand-Alone Corrosion Wear

The main effects of factors in the corrosion experiment were analysed analogously to
those of the E-C and stand-alone erosion scenarios. The results are summarized visually
in Figure 9 and the linear model with second-order terms for the stand-alone corrosion is
given by Equation (5):

Crate = 0.0282Cu + 0.0273T − 0.0448pH + 0.02113DO + 0.0002Cu × T − 0.0032Cu × pH + 0.0004Cu × DO (5)

The experimental variability of the corrosion rate at the central levels was assessed by
the standard deviation to be approximately 1.292 (mg·cm−2h−1), which is notably higher
than that of E-C and stand−alone erosion. Considering the experimental error visualised in
Figure 9 as a gray band, the significant main effects are only those of pH and the content of
the dissolved (Cu2+). The metrics of the fitted corrosion MFA model are a residual standard
error of 2.324 (mg·cm−2h−1), multiple R-squared value of 0.8821, and adjusted R-squared
value, accounting for the number of predictors and 28 degrees of freedom amounting
to 0.8526.
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Figure 9. Main effects of experimental factors on the stand-alone corrosion rate. The range of
experimental standard deviation is marked in gray.

3.4. E-C NN Model Predictions

Figure 10 summarises the results of the E-C NN model predictions in comparison with
the experimental data of the E-C rate and the stand-alone erosion and corrosion rates. The
effect of transfer learning is visualised by considering the direct E-C NN and the fine-tuned
E-C NN. In general, the tendencies of all the main effects are correctly predicted by the
E-C NN model; however, the slopes differ slightly. The slopes produced by the fine-tuned
model are closer to the experimental data, which is particularly evident in the case of the
E-C predictions. The effect is less pronounced in the case of stand-alone erosion, whereas
for the stand-alone corrosion there is almost no effect of transfer learning except for the pH
factor, in which fine-tuning provides notably better prediction.

The effect of the particles on stand-alone corrosion is included to represent the sta-
tistical error, as this is the physical meaning of corrosion weight loss in the absence of
abrasive particles. In the case of the experimental data, the statistical error represents the
experimental accuracy.

The predictions of the fine-tuned E-C NN model are compared with the MFA pre-
dictions and experimental data in Figure 11. In general, both models produce the same
tendencies for all the factors, but the values predicted by the E-C NN are closer to the
experimental ones as compared to the MFA model. This effect is most notable in the case
of stand-alone erosion, in which the weight loss is systematically underestimated for all
the factors.
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Figure 10. Effect of pre-training on the prediction of the rates of E-C (upper row), stand-alone erosion
(middle row), and stand-alone corrosion (bottom row) for the main factors as compared to the
experimental values.

Figure 11. Comparison of main effects of experimental factors on the wear rate of E-C (upper row),
stand-alone erosion (middle row), and stand-alone corrosion (bottom row) as determined by the
experiment, MFA, and pre-trained E-C NN.

4. Discussion

4.1. Validity of Synthetic Data

Due to the multi-factor nature of the E-C wear (Figure 1) MFA models have been
the method of choice to describe the E-C process. However, availability of experimental
data is restricted because of the involved effort, considering that the results are specific to
particular experimental set-ups [3]. In addition, to assure applicability of results to actual
slurry handling systems, the design of experiments is restricted to the range of parameters
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of practical interest rather than relevance for the relative importance of the mechanisms of
wear loss. In this context, generation of synthetic data from MFA model corresponds to the
current practice in predicting wear rate. The synthetic data are then the best interpolation
between the measured values.

In this work, a comprehensive MFA model of E-C wear is presented, i.e., derived from
the data considering both E-C (Equation (3)) and the stand-alone erosion and corrosion
scenarios (Equations (4) and (5), respectively). The inclusion of synergy-free scenarios
of erosion and corrosion resulted in models not capable of predicting the very values
measured experimentally (see Figure 11). The deviation is particularly notable in the
case of stand-alone corrosion, where even the sign of the wear rate was changed from
weight loss (experiment) to weight gain (MFA model). This observation is attributed to the
limited capacity of MFA to capture a possible shift in the dominant mechanism of wear
or the rise of synergy. The complexity of the involved physical, chemical, and mechanical
processes, although generally acknowledged, has not been studied sufficiently to provide
an analytical description of each mechanism. The lack of mechanistic descriptions hinders
the evaluation of the validity of the synthetic data, as a monotonic response of the system
at the intermediate values is inherently assumed. However, for the purpose of the current
work, and for a lack of reason to assume otherwise, the synthetic data derived from the
MFA model are considered sufficiently valid.

The accuracy of the MFA model certainly depends on the experimental error. Although
all the weight loss data were measured using the same analytical balance, the statistical
error of the stand-alone corrosion data is notably higher than that of erosion-corrosion and
stand-alone erosion data. This error is mostly explained by the outlier data point measured
for high velocity (7 m/s), low particle concentration (45 wt.%), high temperature (45 °C),
low pH (5), high content of dissolved oxygen (10 ppm), and high content of dissolved
Cu2+ (500 ppm), which correspond to aggressive combination parameters indicating a
possible shift in the mechanism of E-C wear as discussed by Aguirre et. al [43]. Nonetheless,
the accuracy of the MFA model (1.922 (mg·cm−2h−1)) is higher than the statistical error of
the experiment (1.292 (mg·cm−2h−1)), justifying at least the validity of the synthetic data.

Notwithstanding the above discussed limitations, by combining the experimental data
with the synthetic data, the dataset became more diverse and representative of a wide
range of E-C scenarios. This augmentation of the dataset was necessary for the NN model
to learn from a broader spectrum of conditions, enabling it to generalise better and make
more accurate predictions.

4.2. Applicability of E-C NN

The E-C NN model was developed using experimental and synthetic data, which were
separated into subsets used independently to train and evaluate the model. In addition,
development of the model comprised the approach of transfer learning, consisting of pre-
training followed by fine-tuning. By combining the pre-training with synthetic data and
subsequent fine-tuning with a small dataset from the experiments, the NN model could
leverage the advantages of both data types. In other words, the pre-training provided the
model with a “fundamental understanding” of E-C behaviour, whereas the fine-tuning
aligned the model’s predictions with real-world scenarios of the specific case as shown in
Figure 10. As result, the fine-tuned E-C NN predicts the wear rate of a determined system
better than MFA, as shown in Figure 11.

Overfitting of the E-C NN model model was avoided at the stage of fine-tuning.
Indeed, there is no evidence of global overfitting as a validation MSE of 3.9 and the overall
prediction MSE of 2.4 were observed. It is noted that in Figure 12, certain data points
appear to be closer to zero error, indicating the possibility of localised overfitting. However,
the overall model does not exhibit signs of overfitting. The absence of overfitting indicates
that the model was able to generalise well, without overemphasizing the noise or irrelevant
patterns in the data.
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Figure 12 compares the performance of the MFA and E-C NN model, both direct
and fine-tuned, and Table 2 compares the statistics of the models’ predictions in terms of
squared error. In general, the fine-tuned E-C NN provides the best prediction as expressed
by the mean squared error of 2.535 compared with 3.694 for the MFA model. Notably, the
mean error of the direct E-C NN model is similar to that of the MFA, but with a significantly
lower median of 0.019 as compared with 0.345 for the MFA.

Figure 12. Comparison of accuracy in predicting experimental values of wear rate by the MFA and
E-C NN models (direct and transfer learner). Each data point corresponds to an experimental run.
The gray area represents standard deviation due to experimental error. The green line is added as
guide for the eye to represent perfect prediction.

Table 2. Tabulation of squared errors of the MFA and E-C NN model predictions shown in Figure 12.

MFA Direct E-C NN Fine-Tuned E-C NN

Min. 0.000 0.000 0.000
1st.Qu. 0.037 0.001 0.000

Median. 0.345 0.019 0.005
Mean 3.694 3.623 2.535

3rd.Qu. 2.519 0.909 0.202
Max. 104.642 141.747 108.842

The fine-tuned E-C NN model demonstrates a superior capability for predicting
wear rate as compared to the MFA models applied directly to the experimental E-C data.
Moreover, the E-C NN model is able to capture complex relationships and non-linearities
in the dataset, which is evident in the velocity parameter (V). This parameter in the MFA
was introduced using squared velocity to have better fitting, with the rationale that erosive
wear is mostly caused by the transfer of kinetic energy, which is proportional to V2 rather
than V [44]). In the case of E-C NN, no such introduction was necessary because the model
is capable of inferring this relation, highlighting the advantage of ANNs in modeling
intricate patterns not necessarily captured by a conventional MFA model. Interestingly,
even the direct E-C NN model, i.e., without transfer learning, outperforms the MFA models,
suggesting that the inherent flexibility and non-linear nature of ANNs can provide an
advantage in modeling the complex E-C processes.

In Figure 12, the gray area indicates the experimental error. It is observed that the
prediction of stand-alone corrosion by the E-C NN tends to be overestimated as more run
points are located above the equiproportional line. This behaviour could be attributed
to the random shuffling of the dataset, which might have resulted in an imbalance of
erosion, corrosion, and E-C cases in the training and evaluation sub-datasets. To verify

108



Lubricants 2023, 11, 431

the sufficiency of the size of the dataset, a separate study with an extended design for
the experiment should be used. Further, it is interesting to note that the E-C predictions
are more dispersed beyond the gray band compared to the other predictions. This could
indicate that the model encountered fewer instances of E-C during the training process,
suggesting a potential improvement in future applications. Despite these observations, the
overall results obtained from the E-C NN model outperform those obtained from the MFA,
demonstrating the superiority of the neural network approach in predicting wear rates for
E-C phenomena.

The impact of corrosion error demonstrated in Figure 11 for the scenario of stand-alone
corrosion in the absence of particles has also been predicted by the E-C NN. This prediction,
interpreted as a predicted error, is certainly influenced by the experimental data error.
Notably, the corrosion experiment was conducted using the same configuration as the
stand-alone erosion and E-C experiment design, involving repetitions with no changes in
particle concentration. As a result, variations in the measured wear rate can be attributed
to the experimental reproducibility of measurements.

Further, it should be noted that the E-C NN takes into account all the factors and their
effects to predict the wear rate, whereas MFA often excludes some parameters to achieve a
better fit with linear regression. While this approach may be mathematically appealing, it
leads to the omission of the direct and synergistic effects of the factors, limiting the model’s
ability to capture the full complexity of the phenomenon being studied. In contrast, the
E-C NN comprehensively considers all contributing factors, resulting in more accurate and
reliable predictions.

The computational cost of training the E-C NN model was remarkably low, even with
a relatively small dataset. The pre-training process took only 135 s, and the fine-tuning
process was completed in just 0.2 s using Google Colab CPU session and TensorFlow
Keras as the framework. These efficient times underscore the feasibility of employing
ANN models for E-C analysis, even in scenarios where data availability is limited or
computational resources are constrained. The results demonstrate that ANN models can
offer a practical and accessible approach to studying E-C phenomena, providing accurate
predictions and valuable insights without the need for extensive computational resources.

4.3. E-C Synergy

The synergy of the physical, chemical, and mechanical processes involved in E-C
wear provide a total E-C weight loss that differs from the sum of stand-alone erosion and
stand-alone corrosion (Equations (1) and (2)). The experimentally determined values of
synergy are summarized in Figure 13A, in which the contributions of stand-alone erosion
and corrosion are also demonstrated. For all the factors, negative synergy is observed and
its value is generally significant for the total wear rate. The highest relative contribution of
erosion is observed for the high level of pH (11), whereas the highest relative contribution
of corrosion is observed for the low level of V (3 m/s), which is consistent with the
literature data of similar systems. The highest and lowest relative contributions of synergy
are observed for the low and high levels of pH, respectively. However, the negative
value of synergy for all the factors is noteworthy and it would be interesting to study its
physical significance.

All the tendencies observed in the experimental data are also present in the E-C NN
predictions, which is not always the case for the MFA predictions, as shown in Figure 13B.
In particular, the negative sign of synergy is incorrectly predicted for a high level of pH (11)
and low level of Cu2+ (0 ppm). This difference might not be significant, however, when
considering that the value is comparable with experimental error. In this study, only main
effects are discussed. In order to explain the origin of the synergy, cross-correlations would
have to be examined, but such an analysis is beyond the scope of the present study.
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Figure 13. Synergy of wear modes: (A) contribution to erosion, corrosion, and synergy in the
experimental data. Synergy is represented by an arrow with downward direction corresponding to
negative synergy, (B) and comparison of synergy contribution to E-C wear rate as measured (black
arrows) and as predicted by the E-C NN.

Figure 13 shows that velocity plays a significant role in the wear rate, both in stand-
alone erosion and corrosion, as well as in the combined E-C mechanism. The V parameter
derives from the flow field, which due to it inherent turbulence, affects the kinetic energy
conveyed by the particles and also the convection-diffusion mass transfer for corrosion
wear. Notably, the impact of particle concentration was not clearly distinguished between
the stand-alone erosion and corrosion experiments. This observation can be associated
with the fact that particle concentration changes fluid viscosity, consequently influencing
the Reynolds number of the system [45], which in turn governs turbulence. Flow-induced
corrosion is a critical mechanism in such systems, and this effect was not fully captured by
these experiments, leading to a biased interpretation of the particle concentration effect.
However, it could explain the negative synergy observed, primarily reducing the corrosion
effect. In contrast, the corrosion experiment conducted without particles experienced
reduced fluid viscosity, which resulted in augmented flow-induced corrosion and an
increase in the corrosion wear rate [46]. In the other experiments, the presence of particles
increased fluid viscosity [47,48], leading to a reduction in the Reynolds number (Turbulence
level) and, consequently, the corrosion wear rate [46].

The above discussion of synergy shows the importance of correctly modeling the rela-
tive contributions of stand-alone effects as they are associated with physical processes that
might be studied by analysis of microstructure. However, the high cost of microstructural
analysis over the extended design of the experiment can be diminished by the use of E-C
NN, as shown in Figure 13B in which superior capacity of the ANN to predict synergy is
compared with that of the MFA.

Finally, this research is considered to provide a “toolbox” for effectively predicting E-C
wear and understanding its underlying mechanisms. The results emphasize the superiority
of ANN over regression models in E-C analysis, offering new alternatives for improving
wear prediction accuracy and informing engineering practices aimed at mitigating wear in
various systems and applications.

5. Conclusions

In this work, applicability of artificial neural networks (ANN) for predicting E-C
wear was explored in comparison to the conventional regression models based on MFA.
Previously published experimental data on E-C rate were complemented with new data on
stand-alone erosion and stand-alone corrosion. The effect of pre-training was verified with
the general conclusion that the pre-trained and fine-tuned ANN outperforms the regression
models in accurately predicting the wear rates, indicating that the flexibility of ANN is
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better suited to represent the complex relationships and patterns that may be omitted by
the conventional MFA models. In particular:

- Combination of experimental data with synthetic data generated by the MFA model
provides a larger and more diverse dataset, enhancing the training process and im-
proving the generalisation of the applicability and the capabilities of the ANN model
in the specific field of E-C studies.

- The ANN shows a superior performance compared to the MFA counterpart as assessed
by the mean and median squared errors (MSE). The performance is further improved
by including a pre-training step, reducing the mean and median MSE from 3.623 to
2.535, and 0.019 to 0.005, respectively, as compared with 3.694 and 0.345, respectively,
of the MFA.

- The ANN trained on E-C data, i.e., the E-C NN, is capable of generalising the im-
portance of experimental parameters without overemphasizing noise in the data, as
shown by the absence of global overfitting.

- The errors of the E-C NN predictions are consistently lower than the stand-alone
experimental errors, indicating that the model provides highly confident predictions
within the factor ranges, outperforming the predictions obtained using MFA.

- Velocity emerges as the predominant factor across all wear mechanisms studied in this
work, underscoring the necessity for future focused and deterministic investigations
on the specific impact of this parameter in each wear mechanism.

- The synergy effect is highly pronounced compared to the stand-alone wear rate
impact. Conducting a detailed study to thoroughly understand and model this
particular effect, as well as identifying the key factors that significantly influence it,
is of paramount importance.

- Exploring the genuine impact of particle concentration and its influence on fluid
viscosity in corrosion wear becomes crucial for a comprehensive understanding of
corrosion and E-C wear mechanisms.

In conclusion, the E-C NN proves to be a superior method for predicting wear rates,
owing to its comprehensive consideration of all factors and their effects, including direct and
synergistic effects. On the other hand, MFA’s exclusion of certain parameters to improve
linear regression fit limits its ability to fully represent the complexity of erosion-corrosion
phenomena. The E-C NN delivers more accurate and reliable predictions, establishing itself
as a robust tool for exploring E-C behaviour and advancing tribological research. Moreover,
the computational cost of training the ANN model is reasonable, making it viable even with
small datasets. This advantage allows for the practical implementation of ANN models
in E-C wear analysis, even under data constraints or limited computational resources. As
a result, the E-C NN emerges as a promising approach with wide-ranging applications,
enabling researchers to gain deeper insights into erosion-corrosion processes and pave the
way for future advancements in the field.
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Appendix A

Data of weight loss in mg·cm−2h−1 measured in all the experimental runs.

Table A1. Erosion data.

Order V P T pH DO Cu2+ Exp. Wear MFA E-C NN F-T E-C NN

1 3 45 25 5 0 0 0.1188 0.1287 0.1139 0.1583
2 7 45 25 5 0 500 1.4600 3.2607 2.4135 2.5356
3 3 65 25 5 0 500 0.2688 0.2327 0.2352 0.3331
4 7 65 25 5 0 0 5.4693 4.9647 3.9248 5.7540
5 3 45 45 5 0 500 0.1584 0.1287 0.1492 0.1764
6 7 45 45 5 0 0 1.5477 3.2607 1.5944 1.5708
7 3 65 45 5 0 0 0.2320 0.2327 0.1816 0.1722
8 7 65 45 5 0 500 4.4563 4.9647 4.3497 4.4579
9 3 45 25 11 0 500 0.0821 0.1287 0.0964 0.1562

10 7 45 25 11 0 0 11.2582 3.2607 11.0948 11.2479
11 3 65 25 11 0 0 0.1075 0.2327 0.1076 0.1748
12 7 65 25 11 0 500 4.3771 4.9647 4.3075 4.3779
13 3 45 45 11 0 0 0.0849 0.1287 0.1021 0.1549
14 7 45 45 11 0 500 3.7751 3.2607 3.7327 3.7596
15 3 65 45 11 0 500 0.2575 0.2327 0.1941 0.1765
16 7 65 45 11 0 0 4.2498 4.9647 6.2028 7.5619
17 3 45 25 5 10 500 2.0836 0.1287 1.9453 2.0045
18 7 45 25 5 10 0 2.7162 3.2607 2.7509 2.7100
19 3 65 25 5 10 0 0.3169 0.2327 0.3019 0.2484
20 7 65 25 5 10 500 5.8144 4.9647 4.7506 5.4991
21 3 45 45 5 10 0 0.0340 0.1287 0.1057 0.1515
22 7 45 45 5 10 500 8.9664 3.2607 8.8790 8.9976
23 3 65 45 5 10 500 0.2462 0.2327 1.7233 1.9999
24 7 65 45 5 10 0 11.0291 4.9647 10.8320 11.0532
25 3 45 25 11 10 0 0.1584 0.1287 0.3864 0.2676
26 7 45 25 11 10 500 3.3161 3.2607 3.2726 3.3056
27 3 65 25 11 10 500 0.1584 0.2327 0.2003 0.1757
28 7 65 25 11 10 0 6.4171 4.9647 6.2448 6.3988
29 3 45 45 11 10 500 0.7102 0.1287 0.6785 0.7017
30 7 45 45 11 10 0 2.1221 3.2607 6.0747 5.0481
31 3 65 45 11 10 0 0.2292 0.2327 0.1953 0.2732
32 7 65 45 11 10 500 5.9106 4.9647 5.7941 5.9130
33 5 55 35 8 5 250 0.8347 1.7535 1.1227 1.0933
34 5 55 35 8 5 250 1.1685 1.7535 1.1227 1.0933
35 5 55 35 8 5 250 1.0808 1.7535 1.1227 1.0933
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Table A2. Corrosion data.

Order V P T pH DO Cu2+ Exp. Wear MFA E−C NN F−T E−C NN

1 3 0 25 5 0 0 0.3537 0.4592 0.3669 0.3526
2 7 0 25 5 0 500 9.4248 8.9749 5.0799 7.6796
3 3 0 25 5 0 500 9.1135 8.9749 5.5686 6.7908
4 7 0 25 5 0 0 0.7753 0.4592 0.7725 0.7774
5 3 0 45 5 0 500 10.1265 11.4943 9.9856 10.1459
6 7 0 45 5 0 0 2.2664 1.0055 2.1457 2.2700
7 3 0 45 5 0 0 0.7074 1.0055 0.6891 0.7111
8 7 0 45 5 0 500 9.2663 11.4943 9.0739 10.9060
9 3 0 25 11 0 500 0.7668 −0.9749 1.5257 0.5824

10 7 0 25 11 0 0 0.3820 0.1906 0.7115 0.6872
11 3 0 25 11 0 0 0.2603 0.1906 0.5175 0.6645
12 7 0 25 11 0 500 0.9846 −0.9749 1.0360 0.9934
13 3 0 45 11 0 0 0.4188 0.7370 0.5629 0.5740
14 7 0 45 11 0 500 2.1079 1.5445 4.5462 3.3760
15 3 0 45 11 0 500 0.9479 1.5445 4.2680 1.6610
16 7 0 45 11 0 0 0.7158 0.7370 1.0281 0.8493
17 3 0 25 5 10 500 9.1503 11.1470 9.0801 9.1590
18 7 0 25 5 10 0 1.0044 0.6722 0.9941 0.9995
19 3 0 25 5 10 0 0.8969 0.6722 1.0509 0.6580
20 7 0 25 5 10 500 9.4819 11.1470 9.4167 9.4943
21 3 0 45 5 10 0 1.0554 1.2186 1.9900 1.2875
22 7 0 45 5 10 500 23.8958 13.6663 11.9901 13.4631
23 3 0 45 5 10 500 10.7659 13.6663 11.4710 12.8372
24 7 0 45 5 10 0 1.1035 1.2186 1.1378 1.1175
25 3 0 25 11 10 0 0.7498 0.4037 0.7171 0.7379
26 7 0 25 11 10 500 0.6564 1.1971 3.9713 2.4994
27 3 0 25 11 10 500 1.7712 1.1971 3.8260 1.5332
28 7 0 25 11 10 0 0.6593 0.4037 0.6668 0.6620
29 3 0 45 11 10 500 3.4972 3.7165 6.3058 3.9462
30 7 0 45 11 10 0 1.0497 0.9500 0.8715 1.3876
31 3 0 45 11 10 0 0.6366 0.9500 0.6113 0.6354
32 7 0 45 11 10 500 0.8941 3.7165 6.9660 4.7817
33 5 0 35 8 5 250 1.2421 3.5252 3.7010 3.7723
34 5 0 35 8 5 250 3.7942 3.5252 3.7010 3.7723
35 5 0 35 8 5 250 2.8719 3.5252 3.7010 3.7723

Table A3. Erosion-Corrosion data.

Order V P T pH DO Cu2+ Exp. Wear MFA E-C NN F-T E-C NN

1 3 45 25 5 0 0 0.1556 -0.8300 0.3622 0.3340
2 7 45 25 5 0 500 2.1447 4.4140 2.1187 2.1424
3 3 65 25 5 0 500 0.3650 0.6220 0.3823 0.4210
4 7 65 25 5 0 0 4.5582 3.8660 1.6334 2.2664
5 3 45 45 5 0 500 0.3282 2.2500 0.3414 0.3573
6 7 45 45 5 0 0 1.8278 3.4940 2.9187 3.0410
7 3 65 45 5 0 0 0.4074 1.7020 0.2723 0.3409
8 7 65 45 5 0 500 4.3403 4.9460 5.6191 4.7799
9 3 45 25 11 0 500 0.1556 1.1700 0.4032 0.3479

10 7 45 25 11 0 0 1.4996 2.4140 1.4928 1.4864
11 3 65 25 11 0 0 0.2943 0.6220 0.5036 0.5608
12 7 65 25 11 0 500 3.9159 3.8660 2.3881 2.8404
13 3 45 45 11 0 0 0.5008 0.2500 0.4720 0.4893
14 7 45 45 11 0 500 7.9959 5.4940 4.3158 4.5988
15 3 65 45 11 0 500 0.1754 1.7020 0.3715 0.3482
16 7 65 45 11 0 0 8.5590 4.9460 3.0907 2.7559
17 3 45 25 5 10 500 1.3553 2.6000 1.3859 1.3562
18 7 45 25 5 10 0 3.6047 5.3240 3.6684 4.8792
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Table A3. Cont.

Order V P T pH DO Cu2+ Exp. Wear MFA E-C NN F-T E-C NN

19 3 65 25 5 10 0 2.3371 2.0520 0.9745 0.8509
20 7 65 25 5 10 500 6.6887 6.7760 6.5905 6.7015
21 3 45 45 5 10 0 2.2975 1.6800 2.1945 2.2997
22 7 45 45 5 10 500 10.2623 8.4040 10.2508 10.2911
23 3 65 45 5 10 500 1.5449 3.1320 4.4122 4.3425
24 7 65 45 5 10 0 11.6374 7.8560 11.4157 11.6311
25 3 45 25 11 10 0 1.4430 0.6000 1.3731 1.3913
26 7 45 25 11 10 500 6.7793 7.3240 4.3113 5.5060
27 3 65 25 11 10 500 1.1318 2.0520 1.1991 0.9393
28 7 65 25 11 10 0 6.6520 6.7760 3.2735 3.8736
29 3 45 45 11 10 500 3.8056 3.6800 3.6246 3.8071
30 7 45 45 11 10 0 4.7081 6.4040 4.5801 4.7080
31 3 65 45 11 10 0 0.8149 3.1320 0.8151 0.8023
32 7 65 45 11 10 500 4.9175 7.8560 8.0262 8.7464
33 5 55 35 8 5 250 2.9794 3.6430 2.8227 2.9507
34 5 55 35 8 5 250 2.8351 3.6430 2.8227 2.9507
35 5 55 35 8 5 250 2.9596 3.6430 2.8227 2.9507
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Abstract: Tool wear (TW) is the gradual deterioration and loss of cutting edges due to continuous
cutting operations in real production scenarios. This wear can affect the quality of the cut, increase
production costs, reduce workpiece accuracy, and lead to sudden tool breakage, affecting productivity
and safety. Nevertheless, since conventional tool wear monitoring (TWM) approaches often employ
complex physical models and empirical rules, their application to complex and non-linear manufac-
turing processes is challenging. As a result, this study presents a TWM model using a convolutional
neural network (CNN), an Informer encoder, and bidirectional long short-term memory (BiLSTM).
First, local feature extraction is performed on the input multi-sensor signals using CNN. Then, the
Informer encoder deals with long-term time dependencies and captures global time features. Finally,
BiLSTM captures the time dependency in the data and outputs the predicted tool wear state through
the fully connected layer. The experimental results show that the proposed TWM model achieves
a prediction accuracy of 99%. It is able to meet the TWM accuracy requirements of real production
needs. Moreover, this method also has good interpretability, which can help to understand the critical
tool wear factors.

Keywords: tool wear; convolutional neural network (CNN); global time feature; informer; BiLSTM

1. Introduction

Tool wear monitoring (TWM) is important to guarantee the manufacturing process’s
quality and efficiency [1]. The tool wear will affect the product quality, and excessive
wear may result in tool damage and the shutdown of the production line, which will
cause substantial economic loss. Therefore, developing an effective tool wear condition
monitoring method has important practical significance.

Tool wear monitoring approaches mainly involve conventional and deep learning
(DL) approaches. Traditional tool wear monitoring methods mainly rely on hand-designed
feature extraction algorithms and machine learning models. Standard features include
cutting force, a sound signal, and a vibration signal. Then, the relevant features can be
extracted from the original signal using a feature extraction algorithm and classified or
regressed by a machine learning algorithm. Shi et al. [2] presented a tool wear prediction
approach integrating least squares support vector machine (LS-SVM) and principal com-
ponent analysis (PCA) techniques. Gomes et al. [3] employed the support vector machine
(SVM) and vibration and sound signals to monitor tool wear. Chen et al. [4] presented
an SVM-based tool wear prediction approach using the Whale Optimization Algorithm
(WOA). Gai et al. [5] established a WOA-SVM classification model using fusion features
to identify tool wear states. The combination of these optimization algorithms and SVMs
described above suffers from related shortcomings. Firstly, the performance of SVMs
is highly dependent on the correct choice of parameters. Improper parameter selection
can lead to overfitting or underfitting of the model. Secondly, SVM models are not very
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interpretable, and although SVMs can deal with non-linear problems by using non-linear
kernel functions, choosing the right kernel function is not always intuitive. This can make
the decision-making process of the model difficult to understand for non-technical people.
Finally, although related researchers have used a variety of optimization algorithms to
improve the training efficiency of SVMs, these optimization algorithms suffer from the
shortcomings of falling into local optimums, sensitivity to initial values, and slow conver-
gence. They cannot deal with complex and diverse tool wear states. Moreover, capturing
the tool wear state’s dynamic change using a traditional method is challenging due to its
limited modeling ability for long-term dependence.

In order to resolve these issues, DL models have attracted extensive attention in TWM.
Characterized by powerful nonlinear fitting capabilities and automatic feature learning
capabilities, DL models can derive high-level features from raw sensor data and capture
complex tool wear state patterns [6]. Tool wear condition monitoring is a critical research
area in the manufacturing industry, and many researchers have proposed various methods
to solve it [7].

A convolutional neural network (CNN) is a DL model that can extract local features
effectively. In TWM, CNN is often utilized to extract the tool wear state’s spatial char-
acteristics [8]. CNN can gradually extract the high-level features of the tool wear state
through multi-layer convolution and pooling operations. Many studies have successfully
applied CNN to classify and forecast tool wear states. For instance, Dai et al. [9] pre-
sented a CNN-based TWM approach. Garcia et al. [10] presented a CNN-based in situ
TWM approach. Kothuru et al. [11] combined depth visualization and CNN to achieve
tool wear state detection. Wu et al. [12] presented an automatic CNN-based tool wear
detection approach.

A recurrent neural network (RNN) is a DL model suitable to process sequence data [13].
However, traditional RNNs have deficiencies like gradient disappearance and explosion
when dealing with long sequence data. In order to overcome these problems, schol-
ars have proposed improved RNN structures like long short-term memory (LSTM) and
gated cycle units (GRU). For example, Xu et al. [14] presented a multi-scale convolu-
tional GRU network to predict tool wear. Liu et al. [15] presented a TWM approach that
combines Densetnet and GRU. Chen [16] presented a tool wear prediction approach us-
ing parallel CNN and BiLSTM. These improved RNN models can capture the temporal
pattern in the tool wear state sequence well and have excellent long-term dependence
modeling ability.

Transformer is a self-attention mechanism-based DL model initially utilized for natural
language processing tasks. The Transformer encoder models the global context of the input
sequence and captures dependencies at different points in the sequence. In recent years,
scholars have begun to apply the Transformer to time series data analysis, including tool
wear condition monitoring. For example, Liu [17] proposed a new CNN-transformer
neural network model for TWM. Liu et al. [18] presented a new transformer-based neural
network model for tool wear prediction. The Informer model solves this problem by using
a sparse attention mechanism and a hierarchical structure to efficiently deal with long time
sequences. The Informer encoder is the core of the Informer model. The main task of the
Informer encoder is to capture the patterns and dependencies of the input time series and to
encode this information into a fixed-length representation. The Informer encoder introduces
the ProbSparse self-attention mechanism, which uses a probabilistic mechanism to capture
the patterns and dependencies of the input time series and to encode this information
into a fixed-length representation. The main task of the Informer encoder is to capture
the patterns and dependencies of the input time series and encode this information into a
fixed-length representation. The Informer encoder introduces the ProbSparse self-attention
mechanism, which uses a probabilistic mechanism to select the critical time steps, thus
reducing the computational complexity. To further reduce the computational burden,
the Informer encoder uses a hierarchical structure that divides the time series data into
multiple sub-sequences and applies the self-attention mechanism to each sub-sequence
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independently. Therefore, in this paper, an Informer encoder is chosen to model long-term
dependencies and sequentially capture important features in the time series to improve the
accuracy and efficiency of tool wear condition monitoring.

In summary, the DL-based tool wear state monitoring method has better feature
learning capability and long-term dependence modeling ability than the traditional method.
The current work presents a DL network model, CIEBM, which combines a CNN, an
Informer encoder, and BiLSTM. The CIEBM model utilizes the advantages of the CNN,
Informer encoder, and BiLSTM in feature extraction, long-term dependence modeling,
and time series modeling to accurately monitor and predict tool wear state. Compared to
traditional methods such as optimization algorithms and SVM, the CIEBM model takes
full advantage of different neural networks and is able to automatically learn and extract
features from the original data without the need to manually design or select the features.
It is also more suitable for tool wear prediction because the CIEBM model is able to capture
complex and non-linear relationships in the data due to its multi-layer structure.

The essential novelties are as follows:

(1) This study presents a new TWM approach that combines the advantages of the CNN,
the Informer encoder, and BiLSTM. This is the first time these three DL techniques
have been combined to monitor tool wear conditions.

(2) This method can extract spatial features from the raw sensor data, capture long-term
dependence and time patterns, and learn the feature representation of tool wear state
comprehensively to enhance the TWM’s precision and reliability.

(3) The presented approach has excellent efficiency and good interpretability, which can
help to understand the key factors of tool wear and prepare a valuable reference to
prevent and manage tool wear.

The paper is structured as follows: Section 2 focuses on the theory related to the
CIEBM model; Section 3 focuses on the structure of the CIEBM model and the parameters
related to the network; Section 4 focuses on the experimental procedure and results; and
finally, Section 5 presents the conclusions.

2. Methods

2.1. D-CNN

One-dimensional CNN (1D-CNN) is a DL model widely used in time series data
analysis and signal processing [19]. Compared with traditional fully connected neural
networks, 1D-CNN can efficiently derive local patterns and associated features from time
series data using local perception and parameter sharing.

The input data for 1D-CNN is 1D time series data. The input data in the tool wear
monitoring can be cutting force, a vibration signal, or a sound signal. Discrete sample
points typically represent these time series data, each representing a measured value at a
specific point in time. Convolution operators are core components of 1D-CNN and can
extract local patterns and associated features from input data [20]. The convolution is
performed on the input sequence by a sliding window; the convolution operation between
the input data and the convolution kernel in the window is calculated; and the feature
mapping is generated. The calculation of the 1D convolution layer can be expressed by
Equation (1):

y[t] =
k=1

∑
i=0

x[t − i] · w[i] + b (1)

where y[t] is the output sequence value at time t, x[t − i] is the output sequence value at
time t − i, w[i] is the convolution kernel value in position i, and b describes the offset term.

In addition to 1D convolution layers, 1D-CNN usually includes activation functions
and pooling layers. Activation functions are utilized to introduce nonlinearities so that
the model can fit complex functions. Common activation functions involve ReLU, sig-
moid, and tanh functions, as presented in Equations (2)–(4). The pooling layer allevi-
ates the sequence length and improves the model’s computational efficiency and robust-
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ness. Common pooling operations involve maximum and average pooling, as shown in
Equations (5) and (6).

f (x) = max(0, x) (2)

f (x) =
1

1 + e−x (3)

f (x) = tanh(x) =
ex − e−x

ex + e−x (4)

y[t] = maxt+p−1
i=t x[i] (5)

y[t] =
1
p

t+p−1

∑
i=t

x[i] (6)

where y[t] describes the output sequence value at time t, x[i] describes the input sequence
value in position i, and p is the length of the pooling window.

An essential advantage of 1D-CNN when processing sequence data is that local
features of the sequence can be automatically extracted without complicated manual
feature engineering. Moreover, due to its parameter-sharing characteristics, 1D-CNN can
maintain low model complexity and avoid overfitting even when processing long sequence
data. However, 1D-CNN has its limitations. Since it mainly focuses on the sequence’ s
local features, 1D-CNN may ignore the sequence’s global features. Furthermore, 1D-CNN
cannot handle long-term dependencies in sequences, that is, relationships between elements
far apart.

2.2. Informer Encoder

Vaswani established the Transformer model in 2017 [21], which has shown remarkable
success in natural language processing, image detection, and fault diagnosis. Although
Transformer introduces a self-attention mechanism to model long-distance dependencies,
its computational complexity increases rapidly for a long input sequence, resulting in
a large memory footprint and reduced computational efficiency. In order to solve the
mentioned issues, Zhou et al. [22] established the Informer model, as shown in Figure 1.
The Informer encoder is the core component of the model and is responsible for feature
extraction and representation learning of input sequences. Its core includes ProbSparse
Self-Attention and distilling layer operations.

2.2.1. ProbSparse Self-Attention

As shown in Figure 2, ProSparse Self-Attention is one of the key components in the In-
former model to sparse self-attention weights, reduce compute and memory overhead, and
accommodate the need to handle long sequences. For the input array X, the corresponding
Query, Key, and Value vectors can be attained by multiplying various weight matrices, as
shown in Equations (7)–(9):

Query = XWQ (7)

Key = XWK (8)

Value = XWV (9)
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where X is the input array, and WQ, WK, and WV are weight matrices for linear transforma-
tions. First, a dot product is performed on Q and K to obtain an attention score, calculated
by Equation (10), which reflects the correlation between each query and key.

Score =
QKT
√

d
(10)
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Figure 1. Network structure of the Informer.
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Figure 2. Network structure of ProSparse Self-Attention.
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In order to select the important Q, ProSparse Self-Attention calculates the sparsity
measurement M(qi, K) of qi for the key set K, as shown in Equation (11):

M(qi, K) = maxj

{
qT

i kj√
d

}
− 1

LK

LK

∑
j=1

{
qT

i kj√
d

}
(11)

where kj is the jth key in K, LK is the number of keys, and M(qi, K) is the importance between
and key set K, determining the difference between the query and key vectors. According to
M(qi, K), Top − u queries with greater sparsity are selected, where u is the default value
representing the number of query vectors to be retained. Accordingly, important query
vectors a high correlation to key set K can be screened. For the selected important query
vector, the Softmax operation is performed on the dot product score matrix to convert the
attention score into a probability distribution, as described by Equation (12).

AttentionWeights(qi, K) = Softmax(Score(qi, K)) (12)

In order to reduce the computation and memory overhead, ProSparse Self-Attention
can further sparse the attention weight. For each query vector, only Top− s key vectors with
greater attention weights are reserved, where s is the default value representing the number
of key vectors to retain. Finally, the sparse attention weight is multiplied by the Value
vector, and its summation is employed to obtain the output of ProSparse Self-Attention, as
shown in Equation (13).

Output (Q, K, V) =
u

∑
i=1

s

∑
j=1

AttentionWeights
(
qi, kij

)
vij (13)

where kij represents the jth reserved key vector of the ith query vector, and vij represents
the value vector corresponding to kij. Through the above steps, ProSparse Self-Attention
realizes the sparseness and selection of attention weights, reduces the calculation and
memory overhead, and retains the key information with a high correlation to the query.

2.2.2. Distilling Layer

Figure 3 shows the distilling process. For a too-long input sequence, Probsparse
Attention only selects Top − u Query for dot product to form dot product pairs, while the
rest of the dot product pairs are set as zero. Therefore, many information items are generated
when multiplied by Value. In order to alleviate the information redundancy, a distilling
layer is located at the end of the encoder [23], which can highlight the essential features,
reduce the long sequences’ input complexity, and improve the model’s performance [24].
The “distilling” process is advanced from layer j to layer (j + 1) by Equation (14), where
[·]AB is the attention block.

Xt
j+1 = MaxPool(ELU(Conv1d[Xt

j ]AB
))) (14)

2.3. BiLSTM Network

BiLSTM is a variant of recurrent neural networks extensively utilized in time se-
ries data processing [25]. As displayed in Figure 4, compared with traditional one-way
LSTM, BiLSTM captures more comprehensive contextual information and timing patterns
by running two LSTM layers in both forward and backward orientations on the time
series [26].
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Figure 4. Network structure of BiLSTM.

As illustrated in Figure 5, the LSTM unit is the core component of BiLSTM. The main
property of LSTM is to introduce gating mechanisms, including input, forget, and output
gates, as well as a cell state, to better control the information flow. The forgetting gate
indicates the novel information discarded from the cell state, and the calculation formula
is presented in Equation (15). The input gate determines the novel information updated
into the cell state, and the calculation formula is presented in Equation (16). The cell states
first discard some information through the forgetting gate, and then add new candidate
information through the input gate. The computation formulas are described by Equations
(17) and (18). The output gate indicates the information the next hidden state should
contain, and the calculation formula is shown by Equations (19) and (20).

ft = σ
(

Wf · [xt, ht−1] + b f

)
(15)

it = σ(Wi · [ht−1, xt] + bi) (16)
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C̃t = tanh(WC · [ht−1, xt] + bC) (17)

Ct = ft ∗ Ct−1 + it ∗ C̃t (18)

ot = σ(Wo · [ht−1, xt] + bo) (19)

ht = ot ∗ tanh(Ct) (20)

Figure 5. Network structure of LSTM.

3. Proposed Methods

3.1. Frame

This study utilizes the combination of 1D-CNN, Informer encoder, and BiLSTM for
TWM. Figure 6 presents the CIEBM tool wear state monitoring algorithm. First, the raw
sensor data for tool wear condition monitoring is collected, and the data is pre-processed,
including denoising, normalization, and data segmentation. The 1D-CNN neural network
is introduced as the basic model for extracting the tool wear state characteristics [27].
CNN can extract local patterns and feature representations related to tool wear from raw
sensor data. The Informer encoder is introduced to capture long-term dependencies and
global context information in tool wear states. Informer encoders employ self-attention
mechanisms to model dependencies between locations in a sequence. Accordingly, features
can be correlated from different locations, and important patterns and relationships in
the sequence can be captured. The feature sequence extracted by CNN is input into the
Informer encoder to obtain a richer feature representation. BiLSTM is introduced to further
capture context information in time series data. The Informer encoder’s output sequence is
taken as the BiLSTM input, and the relationship between sequence timing and different
tool wear states is further extracted through the BiLSTM layer.

3.2. Parameter Settings

The model’s structural parameters are presented in Table 1.
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Table 1. The CIEBM structural parameters.

Layer Output Shape

Conv1D (20, 16)
MaxPooling (10, 16)

Informer Encoder (10, 32)
LayerNormalization (10, 32)

Attention (10, 32)
Dropout (10, 32)

Lstm (10, 30)
Dropout (10, 30)

Lstm (10, 15)
Dropout (10, 15)

Lstm (1, 15)
Dropout (1, 15)
Output (1, 3)

4. Experiments

4.1. Experimental Sets

The current field of tool wear prediction has largely been experimentally validated us-
ing the IEEE PHM2010 Challenge dataset. The current work utilized the IEEE PHM2010 [28]
challenge dataset as experimental data to evaluate the precision of the CIEBM model.

The workpiece is first cut out of the raw material, and the surface of the workpiece is
treated by face milling to remove the rough surface containing hard particles. A Kistler
cutting force sensor, three-way vibration sensor, and acoustic emission sensor are adopted
to acquire cutting force, vibration, and noise signals, respectively [29], as shown in Figure 7.
The output of these sensors outputs the corresponding voltage signal through the charge
amplifier, which is collected by the NI DAQ PCI 1200 board at a frequency of 50KHz.
Acquisition of 7 signals (force_x(N), force_y(N), force_z(N), vibration_x(g), vibration_y(g),
vibration_z(g), AE_RMS(v)) is carded. Under dry cutting situations, the surface of the
stainless-steel workpiece is machined along the Z-axis with a 3-slot alloy milling cutter.
Table 2 presents the specific processing parameters. Experiments were performed with
three tools (C1, C4, and C6), and 315 experiments were accomplished on each tool. After
each experiment, a microscope measured the tool wear.
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Figure 7. Schematic diagram of the experimental setup.

Table 2. Experimental test parameters.

Parameter Value

Spindle 10,400 (r/min)
Feed rate 1555 (mm/min)

Depth of cut (y direction, radial) 0.125 (mm)
Depth of cut (z direction, axial) 0.2 (mm)

Sampling rate 50 (kHz)
Workpiece material Stainless steel (HRC52)

4.2. Data Pre-Processing

Since the experimental process includes feeding and retracting processes, the original
signal acquired by the sensor contains some invalid data [30]. Meanwhile, a single time
step contains less effective information because the original signal has a high sampling rate.
In order to better analyze and monitor the tool wear state, it is necessary to conduct data
pre-processing [31]. The data pre-processing comprises the following stages:

Invalid data elimination. Since the cutting process includes feeding and retracting
processes, 0.5-s data at the beginning and end should be eliminated to avoid the impact of
invalid data on the experiment.

Data segmentation. Since the original data contains less effective information in a
single time step, the sensor data of each channel in the original data is divided into five
segments on average, and the mean value of each segment is extracted to form a new
time series.

Data standardization. Data normalization is performed and transformed through
Equation (21) to ensure that the numerical ranges of different features are similar and avoid
the excessive influence of specific features on model training.

Xscalled =
X − μ

σ
(21)

Dataset division. As presented in Table 3, the tool wear state is categorized into light,
moderate, and heavy wear, and one-hot coding is employed to perform the label conversion
of the three wear states. The different stages of tool wear are shown in Figure 8. The dataset
is divided into training, validation, and test sets. The cross-validation method is adopted
for verification. Two datasets are selected from the three for training, and the remaining
ones are utilized for verification and evaluation. The ratio of the training dataset to the
validation dataset was 9:1. Table 4 records the number of category samples included in c1,
c4, and c6.
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Table 3. Classification standard for tool wear conditions.

Degree of Wear Light Wear Moderate Wear Heavy Wear

Wear loss (mm) 0–0.12 0.12–0.17 0.17–0.30
One-hot coding 0 1 2

(a) (b) (c)

Figure 8. Diagram of different stages of tool wear: (a) light wear; (b) moderate wear; (c) heavy wear.

Table 4. Number of different types of samples contained in each state.

Tool Number
Category

Light Wear Moderate Wear Heavy Wear

C1 99 50 146
C4 99 50 146
C6 99 50 146

4.3. Hyperparameter Setting

Hyperparameters immediately influence the model’s performance and generaliza-
tion capability. Different hyperparameter values may result in different complexity and
robustness of the model. Hyperparameter selection and optimization is an iterative and
experimental process. In this paper, we have tried different combinations of parame-
ters and performed several experiments to finally find the appropriate hyperparameters
for the task of tool wear condition monitoring. The best combination of hyperparame-
ters can be found through hyperparameter settings to optimize model performance and
improve its generalization ability on new data. Table 5 describes the CIEBM model’s
hyperparameter settings.

Table 5. Hyperparameter settings of the CIEBM model.

Project Value

Epoch 150
Batch size 32

Learning rate 0.0001
Dropout 0.2

Objective function CrossEntropy Loss
Objective function RMSprop
Activation function ReLU

Bilstm Stack number 3

4.4. Results

In order to better evaluate the performance of the model, we chose Confusion Matrix,
Accuracy, Precision, and Recall to evaluate its performance. The calculations are provided
in Equations (22)–(24). As presented in Figure 9, the accuracy of the CIEBM model in
dataset identification reaches 99.11% after hyperparameter optimization. The analysis
results indicate that the CIEBM model can efficiently detect different wear states of the
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tool despite the complicated interaction between the tool and the workpiece in the milling
process, demonstrating that the CIEBM model has good performance in state recognition.

Accuracy =
TP + TN

TP + TN + FP + FN
(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

Figure 9. Training loss rate and precision of the CIEBM model.

TP: positive samples are classified as positive samples; FP: negative samples are
classified as positive samples; TN: negative samples are classified as negative samples;
FN: positive samples are classified as negative samples.

In order to verify the model’s precision under different tool datasets, a confusion
matrix is utilized to display the classification results. Taking C1 as an example, its confusion
matrix is shown in Figure 10. Its horizontal and vertical coordinates are the true and
predicted values, respectively. There are four sample classification errors, among which
two samples that originally belonged to light wear were wrongly classified as normal wear,
one sample that originally belonged to normal wear was wrongly classified as light wear,
and one sample that originally belonged to heavy wear was wrongly classified as light
wear. As shown in Figures 11 and 12, there are only one and three classification errors in the
C4 and C6 datasets, respectively. Light wear has a precision rate of 100% and a recall rate of
97.05%. Moderate wear has a precision rate of 100% and a recall rate of 94%. Heavy wear
has a precision rate of 100% and a recall rate of 100%. These metrics show the excellent
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performance of the CIEBM model. The established model can efficiently extract the features
of different tool wear stages and identify and classify the tool wear state.

Figure 10. Classification confusion matrix results of the C1 tool wear state.

Figure 11. Classification confusion matrix results of the C4 tool wear state.

Figure 12. Classification confusion matrix results of the C6 tool wear state.
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In order to more intuitively observe each network layer’s feature extraction process
and demonstrate the ability of the CIEBM model to extract the sensitive features for subse-
quent state detection effectively, the t-SNE algorithm is utilized for dimension reduction
visualization of each network layer, as presented in Figure 13. Figure 13a describes the
t-SNE visualization results of the original signal with mixed data and a poor clustering
effect. Figure 13b describes the t-SNE visualization results of the CNN layer. The first-type
samples have been separated, and there is an aggregation trend among the same type
of samples. Figure 13c shows the t-SNE visualization results through the Informer layer.
Except for some mixed samples, all samples were classified, and the three types of samples
were completely separated. Figure 13d shows the t-SNE visualization results of the Linear
layer. All samples are classified, and the clustering effect is obvious. It can be seen that the
CIEBM model can effectively identify and classify different tool wear states.

 
(a) (b) 

 
(c) (d) 

Figure 13. t-SNE visualization results of each network layer of the CIEBM model: (a) Input layer
visualization results; (b) CNN layer visualization results; (c) Informer layer visualization results;
(d) Linear layer visualization results.

4.5. Comparative Analysis

In order to evaluate the advantages of the established CIEBM model, it is compared
with the CNN and BiLSTM models in the PHM2010 dataset with the same hyperparameter
settings. As shown in Figure 14a,b, the accuracy of the CIEBM model is increased by 17.42%
and 2.05% compared with CNN and BiLSTM, respectively. Comparing the convergence
rates of different models indicates that the CIEBM model has the maximum convergence
rate, indicating that it can extract valuable features from the input data to represent the
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key information in the data. At the same time, the CIEBM model can learn and adapt the
relationship between the features extracted from the training data and the tool wear faster.

 
(a) (b) 

Figure 14. (a) CNN model’s loss rate and precision. (b) Loss rate and accuracy of the BiLSTM model.

For a more intuitive comparative analysis, Figures 15 and 16 present the confusion
matrix of the prediction results of these models. Through the experiment, it can be found
that the identification precision of each model in the light and heavy wear is generally
higher than that in the moderate wear due to the faster wear change rate of the early wear
and heavy wear. As presented in Figure 14, the CNN model is completely wrong in the
moderate wear stage with a slower change rate because the CNN is mainly concerned with
local patterns and features, and there may be important correlations between each time step
in time series data. However, the traditional 1D-CNN mainly focuses on feature extraction
from local neighborhoods and cannot utilize global context information. Additionally, un-
derfitting occurs when using only the CNN model due to the lack of feature representation.
As presented in Figure 15, the BiLSTM model performs well in time series and can capture
long-term dependence. However, it lacks the ability to use global modeling in tool wear
time series, considerably increasing the misclassification in the prediction of moderate and
heavy wear, especially in the moderate wear stage. This demonstrates the effectiveness of
the CIEBM model with the Informer encoder module for global feature modeling.

(a) (b) (c) 

Figure 15. CNN model confusion matrix results of tool wear status classification: (a) C1; (b) C4;
(c) C6.
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(a) (b) (c) 

Figure 16. BiLSTM model confusion matrix results of tool wear status classification: (a) C1; (b) C4;
(c) C6.

As shown in Figure 17, attention mechanism links are visualized to form attention
heat maps to further illustrate the Informer encoder’s role, which can understand the
key features that the model relies on when making classifications. As revealed from
the attention heat map, the Informer encoder can make the CIEBM model better focus
on features that are more closely dependent on the tool wear condition monitoring and
improve the model’s computational performance through the sparse attention mechanism,
demonstrating the effectiveness of the introduction of the Informer encoder module.

Figure 17. Attention heat map visualization results of the Informer encoder.

5. Conclusions

A tool wear state monitoring approach using CNN, Informer encoder, and BiLSTM
was proposed to evaluate its performance on the tool wear state dataset. The experimental
results and analysis demonstrate the following results:

(1) Experimental results reveal that the presented TWM approach based on CNN, In-
former encoder, and BiLSTM has high accuracy in TWM. All of them reached over
95% in the relevant evaluation indexes, reflecting the excellent performance of the
CIEBM model, which can efficiently classify and forecast the tool wear state.

(2) In tool wear monitoring, CNN can extract spatial features from sensor data. In-
former encoders can model long-term dependencies and capture global context in-
formation with ProbSparse Self-Attention and a feedforward neural network layer.
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BiLSTM captures temporal patterns and context information to further improve
monitoring accuracy.

(3) Our model is the first to use CNN, an Informer encoder, and BiLSTM together for tool
wear condition monitoring, and it is also the first to target global feature modeling
based on the non-linearity of the tool wear process to enable the model to better
learn the relationship between the features of different wear stages. This is of great
importance for further research.

(4) Further analysis shows that our method has an excellent classification impact on
normal and different degrees of wear, and the confusion between normal and heavy
wear is slight, indicating that the method can effectively distinguish tool states with
different degrees of wear.

In summary, the tool wear state monitoring approach using CNN, Informer encoder,
and BiLSTM performed well in the experiment. This method has significant application
value for TWM in the industrial field. Nevertheless, many details still need to be improved,
such as further optimization of the model architecture, hyperparameter adjustment, and
dataset size expansion, to enhance the monitoring’s precision and robustness.

In future work, the method of combining physical models of tool wear with deep
learning will be further investigated. By modeling the physical model, the interpretability
of deep learning will be further improved while providing a theoretical basis for optimizing
the deep learning network model for the production scenario of tool wear. In the next
phase, we will continue to conduct field experiments to study wear under variable working
conditions to further improve the generalization ability of the model.
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Nomenclature

y[t] Calculated output
b Shift factor
w[i] Weighting coefficient
x[] Sequence input value
f (x) Activation function output
W Weight matrix
X Model input
Q/q Query vector
K/k Key vector
V/v Value vector
L Number of vectors
d Length of vector
M() Attention score
ft Forget gate output
Ct−1 Previous cell state
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it Input gate output
C̃t Candidate
Ct New cell state
ot Output gate output
ht Hidden state
TP True positive
FN False negative
FP False positive
TN True negative
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Abstract: In practical industrial scenarios, mechanical equipment frequently operates within dynamic
working conditions. To address the challenge posed by the incongruent data distribution between
source and target domains amidst varying operational contexts, particularly in the absence of labels
within the target domain, this study presents a solution involving deep feature construction and
an unsupervised domain adaptation strategy for rolling bearing fault diagnosis across varying
working conditions. The proposed methodology commences by subjecting the original vibration
signal of the bearing to a fast Fourier transform (FFT) to extract spectral information. Subsequently,
an innovative amalgamation of a one-dimensional convolutional layer and an auto-encoder were
introduced to construct a convolutional auto-encoder (CAE) dedicated to acquiring depth features
from the spectrum. In a subsequent step, leveraging the depth features gleaned from the convolutional
auto-encoder, a balanced distribution adaptation (BDA) mechanism was introduced to facilitate the
domain adaptation of features from both the source and target domains. The culminating stage
entails the classification of adapted features using the K-nearest neighbor (KNN) algorithm to attain
cross-domain diagnosis. Empirical evaluations are conducted on two extensively used datasets. The
findings substantiate that the proposed approach is capable of accomplishing the cross-domain fault
diagnosis task even without labeled data within the target domain. Furthermore, the diagnostic
accuracy and stability of the proposed method surpass those of various other migration and deep
learning approaches.

Keywords: convolutional auto-encoder; balanced distribution adaption; domain adaptation; cross-
condition fault diagnosis

1. Introduction

Rolling bearings stand as vital constituents within rotating machinery and equipment,
with extensive applications in domains such as wind power generation, aerospace, and
numerous others [1,2]. Due to their regular exposure to elevated temperatures, heavy loads,
dynamic operational conditions, and other demanding and intricate work settings, the
reliability of rolling bearings is subject to diminishment. A single instance of failure can
engender disruptions in regular industrial production and potentially yield considerable
economic repercussions, in some cases, even posing a threat to human life [3]. As indicated
in references [4–6], bearing failures contribute to 45–90% of the overall error occurrences in
certain machinery and equipment. Thus, undertaking research on intelligent fault diagnosis
specifically targeting rolling bearings [7] is of paramount importance.

The vibration signal encapsulates a wealth of information pertaining to the bearing’s
health condition, forming the foundation for the majority of ongoing research [8]. As
stipulated by the literature [9], fault diagnosis techniques can be broadly categorized
into two groups: model-based approaches and data-driven methods. Model-based fault
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diagnosis methodologies often entail the construction of physical models for characterizing
bearing defects [10,11]. Nonetheless, this method heavily relies on a priori knowledge of
industrial systems and associated components. The actual operation of industrial systems
is marked by uncertainties linked to operational conditions, noise, and other factors, and
the assumptions underpinning the model fail to accommodate these sources of uncertainty.

Data-driven methodologies commonly leverage techniques encompassing signal pro-
cessing, statistical feature extraction, and machine learning for fault diagnosis. Singh
introduces a fault diagnosis approach grounded in wavelet analysis [12]. Meanwhile,
Wang et al. put forth a nonlinear time-frequency flow form learning technique tailored for
bearing fault diagnosis [13], its efficacy being substantiated through application to actual
bearings. Shazali Osman et al. introduced a novel morphological Hilbert Huang (MH)
approach aimed at the early detection of bearing failures [14]. Empirical mode decomposi-
tion (EMD) stands as a classical signal processing technique widely applied in the realm
of bearing fault diagnosis [15]. Complementing this, variational mode decomposition
(VMD) presents a more sophisticated signal-adaptive decomposition methodology [16].
Wang et al. [17] employ VMD in conjunction with cyclic correlation entropy functions for
bearing fault diagnosis. Nevertheless, the aforementioned techniques often necessitate the
involvement of domain experts during the diagnosis process, a practice prone to intricacies
in computation. In related investigations, signal processing serves as the basis for feature
extraction, frequently entailing the manual extraction of pertinent attributes encompassing
time and frequency domains, as well as signal entropy [18]. Zhang et al. [19] conducted
feature extraction from bearing vibration signals, yielding six time and thirteen frequency-
domain features tailored for fault diagnosis. Entropy stands as a quantitative tool to
delineate the system complexity and has found utility within the domain of vibration signal
analysis [20]. Li et al. introduced multiscale dispersion entropy (MDE) for scrutinizing
bearing vibration signals and effecting feature extraction [21]. Jiao et al. merged multi-scale
sample entropy (MSE) with Energy Moment (EM) for extracting bearing features [22]. De-
spite attaining a certain degree of accuracy and stability, these methods can only partially
accomplish bearing fault diagnosis. Nonetheless, the manual extraction of fault-related
features remains an intricate endeavor. This accentuates the pivotal importance of research
in automating feature extraction and ensuring the fluid implementation of end-to-end
fault diagnosis.

The advancement of artificial intelligence has garnered scholarly attention toward
machine learning technology. This genre of technology undertakes data processing to
unearth data patterns [23]. Malhi et al. harnessed the principal component analysis (PCA)
algorithm to derive bearing signal features, subsequently feeding these features into radial
basis function (RBF) networks for fault classification [24]. The support vector machine
(SVM) stands as a classical machine learning classifier. Yang et al. utilized intrinsic mode
functions (IMF) such as SVM input vectors, with the output indicating bearing failure
modes [25]. Pandya et al. accomplished bearing fault diagnosis by relying on acoustic
emission signals and a K-nearest neighbor (KNN) classifier. In addition, algorithms such
as singular value decomposition (SVD) [26] and the Naive Bayes classifier [27] have also
achieved success in bearing fault diagnosis. Notably, while these machine learning-oriented
methods operate without human intervention, they are characterized as shallow, possessing
limited learning capacities. Moreover, they often struggle to extract high-quality features
from intricate, non-linear, and high-dimensional data [22].

Recent years have witnessed the proliferation of deep learning in the realm of fault
diagnosis, with deep neural networks displaying formidable prowess in feature extrac-
tion [28]. Xia et al. introduced a multi-sensor fusion approach grounded in a convolutional
neural network (CNN), proficiently engendering adaptively extracted signal features con-
ducive to end-to-end fault diagnosis [29]. Shao et al. crafted a deep belief network (DBN) to
autonomously capture representative features inherent to the original feature set [30]. Sun
et al. harnessed a sparse auto-encoder (SAE) to master the features within vibration signals,
followed by classification of the extracted features for fault analysis via a deep neural
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network (DNN) [31]. Kerboua et al. [32] devised a fresh technique for asynchronous motor
fault diagnosis, capitalizing on three-dimensional convolutional neural networks. This
innovation wields the potential to significantly curtail downtime and optimize production
efficiency. Liang et al. [33] formulated a novel approach for diagnosing rolling bearing
faults by leveraging the ICEEMDAN Hilbert and ResNet. This method adeptly tackles
issues of neutral energy degradation and pivotal feature information loss within deep
learning networks.

Deep learning methods possess the capability to autonomously extract fault features,
yielding features that effectively capture the essence of the original signal. Nevertheless, the
implementation of deep learning methods relies on two key assumptions: (1) the network
training data necessitates supervised learning, entailing a substantial volume of labeled
data; and (2) both the training and testing data in the source and target domains adhere to
an identical distribution. It is crucial to recognize that these two presumptions frequently
fall short in real-world scenarios owing to shifts in operational contexts, environmental
interference, and assorted external factors. Procuring substantial quantities of labeled data
proves highly costly, and data distribution often fluctuates in accordance with working
conditions, collectively constraining the advantages of deep learning algorithms. Domain
adaptation (DA) emerges as a potent strategy for mitigating the dearth of labeled data
and ameliorating imbalanced data distribution, thereby redressing the inherent limitations
of deep learning [34,35]. Wei et al. employed transfer component analysis (TCA) to
transfer the vibration characteristics of bearings under various operating conditions [36].
Lu et al. utilized maximum mean discrepancy (MMD) for measuring feature distribution
deviation across distinct domains, thereby minimizing the gap between the source and
target domains [37]. Li et al. amalgamated joint distribution adaptation (JDA) with SVM,
employing JDA to assess both the boundary and conditional distributions of data features,
while employing SVM as a fault classifier [38]. However, TCA and MMD, for instance,
solely focus on the edge distribution of the data. While JDA is capable of adapting both
edge and conditional distributions, it neglects the joint contribution of these distributions
during adaptation. Balanced distribution adaptation (BDA), proposed by Wang et al.,
introduces a balancing factor to JDA, enabling dynamic adjustment of the significance of
both edge and conditional distributions [39].

In this study, we synergize deep learning and domain adaptation strategies to in-
troduce a novel model for bearing fault diagnosis that relies on both deep learning and
unsupervised domain adaptation principles. This model autonomously captures data
features, mitigates the challenge of insufficiently labeled data, and aligns data distributions
across domains. Initially, an unsupervised convolutional auto-encoder is established for
adaptive data feature extraction across both source and target domains. Subsequently, the
introduction of balanced distribution adaptation (BDA) serves to minimize the separation
between data in the source and target domains. Ultimately, the K-nearest neighbor (KNN)
algorithm, trained on the source domain, is employed for the classification of data in the
target domain. The primary contributions of this study are summarized below:

(1) We propose a framework that leverages deep learning and unsupervised domain
adaptation to address variable working condition problems. This framework autonomously
extracts features from raw data, harnesses the advantages of both deep learning and domain
adaptation, and facilitates fault diagnosis;

(2) We introduce the BDA algorithm to handle the feature distance metric and migra-
tion. This facilitates domain adaptation by balancing the edge distribution and conditional
distribution of the data;

(3) We employ TSNE technology to visualize every stage of feature extraction and
migration. This approach elucidates the detailed patterns of data transformation and offers
interpretability for both the migration and deep learning algorithms.
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2. Theoretical Foundation

2.1. Fast Fourier Transform (FFT)

FFT [40] represents an engineered realization of the discrete Fourier transform (DFT),
streamlining the computational procedure. Employing the FFT transformation in the
time-domain vibration signal of the bearing facilitates the acquisition of frequency do-
main particulars. Unique fault patterns are encapsulated within distinct frequency bands,
rendering the frequency domain signal more adept for fault diagnosis compared to the
original vibration signal [41]. Zhang et al. conducted an FFT transformation on vibration
signals and derived features from the resultant spectral signals to facilitate bearing fault
diagnosis [42]. On the other hand, Mao et al. applied an FFT transformation to the bearing
vibration signal, and the ensuing spectral information underwent processing via a gen-
erative adversarial network (GAN) [43], which was employed for the early detection of
bearing failures.

For a finite length bearing time-domain vibration discrete signal x(n), the spectral
function X(k) can be obtained via DFT:

X(k) =
N−1

∑
n=0

x(n)ωkn
N , 0 ≤ k ≤ N − 1 (1)

where, N is the sample length, ωN = e−j 2π
N .

FFT decomposes the sequence x(n) into two parts, an even sequence x2(n) and an
odd sequence x1(n), each with the length N

2 . Thus, we obtain

X(k) =

N
2 −1

∑
n=0

x1(n)ω2kn
N +

N
2

∑
n=0

x2(n)ω
(2k+1)n
N (2)

Extracting the factorization of Equation (2) yields

X(k) =

N
2 −1

∑
n=0

x1(n)ω2kn
N + ωkn

N

N
2

∑
n=0

x2(n)ω2kn
N (3)

Since ω2k
N = e−j 2π

N 2kn = e−j 2π
N/2 kn = ωkn

N/2, integrating it into Equation (3) yields

X(k) =
N
2 −1
∑

n=0
x1(n)ωkn

N/2 + ωkn
N

N
2 −1
∑

n=0
x2(n)ωkn

N/2

= X1(k) + ωk
N X2(k)

(4)

where, X1(k) is the result of the odd sequence x1(n) and X2(k) is the result of the even
sequence x2(n).

2.2. Autoencoder (AE)

AE [44], an established unsupervised learning algorithm, undertakes the task of
reconstructing input data into outputs. The utilization of AE and its adaptations has
found extensive application within the realm of bearing analysis. Mao et al. employed
a stacked denoising auto-encoder to extract shared features among various health states
of bearings [45]. Similarly, Jing et al. employed AE to capture spectral features from the
signal and coupled it with a Gaussian mixture model for clustering [46]. A representative
self-coding structure is illustrated in Figure 1.

AE typically comprises two components: an encoder and a decoder. The encoder is
capable of reducing the dimensionality of the input signal and extracting features, while
the decoder reconstructs the input signal by employing the extracted features as the input.
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If the input to the encoder is assumed, and the resulting feature vector is obtained
through encoding, then

h = f (ωX + b) (5)

where, f is the activation function, ω is the weight of the network, and b is the network bias.
In the decoding stage, the input of the decoder is h and the output is X̂:

X̂ = f (ω
′
h + b

′
) (6)

where, f is the activation function, ω is the weight of the network, and b is the network bias.
The auto-encoder network updates the internal parameters by minimizing the recon-

figuration error, where lAE is
lAE = |X − X̂|2 (7)

xi

hi

ix

Figure 1. Structure of the AE.

2.3. Convolutional Neural Network (CNN)

CNN [47], a significant component in modern deep learning, is distinguished by its
attributes of parameter sharing and translation invariance. These attributes facilitate the
extraction of robust features and have contributed to its widespread use in the context of
diagnosing faults in rolling bearings [48]. The structure of a one-dimensional convolutional
network primarily comprises a one-dimensional convolutional layer, a one-dimensional
pooling layer, a fully connected layer, and a classifier, as illustrated in Figure 2.

 
Figure 2. Structure of the CNN.

139



Lubricants 2023, 11, 383

The convolution layer is composed of a convolutional kernel that executes convolution
operations on the input signal and employs a nonlinear activation function to construct
features. The resulting output is

yl
i =

N

∑
j=1

xl
j ⊗ kl

ji + bl
i (8)

where, yl
i represents the jth convolutional computed vector of the lth layer, N is the number

of input feature vectors, xl
j is the jth input feature vector of the lth layer, ⊗ represents the

convolutional computation, kl
ji is the convolutional kernel of the lth layer with the jth input

feature vector, and bl
i is the ith bias vector of the lth layer.

The output features typically undergo transformation through a nonlinear activation
function subsequent to the convolution operation. In this study, the rectified linear unit
(ReLU) was employed as the activation function. ReLU is formally defined as

al
i(j) = f (yl

i(j)) = max(0, yl
i(j)) =

{
yl

i(j) yl
i(j) ≥ 0

0 yl
i(j) < 0

(9)

where, yl
i(j) is the jth output after the ith convolution operation of the lth layer and al

i(j) is
the activation value of yl

i(j).
Following ReLU activation, the feature vector is commonly subjected to dimension-

ality reduction through the utilization of a maximum pooling layer. This operation is
computed as

pl+1
i (j) = max

(j−1)w+1≤t≤jw

{
al

i(t)
}

(10)

The fully connected layer can expand the output of the pooling layer to form a one-
dimensional feature vector with the activation function ReLU; the softmax classification
layer can perform the final multiclassification operation, assuming that the label is y ∈
{1, 2, . . . , K}, and given sample x, its probability of belonging to category k is

p(y = k|x; Θ) = so f tmax(θT
k x) =

exp(θT
k x)

K
∑

i=1
exp(θT

i x)
(11)

where Θ is all the training parameters in the softmax regression model and 1/
K
∑

i=1
exp(θT

i x)

is the normalization function.

2.4. Balanced Distribution Adaptation (BDA)

A labeled source domain space was set as DS = {xsi, ysi}n
i=1, and an unlabeled target

domain space Dt =
{

xt j
}n

j=1. The same feature space was assumed, but the different edge

and conditional distributions were p(xs) �= p(xt) and p(ys|xs) �= p(yt|xt).
BDA is a domain adaptive method that adaptively weighs the importance of the edge

distribution and conditional distribution between domains by introducing a balancing
factor, μ, that minimizes the following distances.

D(DS, Dt) ≈ (1 − μ)(P(xs), P(xt)) + μ(P(ys|xs), P(yt|xt)) (12)

where, μ ∈ [0, 1] is a balance factor measuring the importance of the edge distribution and
the conditional distribution. When μ is close to 0, the edge distribution is given priority,
and when it is close to 1, the conditional distribution is given priority.

It is important to note that since the target domain does not have sample labels, it is
not possible to calculate the conditional distribution p(yt|xt). Here, the class conditional
distribution p(xt|yt) is used instead of p(yt|xt). The classifier is trained in the target domain
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and used to predict the pseudo label in the target domain, thus calculating p(xt|yt). This
process is continuously iterated to improve reliability [46]. The difference between the two
distributions was estimated using the maximum mean discrepancy (MMD) Equation (12),
which was reduced to

D(DS, Dt) ≈ (1 − μ)‖ 1
n

n
∑

i=1
xsi − 1

m

m
∑

j=1
xtj‖

2

κ

+

μ
C
∑

c=1
‖ 1

nc
∑

xsi∈D(c)
s

xsi− 1
mc

∑
xtj∈D(c)

t

xtj‖2

κ

(13)

where κ is the regenerative kernel Hilbert space, n is the number of samples in the source
domain, m is the number of samples in the target domain, nc is the number of c-class
samples in the source domain, and mc is the number of c-class samples in the target domain.

Continuing to use regularization and matrix transformation techniques, Equation (13)
can be formalized as:

min tr
(

ATX
(
(1 − μ)M0 + μ

C
∑

c=1
Mc

)
XT A

)
+ λ‖A‖2

F

s.t. ATXHXT A = I, 0 ≤ μ ≤ 1
(14)

where λ is the Frobenius coefficient of the regularization term ‖·‖2
F, X is the matrix con-

sisting of xs and xt, A denotes the transformation matrix, I is the unit matrix, and H is the
central matrix, H = I − (1/n). M0 and Mc are MMD matrices with the following expressions:

(M0)ij =

⎧⎪⎨⎪⎩
1

n2 , xi, xj ∈ Ds
1

m2 , xi, xj ∈ Dt
1

−mn , otherwise
(15)

(Mc)ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
nc2 , xi, xj ∈ Ds

(c)

1
mc2 , xi, xj ∈ Dt

(c)

1
−mcnc

,

{
xi ∈ Ds

(c), xj ∈ Dt
(c)

xi ∈ Dt
(c), xj ∈ Ds

(c)

0, otherwise

(16)

The Lagrangian operator φ = (φ1, φ2, . . . , φd) is introduced and the Lagrangian func-
tion of Equations (14) and (15) is obtained by associating the following equation:

min tr
(

ATX
(
(1 − μ)M0 + μ

C
∑

c=1
Mc

)
XT A

)
+ λ‖A‖2

F

s.t. ATXHXT A = I, 0 ≤ μ ≤ 1
(17)

Optimization can be viewed as a generalized reformulation problem, such that
∂L/∂A = 0, which yields(

X

(
(1 − μ)M0 + μ

C

∑
c=1

Mc

)
XT + λI

)
A = XHXT Aφ (18)

The optimal mapping transformation matrix A is obtained by solving for it.

3. Proposed Architecture

In order to enhance the precision of bearing fault diagnosis amidst varying operat-
ing conditions, this section introduces an unsupervised domain adaptive fault diagnosis
framework that relies on autoencoder depth features and balanced distribution adapta-
tion. The architectural layout of the network and core procedural steps are illustrated in
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Figures 3 and 4. The detailed parameters governing the convolutional auto-encoder (CAE)
network structure are provided in Table 1.

Figure 3. Network structure of the CAE.

S t s t s s t tD D D P x P x P y x P y xμ μ≈ − +Min

Figure 4. Unsupervised domain adaptation fault diagnosis framework.
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Table 1. Detailed configuration of the architecture for the CAE.

Layer Type Kernel Size/Stride Output

Input Data / 1 × 1024
Conv1 Convolution1d 32/16 128 × 16
Pool MaxPool 2/2 64 × 16

Conv2 Convolution1d 3/1 64 × 32
Pool MaxPool 2/2 32 × 32

Conv3 Convolution1d 3/1 32 × 64
Pool MaxPool 2/2 16 × 64

Conv4 Convolution1d 3/1 16 × 64
Pool MaxPool 2/2 8 × 64

Conv5 Convolution1d 3/1 6 × 64
Pool MaxPool 2/2 3 × 64

Upsample MaxUnpool 2/2 6 × 64
Deconv1 ConvTranspose1d 3/1 8 × 64

Upsample MaxUnpool 2/2 16 × 64
Deconv2 ConvTranspose1d 3/1 16 × 64

Upsample MaxUnpool 2/2 32 × 64
Deconv3 ConvTranspose1d 3/1 32 × 32

Upsample MaxUnpool 2/2 64 × 32
Deconv4 ConvTranspose1d 3/1 64 × 16
Deconv5 ConvTranspose1d 3/1 1 × 1024

As depicted in Table 1, the initial convolutional layer extracts features directly from the
input raw signal without undergoing additional transformations. The principal distinction
between the comprehensive architecture of the devised CAE model and that of conven-
tional CNN models resides at the filter level. Specifically, adopting a larger convolutional
kernel in the inaugural layer is more adept at attenuating high-frequency noise, while the
subsequent convolutional kernels are comparatively diminutive. The incorporation of mul-
tiple layers with smaller convolutional kernels enhances the network’s depth, consequently
facilitating the acquisition of a robust representation of the input signal and expediting the
training procedure.

The process is primarily divided into three sequential steps. First, the data undergo
a fast Fourier transform to acquire spectral information. Subsequently, convolutional
autoencoders are employed to extract depth features from the spectra. Lastly, the BDA
algorithm is applied to facilitate domain adaptation. The specific procedures are elucidated
as follows:

Step 1: Signal acquisition and preprocessing. Utilize acceleration sensors to capture
raw vibration signals from rolling bearings under different operational conditions and fault
types. Then, preprocess the signal by selecting 1024 original vibration data points as sam-
ples. Apply the fast Fourier transform to obtain the bilateral spectrum, and subsequently,
perform z-score standardization on the spectrum.

Step 2: Deep feature extraction and migration. Construct a convolutional autoen-
coder model and employ FFT spectra as inputs for unsupervised deep feature extraction.
Throughout the migration procedure, the encoder architecture of the convolutional autoen-
coder is capable of generating profound features. The BDA algorithm is then applied to
modify the edge and condition distributions of features from the source and target domains,
thereby achieving feature migration.

Step 3: Fault classification. The migrated features are shared, and the classification
task employs the K-nearest neighbors (KNN) classifier.

4. Experiments and Analysis

In order to showcase the efficacy of the proposed approach, this section opts for
the utilization of two extensively employed publicly accessible datasets for conducting
cross-service fault diagnosis experiments (CWRU and SEU datasets).
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4.1. Variable Load Dataset from the CWRU
4.1.1. Data Description

The CWRU bearing dataset was sourced from the Electrical Engineering Laboratory at
the Case Western Reserve University, with the experimental setup as depicted in Figure 5.

Figure 5. CWRU experimental platform.

Single-point damage was inflicted on the bearing arrangement using EDM, resulting
in failure diameters of 0.007, 0.014, 0.021, and 0.028 inches, along with distinct failure types:
outer ring failure, inner ring failure, and rolling element failure. Vibration data of the
bearing were captured utilizing accelerometers across various loads (0 HP, 1 HP, 2 HP, and
3 HP).

This section harnesses the fault data acquired at the drive end (DE), employing a
sampling frequency of 12 kHz. The differentiation between source and target domains
hinges on three key factors: load, fault diameter, and load. The dataset characterized by
a load of 1 HP and a fault diameter of 0.007 inch was designated as the source domain
signal, while the dataset marked by a load of 3 HP and a fault diameter of 0.014 inch was
earmarked as the target domain signal. The captured data are tabulated in Table 2.

Table 2. Category information about the CWRU dataset.

Class Fault
Damage Diameter

(inch)
Load (HP)

Source1 Normal 0.007 1
Source2 Ball 0.007 1
Source3 Inner 0.007 1
Source4 Outer 0.007 1
Target1 Normal 0.014 3
Target2 Ball 0.014 3
Target3 Inner 0.014 3
Target4 Outer 0.014 3

4.1.2. Signal Pre-Processing

Effective preprocessing of vibration signals enhances the extraction of insightful
features via deep networks. Certain researchers have employed the Fast Fourier Transform
(FFT) on the raw signals, obtaining their spectra as inputs for deep networks aimed at
alleviating the impact of noise [7,49,50]. Figure 6 illustrates time and frequency domain
waveforms of bearing vibration data under distinct health states: (1) in the normal state,
data predominantly exhibit smooth random waveforms characterized by minor amplitude
fluctuations; (2) as indicated by Figure 6, noticeable periodic shocks and irregularities
manifest in the data related to inner and outer ring failures, while such attributes are less
conspicuous in instances of rolling element failures. Examination of the frequency domain
waveforms yields the subsequent findings: (1) normal data demonstrate pronounced
energy concentration primarily within the low and mid-frequency bands (below 1 kHz);
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(2) pertaining to data from other fault states, a distinct resemblance in the amplitude
variation pattern is discernible, characterized by a dominant energy concentration in the
high frequency range (2, 4 kHz).

Figure 6. Illustration of vibration signals of the CWRU data set.

4.1.3. Signal Reconstruction and Feature Extraction

The convolutional autoencoder reconstructs input data by acquiring a condensed
representation and subsequently generating a reconstruction using this representation. The
primary objective of data reconstruction lies in distilling the most valuable information from
the input while minimizing noise and redundancy. The outcomes, illustrated in Figure 7,
demonstrate that the training of the autoencoder is highly efficacious. The reconstructed
signal adeptly emulates the original waveform, showcasing precise reconstruction.

 
Figure 7. Reconstructed signal and original signal display.
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To further elucidate the efficacy of the CAE, we employed the t-sne algorithm to
visualize feature distributions. Importantly, in order to underscore the importance of data
preprocessing, we fed both the FFT spectrum sample and the original vibration signal
sample individually into the CAE. From the encoder, we derived the resultant features and
utilized the t-sne technique to diminish their dimensionality and observe their distribution
patterns. The original vibration signal is subjected to feature extraction via CAE and
subsequently transformed into two- and three-dimensional feature distributions through
t-sne, as illustrated in Figure 8.

 
Figure 8. Variation of feature distribution in raw CWRU datasets.

As depicted in the figure, the feature distribution of the original signal (TSNE-Original
signal) appears disordered, with various fault types intermingled and lacking distinguisha-
bility. This observation implies that the original data fail to elucidate the latent features
associated with distinct labels. Following the CAE-based learning of implied features and
subsequent dimensionality reduction (TSNE-Original signal-CAE), the features related
to different fault types demonstrated an initial level of differentiation. Nonetheless, the
distinction between diverse labels remained somewhat indistinct. This suggests that the
original vibration signal, subsequent to CAE learning, can manifest the latent features
corresponding to different labels to some extent.

The FFT spectrum samples were input into a convolutional auto-encoder (CAE),
which employs its encoder to generate latent features. These derived features subsequently
undergo t-SNE-based dimensionality reduction, yielding both two- and three-dimensional
visualizations, as depicted in Figure 9. Following the encoding step, feature data that
share the same labels displayed prominent resemblances, particularly within the two-
dimensional space. This outcome yielded a clustering effect of significantly higher quality
than the one displayed in Figure 8. By combining insights from Figures 8 and 9, it becomes
evident that the CAE possesses a robust capability for profound feature extraction, thereby
uncovering the latent characteristics of the signal. Furthermore, the indispensable nature of
FFT preprocessing on the original signal is underscored.
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+

 
Figure 9. FFT spectral feature distribution variation diagram.

4.1.4. Feature Migration and Analysis

As depicted in Figure 9, diverse fault types within the source domain exhibited a
prominent clustering phenomenon, with the two-dimensional visualization particularly
accentuating this effect. However, when the same faults manifest across diverse domains,
the anticipated clustering patterns did not emerge. This discrepancy poses challenges in
effectively diagnosing faults amidst differing operational contexts. Hence, we introduced
an unsupervised domain adaptation migration technique grounded in BDA. The objective
of this technique is to facilitate the transfer of identical fault characteristics across disparate
domains, ultimately augmenting the diagnostic process supported by the classifier.

Source domain: normal and three fault data at 0 HP, fault diameter 0.007 inch
DS = {normal, ball, ir, or}0.007.

Target domain: normal and three fault data at 3 HP with a fault diameter of 0.014 inches
Dt = {normal, ball, ir, or}0.014.

Task: Migration of untagged data in the target domain using the already tagged source
domain data.

The FFT spectrum serves as the input to the CAE, with the encoder generating implied
features. Subsequently, the source and target domain features underwent migration through
algorithms such as TCA, JDA, CORAL and BDA. These migrated features were then
reduced to a three-dimensional space using the t-sne technique, facilitating the observation
of clustering effects. The outcomes are presented in Figure 10.

In Figure 10, we present the migration outcomes resulting from the TCA, JDA, CORAL,
and BDA migration algorithms, respectively. Contrasting with Figure 8, the TCA algorithm
bolstered the clustering efficacy of each label. However, it falls short in effectively bridging
the gap between the source and target domains, and its migration outcomes are suboptimal.
Comparatively, the JDA algorithm slightly outperformed the TCA algorithm, exhibiting a
commendable migration impact on label No. 2. The CORAL algorithm, in contrast, man-
ifested the least successful migration results. The BDA algorithm’s migration outcomes,
on the other hand, stand out. Under the purview of the BDA algorithm, labels sharing
the same category across source and target domains were aptly grouped together, concur-
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rently ensuring distinctiveness among disparate labels. This achievement underscores the
method’s efficacy in ameliorating data distribution disparities across distinct domains.

 
Figure 10. Comparison chart of the effect of different migration algorithms.

4.1.5. Fault Classification and Analysis

In this segment, we enhanced the comparison by integrating various feature types
and classification algorithms to underscore the superior attributes of the proposed tech-
nique. Initially, FFT spectral features were derived through the CAE. Subsequently, feature
migration transpires via TCA, JDA, CORAL, and BDA migration algorithms. Ultimately,
the realm of fault classification is navigated through a composite strategy integrating
well-established KNN, SVM, and GBDT classifiers. Additionally, we introduced four
supplementary approaches: DFCNN, CAE-DTLN [51], 1DRCAE [52] (deep learning algo-
rithms) and DEEP FEATURE-KNN (directly utilizing the KNN algorithm to classify the
features extracted by means of the CAE). This amalgamation culminates in a total of eleven
distinct methodologies.

(1) TCA-KNN
(2) TCA-GBDT
(3) CORAL-KNN
(4) JDA-KNN
(5) BDA-KNN
(6) BDA-SVM
(7) BDA-GBDT
(8) DFCNN
(9) DEEP FEATURE-KNN
(10) CAE-DTLN
(11) 1DRCAE

The experimental outcomes are showcased in Table 3 and Figure 11, derived from
10 replicate trials. Evaluation metrics encompass the mean accuracy and standard deviation.

Observing Table 3 along with Figures 11 and 12, it becomes evident that the proposed
BDA-KNN method attained the highest mean accuracy and nearly the lowest standard
deviation. Conversely, CORAL-KNN exhibited the lowest standard deviation but poor
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accuracy performance. In summary, these findings highlight the superior performance of
BDA-KNN. Additionally, it is worth noting that the classification effectiveness substantially
surpasses that of the CORAL algorithm when employing BDA, TCA, and JDA migration
algorithms. This observation aligns with the feature visualization depicted in Figure 10. A
more pronounced clustering effect between source and target domain features correlates
with an easier fault diagnosis. Moreover, the majority of migration methods outperformed
the deep learning algorithms DFCNN, CAE-DTLN, 1DRCAE, and DEEP FEATURE-KNN,
which rely solely on CAE depth features for diagnosis. This underscores the ascendancy of
migration learning in cross-service fault diagnosis.

To provide a visually illustrative depiction of the proposed method’s performance,
Figure 11 presents the confusion matrix based on the CWRU dataset. The figure demon-
strates the model’s robust diagnostic proficiency across all categories of fault types.

Figure 11. Histograms of the comparative results in Table 3.

Figure 12. Confusion matrix by the proposed method on the CWRU dataset.
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Table 3. Accuracy and standard deviation of different methods on the CWEU dataset.

Evaluating
Indicator

TCA_
KNN

TCA_
GBDT

CORAL_
KNN

JDA_
KNN

BDA_
KNN

BDA_
SVM

BDA_
GBDT

DFCNN
DEEP

FEATURE-
KNN

CAE-
DTLN

1DRCAE

Mean
accuracy 0.776 0.431 0.256 0.820 0.985 0.974 0.536 0.674 0.704 0.963 0.954

std 0.017 0.116 0.013 0.058 0.014 0.018 0.088 0.036 0.043 0.021 0.024

4.2. Southeastern University Gearbox Dataset
4.2.1. Data Description

Bearing data were acquired from the drivetrain dynamics simulator (DDS), as depicted
in Figure 13.

 
Figure 13. Experimental setup for the gearbox dataset.

As depicted in Table 4, we investigated two distinct operational scenarios, wherein the
rotation speed-system load configurations were set to 20 Hz-0 V and 30 Hz-2 V, respectively.

Table 4. Bearing fault types description and data segmentation.

Class Fault Condition

Source1 Normal 20 HZ-0 V
Source2 Ball 20 HZ-0 V
Source3 Inner 20 HZ-0 V
Source4 Outer 20 HZ-0 V
Source5 Combination 20 HZ-0 V
Target1 Normal 30 HZ-2 V
Target2 Ball 30 HZ-2 V
Target3 Inner 30 HZ-2 V
Target4 Outer 30 HZ-2 V
Target5 Combination 30 HZ-2 V

4.2.2. Signal Pre-Processing

Figure 14 depicted the time and frequency-domain waveforms of bearing vibration
data across distinct health conditions: (1) for normal conditions, the data predominantly ex-
hibit smooth random waveforms characterized by minor amplitude fluctuations; and (2) as
illustrated in Figure 14, conspicuous burrs and irregular waveforms manifest in the data
linked to inner and outer ring failures, while such features are less noticeable in instances
of rolling element failures. The frequency domain waveforms reveal a predominant energy
concentration within the high frequency range (4, 6 kHz).
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Figure 14. Southeastern University data set visualization.

4.2.3. Signal Reconstruction and Feature Extraction

The convolutional autoencoder reconstructs input data by acquiring a condensed
representation and subsequently generating a reconstruction using this representation. The
primary objective of data reconstruction lies in distilling the most valuable information from
the input while minimizing noise and redundancy. The outcomes, illustrated in Figure 15,
demonstrate that the training of the autoencoder is highly efficacious. The reconstructed
signal adeptly emulates the original waveform, showcasing precise reconstruction.

 
Figure 15. Reconstructed data and original data on the Southeast University data set.

In a bid to bolster the persuasive efficacy, we additionally employ the t-sne algorithm
to visualize the implied features extracted by the CAE. Furthermore, to underscore the
indispensability of data pre-processing, we juxtaposed the feature distributions of the
original data samples with those of the FFT spectrum samples. The ensuing comparison
is depicted in Figure 16, wherein the feature distributions, reduced to both two and three
dimensions through t-sne, are showcased.

Derived from Figure 16, it becomes apparent that direct dimensionality reduction
applied to the original data resulted in a considerable overlap of features across all health
states. This outcome underscores the incapacity of the original data to unveil the inherent
patterns associated with fault types. On the other hand, feeding the raw data into the
CAE for feature extraction, within both two and three-dimensional spaces, reveals nascent
distinctions among various fault types. Nevertheless, the lingering challenge of feature
overlap remains unaddressed.
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Figure 16. Variation of the feature distribution of the raw data.

As illustrated in Figure 17, the FFT spectrum samples underwent feature extraction
within the CAE model, subsequently followed by t-sne visualization. This examination
revealed a commendable clustering effect within both two and three-dimensional spaces.
The comprehensive insights provided by Figure 15 underscore CAE’s adeptness in feature
extraction, facilitating the acquisition of the inherent characteristics associated with various
fault types. This visualization also underscores the essentiality of FFT pre-processing for
the samples. The resultant features, transformed through FFT and subsequently extracted
via the CAE, are henceforth denoted as “CAE features”.

+

 
Figure 17. FFT spectral feature distribution variation diagram.
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4.2.4. Feature Migration

To substantiate the excellence of the BDA algorithm, four migration learning method-
ologies TCA, JDA, CORAL, and BDA were employed for migrating CAE features and inves-
tigating the ensuing feature clustering phenomenon. This analysis is depicted in Figure 18.

 

Figure 18. Feature migration results of different migration algorithms.

Observing the figure, it becomes evident that TCA effectively migrates tag types
3 and 4, yet displayed limited efficacy in migrating other tag types. JDA likewise ex-
celed at migrating tag types 3 and 4, while demonstrating subpar performance for the
remaining categories. On the other hand, CORAL exhibited the least desirable migration
outcomes. BDA, conversely, delivered commendable performance across all tag types,
thereby conferring strong discriminability among them. Notably, BDA’s proficiency in
migrating features between the source and target domains underscores its remarkable
domain adaptation capabilities.

4.2.5. Fault Classification and Analysis

In alignment with the CWRU dataset, an identical algorithm was employed for com-
parison purposes. The experiment was replicated 10 times, with the average diagnostic
accuracy and standard deviation (STD) serving as the evaluation metrics. The outcomes
are visually depicted in Figure 19 and tabulated in Table 5.

As Table 5 and Figures 19 and 20 demonstrate, it is clear that the proposed BDA-KNN
method has achieved the highest mean accuracy and almost the lowest standard deviation.
In contrast, CORAL-KNN displayed the lowest standard deviation, but poor accuracy
performance. To sum up, these results underscore the superior performance of BDA-KNN.
Furthermore, it is noteworthy that the classification effectiveness significantly exceeds that
of the CORAL algorithm when employing BDA, TCA, and JDA migration algorithms.
This observation is consistent with the feature visualization presented in Figure 18. A
stronger clustering effect among source and target domain features corresponds to easier
fault diagnosis. Moreover, the majority of migration methods outperformed deep learning
algorithms such as DFCNN, CAE-DTLN, 1DRCAE, and DEEP FEATURE-KNN, which rely
solely on CAE depth features for diagnosis. This highlights the superiority of migration
learning in cross-service fault diagnosis.
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Figure 19. Histograms of the comparative results in Table 5.

Table 5. Accuracy and standard deviation of different methods on the Southeastern University
dataset.

Evaluating
Indicator

TCA_
KNN

TCA_
GBDT

CORAL_
KNN

JDA_
KNN

BDA_
KNN

BDA_
SVM

BDA_
GBDT

DFCNN
DEEP

FEATURE-
KNN

CAE-
DTLN

1DRCAE

Mean
accuracy 0.617 0.639 0.252 0.599 0.982 0.961 0.971 0.605 0.604 0.957 0.947

std 0.020 0.105 0.019 0.072 0.019 0.024 0.021 0.033 0.053 0.026 0.029

Figure 20. Confusion matrix by the proposed method on the Southeastern University dataset.

For a more visual portrayal of the diagnostic accuracy attributed to the suggested
approach, Figure 20 delineates the confusion matrix over the SEU dataset. The visualization
demonstrates the model’s adeptness in fault diagnosis across all fault types.
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In summary, the BDA-KNN method presented in this paper demonstrates a notably
high average accuracy and a minimal standard deviation when compared to alternative
approaches. Furthermore, this method exhibits remarkable migration results. Utilizing
BDA, it effectively combines labels of the same categories from the source and target data
sources while preserving the differentiation between distinct labels. This method effectively
mitigates data distribution disparities across diverse domains.

5. Conclusions

This article presents an unsupervised domain adaptive approach for the cross-condition
diagnosis of bearings. The methodology leverages convolutional auto-encoders (CAEs) to
extract intricate features from vibration signals, enabling the subsequent application of the
balancing domain adaptation (BDA) algorithm. This algorithm facilitates the unsupervised
migration of extracted features between the source and target domains, without necessitat-
ing target domain labeling. The BDA algorithm achieves this by intelligently weighing the
significance of inter-domain edge distribution and conditional distribution. Ultimately, the
diagnosis of rolling bearing faults across varied working conditions is achieved using the
K-nearest neighbor (KNN) algorithm. To validate the methodology’s efficacy, changes in
data distribution during feature extraction and migration were reproduced through the
utilization of the t-SNE technique, which further verified the heightened diagnostic prowess
of the proposed approach. Furthermore, the performance of the approach was validated
across diverse datasets, with the ensuing experimental results concretely confirming the
effectiveness and superiority of the method.

Nevertheless, considering that domain adaptation methods are often sensitive to
disparities in data distribution, the methods introduced in this paper possessed certain
limitations. The domain adaptation approach proposed in this paper was grounded on
the assumption of distinct operational circumstances for the same equipment, exhibiting
commendable generalization and resilience in the face of varied working conditions for the
same equipment. However, there remains a considerable scope for enhancing the model’s
efficacy in adapting between different devices. Consequently, our future endeavors will be
centered on bolstering the generalization capacity and robustness of domain adaptation
across diverse devices.
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Nomenclature
AE autoencoder
BDA balanced distribution adaption
CNN convolutional neural network
DFT discrete Fourier transform
FFT fast Fourier transform
GAN generative adversarial network
KNN K-nearest neighbor
MMD maximum mean discrepancy
T-SNE T-distributed stochastic neighbor embedding
DS source domain space

155



Lubricants 2023, 11, 383

Dt target domain space
X(k) spectral function
X̂ output of decoder
lAE reconstruction error
p(x) marginal distribution
p(y|x) conditional distribution
μ balance factor
κ regenerative kernel Hilbert space
H central matrix
I unit matrix
A transformation matrix
φ Lagrangian operator
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Abstract: Condition monitoring of technical systems has increasing importance for the reduction of
downtimes based on unplanned breakdowns. Rolling bearings are a central component of machines
because they often support energy-transmitting elements like shafts and spur gears. Bearing damages
lead to a high number of machine breakdowns; thus, observing these has the potential to reduce
unplanned downtimes. The observation of bearings is challenging since their behavior in operation
cannot be investigated directly. A common solution for this task is the measurement of vibration or
component temperature, which is able to show an already occurred bearing damage. Measuring the
electrical bearing impedance in situ has the ability to gather information about bearing revolution
speed and bearing loads. Additionally, measuring the impedance allows for the detection and
localization of damages in the bearing, as early research has shown. In this paper, the impedance
signal of five fatigue tests is investigated using individual feature selection. Additionally, the feature
behavior is analyzed and explained. It is shown that the three different bearing operational time
phases can be distinguished via the analysis of impedance signal features. Furthermore, some of the
features show a significant change in behavior prior to the occurrence of initial damages before the
vibration signals of the test rig vary from a normal state.

Keywords: condition monitoring; rolling bearing; feature engineering; damage early detection;
electrical impedance measurement

1. Introduction

Fault-based breakdowns of rotating machinery reduce the reliability, security, and
availability of machines [1]. Thus, detecting abnormalities becomes more important to
reduce unplanned downtimes. Rolling bearings are one of the most reliable machine
elements and are used in a wide range of different rotating machines [2]. They are located
in the flux of forces, which means that all changes or harmful abnormalities in rotating
machines’ behavior interfere with them. Because of that, nearly 20% of all machine failures
are based on rolling bearing damages [3]. Monitoring the bearing condition can reduce
unplanned downtimes and increase the availability of technical systems. This kind of
condition monitoring is the basis for condition-based maintenance or so-called predictive
maintenance [2].

The aim of predictive maintenance is to forecast a machine breakdown using condition
monitoring and to fulfill necessary maintenance steps at an optimum time slot [2]. A
fundamental step for condition monitoring is the detection of failures and the classification
of machine element conditions [1,2]. The data acquisition using sensors and sensor systems
is essential for different observed parameters to receive information about the monitored
system [1].

Early research at the Institute for product development and machine elements shows
the applicability of ball bearings as sensors for an in situ load and failure monitoring [4].
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This concept uses the electric properties of rolling bearings to calculate the bearing load
and gather information about the bearings’ condition and operational state [4]. Martin
et al. show that the electric impedance signal changes over the lifespan of a ball bearing,
and three different phases in the bearing life are distinguished. The occurrence of surface
damage is observed in the real and imaginary parts of the impedance signal. Furthermore,
it is possible to localize the damage and measure its length by analyzing the impedance
data using the characteristic ball-bearing frequencies [5,6]. Maruyama et al. show that
measuring the impedance can monitor the lubrication condition [7]. All this displays the
opportunities of the electric impedance measurement for ball bearings, which are further
investigated in this paper by analyzing the impedance signal itself and features calculated
from it to describe the rolling bearing life span.

1.1. Condition Monitoring Using Vibration Data

A common solution for condition monitoring in rolling bearings is measuring the
vibration signals resulting from normal and abnormal behavior of the observed components.
In the case of pitting, vibrations occur when the damage already harms the surfaces of the
contact partners. Overrolling surface damage in the bearing runways or rolling elements
leads to a pulse excitation, which is intensified by the elastic material behavior of the
components. The resulting vibrations are transferred to the sensor through the structural
components, where these are detected and sent to analyzing systems. The signals are
prepared for further investigations in the time domain, frequency domain, and time-
frequency domain. These data are the basis for receiving information about the system
condition and prediction of the remaining operational time [1–3].

In order to predict the remaining life of the bearing, machine learning methods like
feature engineering and regression models are used [1,8,9]. The sensors providing the nec-
essary data are not located directly at the monitored component, which is why their signals
are a combination of source effects like damages in the bearing runway and transmission
path effects influenced by the structural components and their interference [1–3]. This can
be a disadvantage because the affectation of the signals can be found in the data used for
the machine learning techniques, which leads to uncertainties in the models. Therefore, in-
terfering signals have to be minimized by filtering and other mathematical operation [1,8,9],
increasing the complexity of the algorithms. Furthermore, information from the point of
interest about the condition of the monitored machine elements is missing.

The impedance is frequency-dependent, which is why it can be investigated in the
time and frequency domain [5,6,10]. Since many signal features for vibration data in the
time and frequency domain are already commonly used for condition monitoring [1,2,8,9],
these existing features will be used for individual feature selection as a feature engineering
method in this work.

1.2. Feature Engineering

A feature is a mathematical quantity that describes the attributes and characteristics
of a measurement signal. Features are created to decrease the amount of data and to
create robust predictors of a specific characteristic of interest [11]. The process of feature
engineering is used to create meaningful features with the highest possible quality of
information concerning the desired characteristic. Features quantify certain characteristics
of a signal. Prominent examples of such features are the mean value and the standard
deviation of a set of measurements. Features derived from the time domain describe the
temporal behavior of the measurand. Additional features are derived from the frequency
domain. It is, therefore, necessary to calculate the frequency spectrum of the impedance
signal by applying a discrete Fourier transform. [3]

Feature engineering involves the following steps: First, the measurement signal is
preprocessed. Preprocessing the signal enables the reduction of errors such as background
noise and errors in the measurement setup [1]. The resulting signal is used to generate
features. This can be accomplished by calculating statistical measures like the standard
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deviation of the signal or by using mathematical methods such as Fourier transform before
applying mathematical operations. After generating multiple features, the results are
compared to each other to find the features with the most significance regarding the desired
information or characteristic. Ranking the individual features according to a specified
criterion to select the most valuable ones is called individual feature selection. The criterion
quantifies the relevance of each feature [12].

Feature engineering is an important part of further signal-analyzing steps. To fulfill
tasks like condition classification and early damage detection, features need to be generated
and implemented in machine learning algorithms [1–3].

1.3. Electric Behavior of Rolling Bearings

In an electric circuit, ball bearings show capacitor-like behavior since the electrically
conductive components are separated by electrically isolating lubrication films. Depending
on the lubrication film thickness, three different electric behaviors are observed and mod-
eled as an equivalent circuit. These behaviors can be modeled in the following way. The
Hertzian contact zone is described as a plate capacitor, which is illustrated in Figure 1, so
the capacity in the elastohydrodynamic (EHL) contact can be calculated using the capacitor
equation [10]:

CHz = εrε0
AHz
h0

, (1)

where AHz is the Hertzian contact area, h0 the central lubrication film thickness in the EHL
contact, and εrε0 the permittivity of the lubricant.

Figure 1. Electric model of the EHL contact in a ball bearing [13].

Gemeinder and Barz enhance the model by initiating a factor kr considering the
influence of the border zone [14,15]:

CHz = krεrε0
AHz
h0

. (2)

Schirra shows that the factor kr is not constant, and Puchtler et al. considered the
influence of the unloaded rolling elements in the model [13,16].

The description of the EHL contact as a plate capacitor is only possible when a sep-
arating lubrication film exists. In the case of dry friction, direct metallic contact between
the rolling elements and the runways leads to a resistive behavior, which means that this
condition can be understood as ohmic resistance. An intermediate state can be observed
when the lubricant separates the rolling elements and the runway completely so that metal-
lic contacts are avoided. It can be described as an ohmic resistance in parallel connection to
a plate capacitor. When the lubrication film is not thick enough, harmful EDM currents
occur, damaging the surfaces. This needs to be avoided for sensory usage of the impedance
measurement method. Figure 2 gives an overview of the three conditions [10,17–19].

In the case of a sufficiently thick lubrication film, the contact can be modeled as a plate
capacitor, whose plate thickness is the lubrication film thickness and whose plate area is the
Hertzian area, cf. Figure 1. Film thickness and Hertzian area, and thus also the capacitance,
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depend on the load. In this study, the complex impedance is measured, which reflects the
entire electric behavior of the bearing, including resistive and capacitive terms. In the case
of capacitive behavior, the phase angle tends to −90◦, which can be used as an indicator for
lubrication conditions. For phase angles of about 0◦, an ohmic behavior can be observed,
and metallic contacts occur [15,18,19].

 

Figure 2. Electric model of the EHL contact as a function of the lubrication film thickness [6].

Because of the usage of the electric properties of rolling element bearings, hybrid
bearings, or full ceramic bearings applied in, e.g., electric machinery, cannot be observed
using the impedance due to the missing electrical conductivity. For these bearings, classic
monitoring approaches have to be used and optimized using feature engineering and other
techniques [20,21].

1.4. Research Design

The aim of this work is the further investigation of rolling bearing impedance data
from five fatigue tests generated by Martin et al., which already showed the possibility
of impedance measurement for rolling bearing observation [5,6]. In their research, only
the parameters listed in Table 1 are analyzed, but no additional features were identified
or investigated [5,6]. To further identify and analyze additional features is the aim of
this contribution. The identified features will build the fundamentals for explainable
machine learning algorithms as part of future research. Because impedance measurement
for condition monitoring is a new approach in this field, it must be clarified whether the
generated signals are appropriate for use in machine learning algorithms like classifiers.
Therefore, the focus of this work is to first investigate the opportunities of impedance-based
data for condition detection.

Table 1. Signals calculated from the measured complex impedance signal.

Description Formula Unit

Real part (effective resistance) R = Re(Z) Ω
Imaginary part (reactance) XLC = Im(Z) Ω

Absolute value (apparent resistance) Z =
√

R2 + X2
LC

Ω

Phase angle ϕ = arctan
(

XLC
R

)
rad

To do so, the impedance signals by Martin et al. are filtered and preprocessed to
remove outliers. Based on the state of research for condition monitoring using vibration
data, time and frequency domain features are calculated from the impedance data and are
analyzed. The suitability of these new features will be checked using a normalized label
over the operational lifetime of the rolling bearings. A phenomenological explanation of
the feature behavior will be provided afterward. The results of the analysis are compared
to a different impedance measurement approach with different types of rolling bearings
in a validation fatigue test to obtain an indication of a possible generality of the extracted
signal information.
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2. Materials and Methods

In this section, the used impedance measurement methods and the test rig are pre-
sented. After that, the test parameters are introduced.

2.1. Impedance Measurement Methods

Martin et al. used a voltage divider to detect the impedance [5]. The equivalent circuit
is shown in Figure 3.

Figure 3. Equivalent circuit of the voltage divider for impedance measurement following [5].

The voltage of the generator and the voltage over the reference impedance are detected.
Therefore, the capacity of isolation of the test rig is measured and applied as a reference. In
the used configuration, two rolling bearings are observed simultaneously. The impedance
is calculated from the known capacity and the measured voltages using the following
equations [6]:

ZBearing,1 =

(
UG

Uiso, 1
− 1
)
· 1
jωCiso,1

, (3)

ZBearing,2 =

(
UG

Uiso, 2
− 1
)
· 1
jωCiso,2

, (4)

where ZBearing,i is the complex rolling bearing impedance, UG is the measured generator
voltage, Uiso, i is the measured voltage over the isolation, and Ciso, i is the known capacitance
of the isolation. The capacitances of the isolations are measured as Ciso,1 = 2.2 nF and
Ciso,2 = 2.6 nF. The carrier signal frequency is set to 2.5 MHz, and the sampling rate is
50 MHz. The voltage amplitude is ÛG = 2.5 V [6].

The real part of the measured impedance signals is negative [5,6]. The authors
explained this phenomenon as a calculation error because the isolations are assumed
ideal. Modeling the isolations as not ideal turns the results into positive real parts,
but they were not analyzed further to measure their real behavior [6], which leads to
measurement uncertainties.

To avoid these uncertainties, another impedance measurement method has been
applied to generate the validation test data. It is based on measurement bridges, using an
alternating current as a carrier signal and gauged capacitors for the reference impedance.
Figure 4 shows the equivalent circuit.

 

Figure 4. Equivalent circuit of the alternating current measurement bridge for impedance measurement.
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The impedance of the bearings in the parallel connection ZBearing is calculated using
the following equation:

ZBearing = Z1
Z3ZM + [(Z2 + Z3)ZM + Z2Z3]

UM
U0

Z2ZM − [(Z2 + Z3)(ZM + Z1) + 1]UM
U0

. (5)

The reference impedance of the capacitors is tagged as Z1, Z2, and Z3. The generator
voltage is U0 and the voltage at the oscilloscope is UM. The resistance of the oscilloscope
is ZM. An open-short adjustment has been implemented to consider the influence of the
measurement lead. To reduce parasitic effects, the carrier signal frequency is set to 25 kHz.
The voltage amplitude is identical to the voltage divider. The sampling rate is set to 1 MHz.

This measurement approach has not been used before to detect rolling bearing
impedance in fatigue tests. So, an important aspect is if the signals and features of the
signals show the same behavior over the bearing operational time. This question will be
addressed in this paper.

2.2. Test Rig and Impedance Measurement

All experiments are performed at the rolling bearing test rig of the Institute for product
development and machine elements of the Technical University of Darmstadt. It contains
four separate test chambers. In each chamber, four rolling bearings are located for observa-
tion. The test bench monitors the vibration, the temperature at every bearing, the motor
torque, the revolution speed, and the lubricant temperature. Figure 5 shows one of the rig’s
test chambers. The test bench has an adjustable recirculating oil-lubrication system for each
test chamber so that different lubrication conditions can be investigated.

Figure 5. Test chamber of the bearing test rig.

The four bearings in a chamber are placed on the same shaft, which is electrically
contacted using a slip ring. The bearing seats consist of two parts, separated by an insulating
ceramic layer. A contact pin bypasses the insulation of the electrically observed test bearings.
Within one of the chambers, two of the four bearings are investigated using impedance
measurement methods. The exact configuration for the performed fatigue tests can be
read in Martin et al. [5], which is also applied to the new measurement approach tested
here for a better comparison. The bearings can be loaded with radial and axial forces by
hydraulic actuators.

2.3. Design and Procedure of the Fatigue Tests

The individual feature selection procedure is applied to the data measured in five
fatigue tests using the measurement method by Martin. The investigated bearings are
angular contact ball bearings of the type 7205B-XL-TVP manufactured by FAG. These tests
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were executed as part of earlier research at the Institute [6]. For validation purposes, another
fatigue test is performed using the alternating current measurement bridge. Therefore,
radial ball bearings of the type 6205-C-C3 from the manufacturer SKF are used and stressed
under different conditions. A comparison of the bearing loads and test conditions of
both measurement setups is displayed in Table 2. As mentioned before, a comparison of
the impedance signals of both measurement methods is planned to obtain information
about the quality of impedance signals for condition monitoring. All tests run under
full lubrication, so the EHL contact and the capacitive electrical behavior in a normal
operational stage can be ensured.

Table 2. Test conditions of the two varying measurement setups.

Test Parameter Investigation Tests [6] Validation Test

Radial load 3000 N 7884 N
Axial load 28, 000 N 3390 N

Dynamic safety 0.95 1.92
Speed 4000 min−1 5000 min−1

Oil temperature 30 ◦C 60 ◦C
Time between impedance measurements 1 min 2 min
Length of each impedance measurement 1.34 s 1.5 s

Carrier signal frequency 2.5 MHz 20 kHz
Carrier signal amplitude 5 V peak to peak 5 V peak to peak

Sampling rate 50 MHz 1 MHz

2.4. Preprocessing and Feature Generation

First, the measured impedance data are preprocessed. Four time signals are directly
calculated from the measured complex impedance signal, namely the real and imaginary
parts and the absolute value and phase angle (see Table 1).

These four signals are further processed. Outliers are removed using a Hampel filter,
whose mathematical explanation is described in [22]. A noise filter reduces noise due to
the measurement setup and environmental influences. Using wavelets for noise filtering
is especially effective when reducing noise while preserving abrupt changes with high-
frequency components of the signal [23]. The impedance signal of a damaged rolling
bearing is characterized by abruptly occurring peaks in the real and imaginary parts [5].
Therefore, preserving the high-frequency components of the signal is of high importance,
which is why a wavelet filter is applied for noise reduction. To prevent misleading signal
interpretation due to errors in the measurement setup, the mean value is removed. For this
purpose, the mean value of the impedance signal in the run-in stage is subtracted from the
signal itself.

In the following step, features are generated. They are derived from the time and
frequency domain. For frequency domain features, it is necessary to calculate the frequency
spectrum of the impedance signal by applying a discrete Fourier transform. For this
purpose, a fast Fourier transform is used [3]. Compared to the time domain signal, the
frequency spectrum often contains further information about the signal’s properties [24]. In
condition monitoring of rolling bearings, the frequency spectrum is particularly important
for identifying the location and cause of the initial damage [6,24].

The process of feature generation is established in the field of condition monitoring
of ball bearings using the vibration signal. Just like the impedance signal, the vibration
signal of a damaged bearing is characterized by periodically occurring peaks during the
rollover of the initial damage [1]. Due to this analogy, the state of the art of vibration signal
feature engineering is applied to the impedance signal. The generated features listed in
Table 3 are taken from studies dealing with vibration signals of rolling bearings [1,25,26].
The features of measurement are calculated for each of the four signals derived from
the measured complex impedance signal. In total, this leads to 128 features for each
impedance measurement.
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Table 3. Features derived from the time and frequency domains.

Number Formula Number Formula

T1 Tm = ∑N
i=1 x(i)

N
F1 W1 = Wm f =

∑K
k=1 s(k)

K

T2 Troot =

(
∑N

i=1

√
|x(i)|

N

)2
F2 W2 = ∑K

k=1(s(k)−W1)
2

K−1

T3 Trms =

√
∑N

i=1(x(i))2

N
F3 W3 = ∑K

k=1(s(k)−W1)
3

K·(√W2)
3

T4 Tmax = max|x(i)| F4 W4 = ∑K
k=1(s(k)−W1)

4

K·W2
2

T5 Tsd =

√
∑N

i=1(x(i)−Tm)
2

N−1
F5 W5 = Wf c =

∑K
k=1( f (k)·s(k))

∑K
k=1 s(k)

T6 Tskewness =
∑N

i=1(x(i)−Tm)
3

(N−1)·T3
sd

F6 W6 =

√
∑K

k=1 ( f (k)−W5)
2·s(k)

K

T7 Tkurtosis =
∑N

i=1(x(i)−Tm)
4

(N−1)·T4
sd

F7 W7 = Wrms f =

√
∑K

k=1( f (k)2·s(k))
∑K

k=1 s(k)

T8 Tcrest =
Tmax
Trms

F8 W8 =

√
∑K

k=1( f (k)4·s(k))
∑K

k=1( f (k)2·s(k))

T9 Tclearance =
Tmax
Troot

F9 W9 =
∑K

k=1( f (k)2·s(k))√
∑K

k=1 s(k)·∑K
k=1( f (k)4·s(k))

T10 Tshape =
Trms

1
N ·∑N

i=1|x(i)|
F10 W10 = W6

W5

T11 Timpulse =
Tmax

1
N · N

∑
i=1

|x(i)|
F11 W11 =

∑K
k=1(( f (k)−W5)

3·s(k))
K·W3

6

T12 Tpp = max(x(i))− min(x(i)) F12 W12 =
∑K

k=1(( f (k)−W5)
4·s(k))

K·W4
6

T13 Tvar =
1
N ·∑N

i=1(x(i)− Tm)
2 F13

W13 =
∑K

k=1

(
| f (k)−W5|

1
2 ·s(k)

)
K·√W6

T14 Tmin = min(x(i)) F14 W14 =

√
∑K

k=1(( f (k)−W5)
2·s(k))

∑K
k=1 s(k)

T15 Twave =

√
1
N ·∑N

i=1|x(i)|2
1
N ·∑N

i=1|x(i)|
F15 W15 = max|s(k)|

T16 Tpeak = Tmax√
1
N ·∑N

i=1(x(i))2

T17

TLI =

∑N
i=1

√
(x(ti + Δts)− x(ti))

2 + Δt2
s

≈ ∑N
i=1|x(ti + Δts)− x(ti)|

with sampling period Δts

The time series with i = 1, 2, 3, . . . , N is x(i) while s(k) is a frequency spectrum with
k = 1, 2, 3, . . . , K. K is the total number of spectral lines in the spectrum, and f (k) is the
frequency value of the k-th spectral line.

Figure 6 summarizes the elaborated steps to derive features from the measured com-
plex impedance signal.

Figure 6. Preprocessing and feature generation process.
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2.5. Individual-Feature Selection

The suitability of these generated features for use in condition monitoring is assessed.
Therefore, individual-feature selection is applied. This method ranks the features based on
a specific criterion [12]. In this case, the criterion is supposed to quantify the ability of a
feature to draw conclusions about the condition of the observed rolling bearing.

The conditions of the dynamically stressed bearing are calculated by assuming the
hypothesis of linear damage accumulation. Accordingly, the total damage is calculated by
summing up the damage portions qi of each cycle [27]. For the calculation of these damage
portions, the duration of the load level ti and the basic rating life L10h are divided as shown
in formula 3.1 [28].

qi =
hi

NSSZ,i
=

ti

L10h ·60 min
h ·60 s

min
. (6)

The basic rating life is calculated by the speed nrpm of the bearing, its dynamic
load capacity C, and life exponent p, as well as the dynamic equivalent load P (see
formula 3.2) [29,30]. The dynamic equivalent load depends on the rolling bearing ge-
ometry and the radial and axial loads [29]. The test rig records the loads and speed of the
bearing during the fatigue tests.

L10h =
106

60 min
h ·nrpm

·
(

C
P

)p
. (7)

The total damage of the bearing can be calculated for the time of each impedance
measurement using the recorded operational parameters. The time of initial damage
detection of the five fatigue tests scatters a lot. As a result, the total damage of the bearings
at the end of the tests differs widely. To obtain a universal measure for the bearing
condition, a min-max scaling algorithm normalizes the total accumulated damage (see
formula 3.3 [31]). This leads to the normalized accumulated damage, which rises from zero
to one during a fatigue test.

D∗(m) =
D(m)− Dmin
Dmax − Dmin

. (8)

The criterion for the individual-feature-selection process expresses the relationship
between a considered feature and the normalized accumulated damage. This relationship
can be quantified by their correlation coefficient [32]. The correlation coefficient, according
to Bravais–Pearson, is used to find the strength of the linear relationship between two
variables [33]. To consider monotonic, nonlinear relationships, the correlation coefficient,
according to Spearman, is used [33]. Features with high correlation coefficients with
normalized accumulated damage are considered probable indicators of bearing damage.
After calculating the correlation coefficients, each feature is ranked according to its Bravais–
Pearson and Spearman correlation coefficient. The final ranking of features is achieved by
considering the average rank of a feature resulting from the two mentioned criteria.

The individual feature selection is performed twice at different time intervals. Firstly,
all measured data are taken into consideration; thus, the whole lifespan of the tested
bearing is observed. Secondly, the last hour before initial damage detection by the test rig is
exclusively studied. This enables the observation of the behavior of a feature before initial
damage without the influence of the pre-run-in stage. This is of high interest because this
stage shows similar effects in the impedance signal to the impedance signal after the initial
damage [6].

3. Results

The resulting correlation coefficients of each feature with the label, sorted by their rank
in the respective ranking, are displayed in Figure 7. A group of features characterizes the
resulting distribution with high correlation coefficients compared to the remaining features.
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Since the ten highest-ranked features stand out with a particularly high correlation in both
rankings, these features are considered for further investigation.

Figure 7. Correlation coefficients of each feature with the label.

The features that appear in both of the chosen subsets are ranked according to their
average rank, as described in the previous chapter. The resulting three highest-ranked
features are shown in Table 4. Since the procedure has been applied at two different time
intervals, two rankings are depicted.

Table 4. Ranking of individual features.

Rank Whole Lifespan Last Hour

1. Feature 88: RMS frequency (F7) of the absolute value Feature 102: skewness (T6) of the phase angle
2. Feature 56: RMS frequency (F7) of the imaginary part Feature 60: skewness of the frequencies (F11) of the imaginary part
3. Feature 86: central frequency (F5) of the absolute value Feature 92: skewness of the frequencies (F11) of the absolute value

3.1. Description of Individual Features

In the following chapter, the top-ranked features listed in Table 4 are plotted and
described in detail. The observations are further explored in Section 4.

First, the features considering the whole lifespan of the tested bearings are examined.
The three highest-ranked features are correlated with each other. Their Bravais–Pearson
correlation coefficients are greater than r = 0.98, with a deviation of approximately ±0.009
according to the 95% confidence interval. Thus, only the feature on rank one, namely the
root-mean-square (RMS) frequency of the absolute value of the impedance, is representa-
tively examined. The normalized value of this feature over the label is displayed in Figure 8.
The feature measurement series of the five fatigue tests using the measurement setup by
Martin are depicted in different colors. Three intervals are shown to allow a closer view of
the features in the first and last hour of the fatigue test.

Figure 8. RMS frequency of the absolute value of the impedance.
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The behavior of this feature is described in the following paragraph. Starting at a low
level in the pro-run-in stage, the feature value increases until shortly before the end of the
test. In all fatigue tests, a strong decline of the feature from the last 2 to 45 min before the
end of the test is observed. The described three phases across the bearing lifespan are not
clearly separated but rather connected to each other by a transition of the feature value.
This behavior can be seen most prominently at bearing two.

In Figure 8, some noticeable abnormalities and characteristics are addressed in the
following and explained in Section 4. At the beginning of the test, the feature values of the
different tests seem to rise at a different pace. Also, there are visible gaps in the graphs, like
at bearing 2 in the range of the normalized damage from 0.35 to 0.48 and at bearing 4 from
0.28 to 0.35. Another abnormality can be seen at bearing 3 at approximately D∗ ≈ 0.18 and
at bearing 4 at D∗ ≈ 0.86. There, the features suddenly jump to a new level on which they
remain for a while.

Now the features, seen as a probable indicator of bearing damage, considering the last
hour before the end of the fatigue test, are described. First, the skewness of the phase angle
of the impedance is shown in Figure 9.

Figure 9. Skewness of the phase angle of the impedance.

At the beginning of the tests, high peaks and noisy behavior are observed. Next, the
feature declines to a lower level and significantly less noise. At the fatigue test end, the
feature abruptly rises significantly. Again, this feature description indicates three phases of
different feature behavior with gradual transitions in between.

The features bearing 2 and 3, considering the last hour of the test, show the same
behavior, which is confirmed by the Bravais–Pearson correlation coefficient of r = 0.99
with a deviation of approximately ±0.014 according to the 95% confidence interval. So,
only describing the feature on rank two, shown in Figure 10, is sufficient.

The skewness of the frequency values is weighed by the amplitudes of the correspond-
ing frequencies, as shown in Table 3. In the beginning, the fatigue tests show a different
behavior. Thus, one can see a significant rise in the feature at the beginning to different
levels for all test results. For the rest of the fatigue test, the feature declines steadily. A
roughly linear behavior can be observed. The absolute values vary significantly.
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Figure 10. Skewness of the frequency values imaginary part of the impedance.

3.2. Validation Fatigue Tests

The results are validated by analyzing the validation fatigue test with the alternating
current measurement bridge and different test setup parameters, as described in Section 2.3.
Special attention should be drawn to the deviating time between measurements, which is
two minutes. At this fatigue test, none of the test bearings but one of the support bearings
failed. This support bearing is insulated electrically by ceramic rolling elements, thus not
directly influencing the measured impedance. After initial damage detection by the test rig,
the test was continued for another 60 min to obtain a higher number of measurements of
the damaged bearing. The bearings were not disassembled during the entire test to exclude
any fault effect. The features from Table 4 are now shown for the validation test.

In the first considered interval, the whole lifespan, the first two features again have a
very high correlation of 0.9995, so, just the highest ranked feature is shown in the following
graph in Figure 11.

Figure 11. RMS frequency of the absolute value of the impedance (validation test).
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The feature behavior corresponds to the behavior previously observed at the fatigue
tests by Martin. It starts at a low level, inclines steadily, and suddenly declines at the initial
pitting damage. In particular, the decline is clearly visible and very strong. It is particularly
interesting that the feature only declines after initial damage detection, whereas in Figure 8,
the feature showed abnormalities before the initial damage detection by the test rig. With
the continuing load in the validation test, even after initial damage detection, the feature
drops way below the level of the pre-run-in stage.

In contrast to the previous features, rank three only possesses a correlation coefficient of
r ≈ 0.65 with ranks one and two, making it necessary to examine this rank additionally. The
central frequency of the absolute value of the impedance is depicted in Figure 12. Looking
closer at this feature, the difference in the feature’s behavior using the measurement setup
by Martin becomes obvious: The feature behaves differently in the pre-run-in stage. At
the test beginning, the feature is located on the highest level, declines to a lower level in
standard operation, and finally drops after initial damage. With this behavior, the feature
possibly enables the distinction of run-in and damaged phase using the measurement
bridge method. This makes the feature possibly feasible for a distinction between the three
bearing life phases that could be observed in the previous chapter.

Figure 12. Central frequency of the absolute value of the impedance (validation test).

Looking at the highest-ranked features considering the last hour of the fatigue test,
the same phenomena as in the already described measurement series are observed. Never-
theless, the significant indications of bearing damage are again only visible after the initial
damage detection and not in advance. The feature on rank one is shown in Figure 13 and
confirms the expected feature behavior. Just as in the previous chapter, three phases are
clearly visible in the feature behavior.

The features of bearings 2 and 3 again show a very high correlation, and rank two can
be seen in Figure 14. The feature again rises at the beginning of the test and declines with
further damage progression. However, the decline is much noisier than in Figure 10 and
does not show a linear behavior. A significant decrease in the feature can be observed after
initial damage detection.
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Figure 13. Skewness of the phase angle of the impedance (validation test).

Figure 14. Skewness of the frequency values imaginary part of the impedance (validation test).

3.3. Comparison to Vibration Signals

The vibration signals are automatically recorded by the test rig, and the introduced
features of the impedance signals are compared in terms of their suitability as an indicator
of rolling bearing damage. The vibration data of bearing 5 show a significant increase
in amplitude three minutes prior to the end of the fatigue test. The other tests show a
significant increase only 30 s before the test ends (see Figure 15).

In contrast, the most significant features (rank one in each time interval) show a
conspicuous behavior way before the vibration signal. As illustrated in Figure 15, initial
damage can be recognized by a decrease in the RMS frequency of the absolute value of the
impedance. Most bearings show that effect in the last two minutes before the test ends.
Bearing 5 shows a significant decrease three minutes before the test ends, and bearing 2,
even 40 min before the initial damage detection and test are stopped by the test rig.
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Figure 15. Vibration signals and impedance features in the last 60 min of the fatigue tests.

Likewise, the skewness of the phase angle enables early damage detection. This feature
shows an increase in amplitude before the breakdown. Again, the noticeable behavior is
seen at bearing 2 40 min before the test ends. Also, bearing 1 shows an increase in feature
amplitude nine minutes before the end and bearing 5 more than 45 min before the end of the
experiment. The difference in the behavior of the two features regarding damage detection
may be affected by different causes, types, or progression of the detected bearing damage.

All in all, the features enable a detection of the bearing damage prior to the vibration
signal. Especially the combination of multiple features could be useful to exploit the full
potential of the different features for the detection of certain types of bearing damage.
Nevertheless, further development of the signal measurement setup and signal processing
should be considered to improve the accuracy of damage detection.

4. Discussion

In this section, the results of Section 3 will be interpreted and discussed. The vali-
dation is carried out on independent data sets not included in the previously gathered
data. Afterward, the results of the validation test will be compared to the results of the
investigation tests. In the end, the time gap between the vibration data and impedance
features will be explained.

4.1. Phenomenological Explanation

The behavior of the individual features observed in the sections before is interpreted
in the following. Along with it, phenomenological explanations of the feature’s signifi-
cance and characteristics are given while taking the available knowledge of the electrical
properties of lubricated rolling bearings into account. The explanatory approaches in this
chapter obtain a relation between electrical and tribological phenomena to the observed
feature behaviors.

Table 4 shows different high-ranked features when looking at the last hour of the
fatigue test compared to the whole bearing lifespan. In conclusion, some features are
especially significant in the time interval shortly before initial damage, while others possess
more information about the damage progression over the whole bearing life. This expla-
nation is plausible since the pre-run-in stage shows similar behavior to the signal before
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initial damage [6]. Consequently, features that are significant in the last hour of the test
may not be significant over the whole lifespan due to the influence of the pre-run-in stage.

From the individual features, the RMS frequency in the spectrum of the absolute
value of the measured impedance is interpreted first. According to the chosen criterion, it
is the most significant feature regarding overall extracted data during the whole fatigue
test. It correlates strongly with the RMS frequency in the imaginary part and the central
frequency of the absolute impedance value. Thus, there seem to be phenomena underlying
these features that cause their highly similar behavior. This assumption is enforced by the
observation of previous investigations that show similar effects in the real and imaginary
parts of the bearing impedance when it comes to damage progression [5]. In the following,
an approach to explain the characteristic behavior of that feature is introduced.

In the pre-run-in stage, the roughness of the bearings’ running surfaces is high; the
contact of roughness peaks results in high noise of the impedance signal. The noise often
appears with amplitudes of similar magnitude [5]. These seemingly periodically occurring
effects lead to low frequencies in the frequency spectrum of the impedance measurement
(rough dimension of 1–10 kHz). In the frequency spectrum of impedance measurements
in the pre-run-in stage, there are high amplitudes of these frequencies observable (see
frequency spectrum at D∗ = 0 in Figure 16). The same effect is seen in the spectrums of the
other tested bearings, too.

 

Figure 16. Waterfall diagram of the absolute impedance value of bearing 5.

In the run-in stage, the surface roughness peaks are smoothened, resulting in fewer
electrical breakdowns and less noise in the impedance signal. The low frequencies, induced
by the high surface roughness, are no longer present, which leads to a higher central and
RMS frequency according to the corresponding formula (see Table 3). In Figure 16, this is
visible in the decline of amplitudes of the low frequencies with progressing total damage.

The bearing failure due to pitting starts with a crack underneath the contact surface [34].
During the rollover of this beginning bearing damage, impulses in the real and imaginary
parts of the impedance signal can occur, similar to those in the pre-run-in stage [5]. These
can be caused by the temporary breakdown of the isolating lubricant film during damage
rollover. These impulses could again lead to low frequencies in the spectrum. This effect can
be observed in Figure 16 in the spectrum right before initial damage detection at D∗ ≈ 1.
This again causes a decline in the RMS frequency and the other investigated features,
explaining the described behavior before the initial damage detection by the test rig.

Now, after interpreting the rough trend of these features, the described abnormalities
in the graphs are addressed as well. The seemingly different paces at which the features
rise in the different fatigue tests originate in an approximately constant run-in duration
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and differing fatigue test times. As a result, the duration of the pre-run-in stage relative to
the fatigue test time correlates to the fatigue test time itself, leading to the described effect.
Visible gaps in the graphs are caused by a temporary failure of the impedance measurement
system. For the duration of the gap, no impedance measurements exist, while the bearing
has been damaged continuously, which is captured by the test rig and considered with
the calculation of the normalized total damage. Sudden jumps of the feature are caused
by a stop of the test rig, including the disassembly of the test rig. These disassembly
processes are necessary in order to exchange the failed test bearing and unavoidably lead to
inaccuracies in the impedance measurements of the second test bearing. To avoid this effect
in future experiments, disassembly during tests should be avoided. This can be achieved
by exchanging both test bearings after a detected bearing damage instead of exchanging
only the damaged one.

Next, the most significant feature in the last hour before initial damage detection is
explained, which is named the skewness of the phase angle of the impedance signal in
the time domain. The high skewness at the beginning can be seen as an indicator of the
pre-run-in stage since the duration of the high skewness shows the same effects as the
duration of the pre-run-in stage described in the previous paragraph.

Before the end of the fatigue test, the skewness again shows distinctly higher val-
ues. The high feature values in both the pre-run-in and damaged phase can be phe-
nomenologically explained: A positively skewed distribution describes a graph as shown
in Figure 17 [33].

Figure 17. Distribution with positive skewness [35].

In the impedance measurement, the steep rise at the left side of the distribution is
caused by the clustering of measurement points with an impedance characteristic for an
elastohydrodynamic (EHL) contact. This form of contact is the case in the run-in stage with
no electrical breakdowns. Because of the capacitive characteristic of a lubricated bearing
with EHL contact [15], the phase angle is approximately ϕ ≈ −90◦, as seen on the left side
in Figure 18.

Figure 18. Phase angle of individual impedance measurements of the validation test.

Electrical breakdowns in the pre-run-in and damaged phases lead to signal changes
of the impedance with resistive characteristics (see Figure 18 right). Resistive behavior
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leads to a phase angle closer to zero, which, in this case, results in positive impulses of the
phase angle. These positive impulses can be seen in Figure 17 in the form of measurement
amplitudes on the right-hand side of the mean value; the more resistive the behavior, the
higher the skewness of the phase angle.

The other features in the ranking in Table 4 do not show behavior that clearly shows
a distinction between the different test stages. In conclusion, no explanation approach
for this behavior is presented in this publication. Nevertheless, the approximately linear
behavior of the features in the run-in stage can be useful in damage-progression detection,
although the absolute value does not offer as much information about the damage.

In conclusion, the most significant features resulting from the individual feature
selection are features in the frequency domain. The features from Table 4 seem to have
a relationship with the chosen label. They possess the potential to be useful for early
damage detection at rolling bearings and show explainable connections between the bearing
impedance and the bearing damage state. It can be said that the information extracted from
the impedance signal could be enlarged compared to Martin et al. using this simple feature
engineering approach. Therefore, it could be possible to use classification algorithms for
more accurate differentiation of different bearing health conditions.

Other impedance-based monitoring approaches focus on the lubrication condition
in the EHL contact, e.g., Barz and Maruyama et al. [7,14]. Different methods are used
to investigate the lubrication film thickness in rolling element bearings, but they do not
include the bearing health condition over its lifespan; this differentiates the approach
presented in this paper from the other impedance measurement methods.

4.2. Effects Observed in the Validation Test

In contrast to the findings observed in the other fatigue test, the validation test only
showed the expected feature behavior during or after peaks occurring in the vibration
signal. Nevertheless, this does not disprove the validity of the impedance features for early
rolling bearing detection. This effect is caused by the circumstance of a support bearing
failing instead of a test bearing. Thus, none of the bearings, whose impedance has been
measured directly, failed, and the impedance consequently remained stable at first.

The support bearing failure may have led to higher stress at the test bearing because
of vibrations, impacts, and possible load redistribution. The higher stress of the lubrication
film in the test bearings may result in an affinity to metallic contact and, consequently, to
resistive behavior. This would explain the phenomena observed in Section 3.2 despite the
support-bearing failing. In addition, since the test-bearing impedance is influenced only by
a support-bearing failure because of vibrations, the comparatively late impedance feature
response in the validation fatigue test can be explained, too.

For both measurement approaches, the same feature was selected. The behavior of the
features in both cases was identic with one exception. That means the impedance signal
and its features are independent of the measurement approach used to record them. Even
if the validation test did not detect damage at a test bearing, failures in other components
can be seen in the signal. So, the impedance measurement might be used for condition
monitoring not only for rolling bearings but also for other machine elements interacting
with the shaft the observed bearings are located at.

Another aspect is that the same features are selected for different rolling bearing types
in both tests. The original test was executed using angular groove ball bearings of type 7205.
The validation test used deep groove ball bearings of type 6205. Because the feature in
both cases showed the same behavior with one exception, it can be said that the impedance
is bearing type independent. To explain the signal and feature behavior more precisely,
further investigation is needed with a higher variance of bearing types.

4.3. Explanation of Delay between Vibration and Impedance Features

In this section, the possible causes of the delay between the rise of the vibration
signal and the observed phenomena in the impedance feature signals shall be examined.
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The higher vibrations of a damaged bearing are caused by a crack in the runway surface.
During the bearing balls roll over the crack, vibrations are created [1]. However, the bearing
impedance might be more sensitive to bearing damage in the early stages. When the crack
forms underneath the runway surface, this beginning bearing damage might already have
an impact on the electric transition behavior, which would cause changes in the measured
impedance signal.

In further research, a comparison of the impedance signal features to the advanced
vibration analysis and motor current analysis is necessary. Other papers could show
the possibilities of vibration analysis using, e.g., deep feature learning [20]. They are
material independent, as mentioned in Section 1.3, which allows a broader application
field. In the case of motor current-based condition monitoring, additional sensors are
not needed, which is an important cost factor. Impedance-based condition monitoring
is applicable for slow-rotating machinery or critical processes and systems [36]. For a
higher data quality, disturbance factors have to be identified and analyzed. For system
applications, the exact electrical paths through the structure have to be known. First, the
results show that disturbance factors have a specific behavior [37] that requires further
investigation to be applicable in real applications. A remaining useful life (RUL) prediction
for rolling element bearings is not investigated yet. Based on the results discussed before,
there is a possibility that the impedance features can be used for RUL prediction. To
research this topic, additional fatigue tests are necessary, as well as additional feature
engineering methods.

5. Conclusions

The aim of this work was the investigation of impedance signals and their features over
the operational time of rolling bearings. The impedance signals have been preprocessed,
and individual feature selection was used to extract a higher amount of information from
the signals. The features have been analyzed in the time and frequency domain based on
the state of research for vibration data. Three phases could be identified in the operative
life of a bearing, according to early research. Phenomenological explanations of the feature
behavior were derived. In all five fatigue tests, the impedance signal changed before
the vibration signals of the test rig sensors showed abnormalities. To clarify this, further
research is necessary with a higher amount of fatigue test data. In addition, impedance
features in the time-frequency domain have not been investigated yet.

Because uncertainties in the five impedance signals occurred, a more robust measure-
ment approach has been developed and tested in an additional fatigue test. The selected
features of both measurement approaches showed the same behavior over the bearing
operational life. So, there is the possibility that impedance features map the bearing life
independently from the measurement principle. In the validation test, the test bearings
did not fail, but the support bearings did. The impedance features changed analog to the
vibration signals, which means that the impedance measurement is able to detect damages
not only at the observed bearings but also at machine elements located on the same shaft.

In the different test setups, two different bearing types were investigated. Because the
impedance shows nearly the same behavior over the bearing’s lifetime with one exception,
it is possible that the impedance-features behavior is bearing-type independent. Further
research is necessary to investigate this phenomenon and explain the feature’s behavior.

In summary, it could be shown that impedance measurement can be used for condition
monitoring of technical systems. Further research is needed to deepen the understanding
of rolling bearing impedance and the features calculated from it. It is also possible to use
machine learning algorithms for further investigation. Therefore, more fatigue tests with
different operational parameters are necessary. In addition, the changes in bearing type
and scale have to be investigated to ensure that the impedance is independent of these
factors. In this paper, ball bearings have been used as test bearings. In the future, roller
bearings and bearings with line contact, in general, must be examined.
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The results presented in this paper show the opportunities for impedance-based
condition monitoring. As mentioned in Section 4.3, the technique can be applied for
special-use cases where vibration analysis is not sufficient for condition monitoring. The
implementation of industrial gearboxes for their observation is already addressed at the
Institute. Indicators could be found that the impedance measurement is able to observe
not only the rolling element bearings themselves but also the entire gearbox. In this case,
further research about the impedance behavior is needed.
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Abstract: To realize the classification of lubricating oil types using mid-infrared (MIR) spectroscopy,
linear discriminant analysis (LDA) was used for the dimensionality reduction of spectrum data, and
the classification model was established based on the support vector machine (SVM). The spectra of
the samples were pre-processed by interval selection, Savitzky–Golay smoothing, multiple scattering
correction, and normalization. The Kennard–Stone algorithm (K/S) was used to construct the
calibration and validation sets. The percentage of correct classification (%CC) was used to evaluate
the model. This study compared the results obtained with several chemometric methods: PLS-DA,
LDA, principal component analysis (PCA)-SVM, and LDA-SVM in MIR spectroscopy applications.
In both calibration and verification sets, the LDA-SVM model achieved 100% favorable results. The
PLS-DA analysis performed poorly. The cyclic resistance ratio (CRR) of the calibration set was
classified via the LDA and PCA-SVM analysis as 100%, but the CRR of the verification set was not as
good. The LDA-SVM model was superior to the other three models; it exhibited good robustness and
strong generalization ability, providing a new method for the classification of lubricating oil types by
MIR spectroscopy.

Keywords: mid-infrared spectra; lubricating oil; LDA-SVM; Kennard–Stone algorithm

1. Introduction

Lubricating oils play a crucial role in industrial practices, serving various functions to
ensure the smooth operation of machinery. In the process of mechanical operation, if some
parts of the machine do not have the lubrication effect of lubricants, dry friction will occur,
causing machine damages. According to experimental data, considerable heat generated
by dry friction in a short period of time can melt the metal and even damage the machine.
The major working principle is as follows: Lubricating oil which exists between working
parts of a machine produces the membrane that can reduce the resistance of the parts in
actual work by wrapping an oil film on their surface. Oil films are produced by lubricating
oil. Toughness and strength are important indicators for lubricants to play a role. The
main aims of gear lubrication are to diminish friction, increase efficiency, reduce wear and
contact fatigue of the interacting tooth surfaces, and improve durability [1]. According to
the literature [2,3], the gear transmission systems with and without lubrication are very
different. A major reduction in energy waste and emissions of mechanical systems can be
seen with the optimized performance of lubricating oil [4–6].

Lubricating oil mainly comprises basic oil, which governs its basic properties, and
additives that enhance the performance of basic oil, providing certain new functions [7]. As
seen from data shown in [8–12], lubricants with different types of additives are supposed
to lead to different effects.
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It is challenging to distinguish the types of lubricating oil solely from their appearance
because of the similarities of their constituents: basic oil and small additives. In the process
of using lubricating oil, once the label is defaced or lost, it will lead to misuse, which will
lead to engine failure, equipment failure, performance gradation, and even accidents. The
lubricating oils and the unknown additive types and contents are qualitatively classified
and analyzed using physical and chemical methods. Traditional methods, such as Ra-
man spectroscopy [13], physical and chemical characterization, and gas chromatography,
are time-consuming and expensive. The composition of lubricating oil is complex, with
various types of additives and wide-ranging mid-infrared (MIR) spectroscopy features.
Different additives have their own characteristic peaks in the MIR spectra, but because the
characteristic peaks seriously overlap, it is challenging to distinguish different lubrication
oils directly using MIR, and chemometric methods are required. In recent years, MIR
spectroscopy has been widely used in the determination of oil concentration in water [14],
molecular structure analysis of new and in-use engine oils [15], analysis of oil sludge [16],
determination of soot content in engine oil [17], qualitative and quantitative analysis of
sulfur content in crude oil [18], and the detection of oil pollution [19].

Recent research studies on both crude oil and lubricating oil through the method of
infrared spectroscopy combined with chemometrics, such as the chemometric strategy
based on pattern recognition which has been developed for clustering and the classification
of crude oils of Iran, can be seen in the literature [20]. GC-FID and FT-IR fingerprints
were considered for fingerprint analysis, and the potential of PCA/HCA for clustering
and PLS-DA/CP-ANN for classification were studied. A hybrid optimization method for
feature band selection of the middle infrared spectrum based on binary particle swarm
optimization (BPSO) and the genetic algorithm (GA) has been developed by Xia Yanqiu
et al. [21]. Firstly, the basic classification model of oil additive species recognition by the
K nearest neighbor algorithm (KNN) and random forest algorithm (RF) is established.
Then, the GA-BPSO hybrid optimization algorithm is used to screen the characteristic band
region in the whole band range of the spectrum. O. Galtier et al. [22] compared the results
which were obtained by several chemometric methods, SIMCA, PLS2-DA, PLS2-DA with
SIMCA, and PLS1-DA, in two infrared spectroscopic applications, which were optimized
by selecting spectral ranges containing discriminant information. In the first application,
mid-infrared spectra of crude petroleum oils were classified according to their geographical
origins. In the second application, near-infrared spectra of French virgin olive oils were
classified in five registered designations of origins (RDOs). In both cases, the PLS1-DA
classification indicated a 100% good result. An extreme learning machine was used to train
and test the model constructed by the infrared spectral data of the mixed additives, and the
greedy algorithm and genetic algorithm were used to optimize the input band, while the
optimization results were compared. The test results showed both effective identification of
the type and prediction of the content of lubricant additives [23]. Owing to the characteristic
that the MIR spectroscopy of lubricating oils provides both linear and nonlinear information,
the linear discriminant analysis–support vector mechanism (LDA-SVM) model is proposed,
which uses LDA for supervised dimensionality reduction, SVM for classification, and
provides a theoretical basis for the rapid classification of lubricating oils.

2. Materials and Methods

2.1. Materials
2.1.1. Samples

A total of 120 Lubricating oil samples (Figure 1) from different lubricating oil manu-
facturers were analyzed using MIR spectroscopy to identify their types: gear oil, n = 13;
diesel oil, n = 41; gasoline engine oil, n = 12; general engine oil, n = 33; hydraulic oil, n = 21.

181



Lubricants 2023, 11, 268

 
Figure 1. 120 Lubricating oil samples.

2.1.2. Experimental Instruments and Parameters

Instrument: Tensor27 Fourier transform infrared spectrometer produced by BRUKER
(Mannheim, Germany), in Figure 2.

 
Figure 2. BRUKER Tensor27.

Measurement method: transmission method;
Optical path: 0.1 mm;
Measurement parameters: resolution 4 cm−1;
Beam range: 600–4000 cm−1;
Spectral averaging times: 16 times;
Windows and beam splitters: ZnSe.
Original MIR spectral data of samples are shown in Figure 3.

Figure 3. Original MIR spectral data of samples and the selected ranges for modeling.
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2.2. Methods
2.2.1. Spectral Data Pre-Processing

Spectral data pre-processing was mainly performed to select the spectral data range
and eliminate electrical noise, sample background light, and stray light from the spectral
data. The pre-processing method of spectral data greatly influences the stability and
generalization ability of the model. In this study, the spectral data pre-processing method
was as follows:

(1) Wave number range. Different types of lubricating oils have characteristic peaks in
the photon region and fingerprint region of the MIR spectrum, according to the characteris-
tics of the lubrication oil spectrum. The spectral data used in this study consisted of three
ranges: 3743.7–3386.9, 1969.3–1612.4, and 1259.5–902.7 cm−1 [7]. Figure 3 shows the MIR
spectrum of the original data of the experimental samples. The spectral data in the three
black boxes were selected for modeling.

(2) Smooth processing. The Savitzky–Golay convolution smoothing method was used
to remove random noise in the spectrum and improve the signal-to-noise ratio.

(3) Multiplicative scatter correction (MSC). MSC was used to eliminate the spectral
differences caused by different scattering levels, thereby enhancing the correlation between
the spectra and data. Assuming the spectrum x(1 × m), the MSC algorithm was as fol-
lows: 1© the average spectrum x of the samples was calculated; 2© linear regression was
performed on x and x, x = b0 + xb, and the least squares method was used to determine b0
and b; 3© (x − b0)/b0.

(4) Normalization. Also known as vector normalization, for a spectrum, first its aver-
age absorbance value was calculated, the average value from the spectrum was subtracted,
and then the sum of the squares of the spectrum was divided. Normalization can eliminate
spectral variations caused by small optical path differences. The normalization calculation
formula was as follows:

x′k =
xik − x√
∑n

i=1 x2
ik

(1)

x is mean of the vector, xik is a value of normalization, x′k is the result of normalization.
Figure 4 shows a flow chart of spectral data pre-processing. The spectral ranges

were optimized and selected first and subsequently smoothed; then, MSC and finally
normalization were performed.

Origin MIR spectra 

Wave number ranges: 
(3743.7~3386.9 cm 1) 
(1969.3~1612.4 cm 1) 
(1259.5~902.7 cm 1) 

Smoothing processing 

Multiplicative scatter correction 

Normalization 

Figure 4. Spectral data pre-processing flow.

2.2.2. Dimensionality Reduction Using LDA Algorithm

LDA, proposed by Fisher in 1936, is a supervised dimensionality reduction technology
and is widely used in feature extraction. The LDA algorithm predominantly involves
projecting the sample data with large dimensions to the best classification vector area to
identify the data and narrow the feature range, and after the projection, it ensures that the
data have a large inter-class distance and small intra-class distance; that is, the samples can
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be well separated within this range. Each sample of its dataset has a class output. This
is different from principal component analysis (PCA). LDA uses the Fisher discriminant
criterion, so it is also known as Fisher’s linear discriminant. The LDA algorithm is widely
used in the field of pattern recognition [24–28].

(1) Principle of LDA. Assuming d-dimensional (d features) spectral samples
X = [X1, . . . , Xn] ∈ Rn×N , Xi(i = 1, . . . , N) ∈ Rn represents the i-th sample, and N rep-
resents the total number of samples. Xij ∈ Rn(i = 1, . . . , c; j = 1, . . . , NI) represents the j-th
sample in class i, Ni represents the number of samples of the i-th class, and c represents the
number of sample classes. The mean of all samples is:

x =
1
N

N

∑
i=1

xi (2)

Let the sample mean of the i-th class be xi(i = 1, 2, . . . , c), then we have

x =
c

∑
i=1

Ni
N

xi (3)

Dimensionality reduction using LDA is used to reduce high-dimensional spatial
feature information to a low-dimensional feature space according to the existing category
information. The LDA results show that samples of the same type are clustered together,
and samples of different types are separated as much as possible. The inter-class and
intra-class distances are expressed in the form of discrete matrices, and the change matrix
Wopt was solved using Fisher’s criterion. Fisher’s criterion is expressed as follows:

J(W) = argmax

∣∣WTSbW
∣∣

|WTSwW| (4)

As in (4), Sb is an inter-class discrete matrix, and its specific expression is:

Sb =
c

∑
i=1

Ni
N

(xi − x)(xi − x)T (5)

As in (4), Sw is an intra-class discrete matrix, and its expression is:

Sw =
c

∑
i=1

Ni

∑
j=1

1
N

Ni
N
(

xij − x
)(

xij − x
)T (6)

Equation (4) is the generalized Rayleigh entropy of matrix Sb relative to matrix Sw.
Using the properties of the generalized Rayleigh entropy, the optimal solution for calcu-
lating J(W) is Wopt = (w1, w2, w3 . . . , wd), where w1, w2, w3 . . . , wd are the eigenvectors
corresponding to the first d non-zero eigenvalues of S−1

w Sb.
(2) The steps of LDA are as follows:
1© Intra-class divergence matrix Sw was calculated;
2© Inter-class divergence matrix Sb was calculated;
3© Matrix S−1

w Sb was calculated;
4©The largest d eigenvalues of S−1

w Sb and the corresponding eigenvectors (w1, w2, . . . , wd)
were calculated to obtain the optimal solution Wopt;

5© zi = WT
optxi was calculated for each sample xi in the sample set;

6© The output sample set D = {(z1, y1), (z2, y2), . . . , (zm, ym)} was obtained.

2.2.3. SVM Algorithm

SVM is a classification technology proposed in 1963 by the AT&T Bell laboratory
research group led by Vapnik. SVM is a pattern recognition method based on statistical
learning theory, which is mainly used in the field of pattern recognition [29,30]. It provides
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numerous unique advantages for solving small sample, nonlinear, and high-dimensional
pattern recognition, and it can be extended to other machine learning problems such as
function fitting. The SVM mechanism involves finding an optimal classification hyperplane
that meets the classification requirements so that the hyperplane can maximize the blank
areas on both sides of the hyperplane while ensuring classification accuracy. SVM can
achieve the optimal classification of linearly separable data.

Taking two types of data classification as examples, given a sample set (xi, yi),
i = 1, 2, . . . , l, x ∈ Rn, y ∈ {±1}, with the hyperplane denoted as (w·x) + b = 0, to
correctly classify all samples and have a classification interval, the following constraints
are required:

min
w,b

1
2
‖w‖2 (7)

yi[(w·xi) + b] ≥ 1; i = 1, 2, 3 . . . l (8)

This is a convex quadratic programming problem that was solved using the Lagrange
function:

L(w, b, a) =
1
2
‖w‖ − a(y((w·x) + b)− 1) (9)

The optimal solution was determined by finding the maximum value:

a∗ = (a∗1, a∗2, a∗3, . . . , a∗l )
T (10)

The optimal weight vector w∗ and the optimal bias b∗ were calculated as follows:

w∗ =
l

∑
j=1

a∗j yjxj (11)

b∗ = yi −
l

∑
j=1

yja∗j
(
xj·xi

)
(12)

For the linear inseparable case, the kernel method was used. The main idea was
to project the input vector to a high-dimensional feature vector space and construct the
optimal classification surface in the feature space. The linear discriminant function was
constructed in the high-dimensional space, and the commonly used kernel functions were
as follows:

1© Linear kernel function: K(x, xi) = 〈x, xi〉;
2© Polynomial kernel function: K(x, xi) = [γ(x·xi) + coe f ]d, where d is the order of

the polynomial, and coef is the bias coefficient;
3© RBF kernel function: K(x, xi) = exp

(
−γ‖x − xi‖2

)
, where γ is the width of the

kernel function;
4© Sigmoid kernel function: K(x, xi) = tanh(γ(x·xi) + coe f ), where γ is the width of

the kernel function and coef is the bias coefficient.

2.3. Construction of Calibration Set and Validation Set
2.3.1. K/S Algorithm

The K/S algorithm [31] can provide the best expression of the difference between
samples and select more representative samples. The K/S algorithm was used to select
the sample set, and the steps were as follows: (1) The Euclidean distance between the two
samples was calculated, and the two samples with the largest distance were selected for the
calibration set. (2) The distance between each remaining sample and the selected calibration
set was calculated, and the two farthest and nearest samples were determined and selected
for the calibration set. (3) Step (2) was repeated until the number of the selected calibration
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samples was equal to the predetermined number. (4) The remaining samples were the
samples of the validation set.

2.3.2. Specific Construction of Calibration Set and Validation Set

The calibration set and verification set were constructed by the K/S algorithm with
a ratio of 6:4 for the spectral data of gear oil, diesel oil, gasoline oil, general oil, and
hydraulic oil samples. The specific sample distribution is listed in Table 1, and the statistical
distribution of MIR spectral data of samples in the calibration set and prediction set is listed
in Table 2.

Table 1. Composition of calibration and validation set.

Sample Types Calibration Set Validation Set Sum of Sample

Gear oil 8 5 13
Diesel engine oil 25 16 41

Gasoline engine oil 8 5 13
All-purpose engine oil 20 13 33

Hydraulic oil 13 9 22
Total number of samples 74 46 120

Table 2. Statistical distribution of MIR spectral data of samples in calibration set and prediction set.

Sample
(Unit)

Data Sets
Number of
Samples

Maximum Minimum Mean
Standard
Deviation

Lubricating
oils

Calibration set 74 6.0 −0.065 0.070 0.163
Validation set 46 1.732 −0.063 0.064 0.117

2.4. LDA-SVM Algorithm Steps

Step 1: Data pre-processing. The spectral range was optimized, the signal-to-noise
ratio was improved, and the influence of stray light was eliminated;

Step 2: The K/S algorithm was used to divide the sample data to ensure the represen-
tativeness of the calibration set and validation set;

Step 3: Supervised dimensionality reduction was performed on the calibration set
using LDA, and the optimal vector Wopt was calculated;

Step 4: The dimensionality reduction result was provided as the input of SVM, and the
grid search method was used to automatically search and calculate the optimal parameters
of SVM, when the kernel functions were linear, poly, RBF, and sigmoid;

Step 5: The dimensionality reduction result of the validation set was calculated through
the optimal vector Wopt obtained in step 3;

Step 6: The optimal parameters were used to predict the validation set through SVM.

2.5. Experimental Design

As shown in Figure 5, the original infrared spectrum data of the lubricating oils
were pre-processed, the data were divided into calibration and validation sets by the K/S
algorithm, and the calibration set was input into four models: 1. The PLS-DA model was
used to calculate the percentage of correct classification (%CC) of the calibration set under
different latent variable numbers, and the principal component number with the highest
correct rate was selected. 2. The LDA model, when the matrix was decomposed with
singular value decomposition (SVD), least square (lsqr), eigenvalue decomposition (eigen),
and the %CC of the calibration set and validation set were calculated, and the optimal
results were selected. 3. When the principal component number of PCA was 2–40, the
results of dimensionality reduction were used as the input of SVM. The grid search method
was used to search the hyperparameters automatically to obtain the optimal solutions
of the kernel functions when they were linear, poly, RBF, and sigmoid. 4. The principal
component number of LDA was 2, 3, or 4, the dimension reduction results were taken as
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the input of SVM, and the grid search method was used to search the hyperparameters
automatically to obtain the optimal solutions of kernel functions when they were linear,
poly, RBF, and sigmoid.

 

 

Figure 5. Experimental design.

The %CC was the criterion used to compare classification results.

%CC = Nc/(Nc + Nic) (13)

where Nc and Nic represent the numbers of incorrect and correct identifiers, respectively.
PLS-DA, LDA, PCA-SVM, and LDA-SVM models were built using the Keras and

Scikit-learn machine learning library. They were developed based on Python 3.7.0, and the
data mining and data analysis tools adopted Scikit-learn 0.23.2. The programming platform
is based on Jupiter Notebook 4.4.0 and runs on the Windows 10 operating system.

3. Results and Discussion

3.1. PLS-DA Model

The number of latent variables is an important parameter in the PLS-DA model;
when the number of latent variables is small, it leads to insufficient feature extraction, and
when the number of latent variables is large, it leads to noise information. The %CC of
the calibration and validation sets is shown in Figure 6. The number of latent variables
ranges from 2 to 74, and the %CC of the calibration set increases with the number of latent

187



Lubricants 2023, 11, 268

variables; when the number of latent variables is >36, the cyclic resistance ratio (CRR)
remains unchanged at 100%. The %CC of the validation set fluctuated greatly with the
number of latent variables, and when the number of latent variables was 22, the %CC
reached its maximum, 78%. The PLS-DA model was over-fitted by comparing the results
of calibration and validation sets. When the number of latent variables was 22, the sum of
the %CC of the calibration and validation sets reached the maximum value.

0

20

40

60

80

100

2 7 12 17 22 27 32 37 42 47 52 57 62 67 72

%
CC

Number of Latent Variables

1

2

1- Calibration set
2- Validation set

Figure 6. %CC for calibration and validation sets under different numbers of latent variables with
PLS-DA model.

3.2. LDA Model

The %CC of the calibration and validation sets is listed in Table 3; different matrix
decomposition algorithms have a certain influence on the results of the LDA model. When
the matrix decomposition algorithms were used by SVD, the %CC of the calibration and
validation sets was 100% and 95%, respectively. When the matrix decomposition algorithms
were used by lsqr and eigen, the %CC of the calibration and validation sets was 95% and
98%, respectively. By comparing the three decomposition algorithms, we observe that SVD
decomposition algorithms are favorable, where the sum of the %CC of the calibration and
validation sets reaches the highest value.

Table 3. %CC for calibration and validation sets under different decomposition methods with
LDA model.

Decomposition Method Calibration Sets (%CC) Validation Sets (%CC)

SVD 100 95
sqlr 95 97

eigen 95 97

3.3. PCA-SVM Model Recognition Results

PCA is an unsupervised dimensionality reduction technique. The main factors affect-
ing the PCA-SVM model are as follows: principal component number, kernel function, and
kernel function parameters. The kernel functions of SVM are linear, poly, RBF, and sigmoid
when the principal component number ranges from 2 to 42, and grid search is used for
automatic hyperparameter search. As shown in Figure 7a,c, the principal component num-
bers negligibly influence the linear and RBF kernel functions. When the kernel functions
are linear, the %CC of the calibration and validation sets are 89% and 85%, respectively,
When the kernel functions are RBF, the %CC of the calibration and validation sets is 100%
and 93%, respectively. As shown in Figure 7b, when the kernel function is poly, the %CC
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of the calibration and validation sets increases first and then decreases. When the princi-
pal component number is 16, the %CC of the calibration and validation sets is 100% and
89%, respectively. As shown in Figure 7d, the %CC of the calibration and validation sets
increases with an increase in the principal component number and finally stabilizes. When
the principal component number is 30, the %CC of calibration and validation sets is 91%
and 89%, respectively. Comparing the results of the different kernel functions, the best
prediction result of the PCA-SVM model is achieved using the RBF kernel function, and
the %CC of the calibration and validation sets is 100% and 93%, respectively.
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Figure 7. %CC for calibration and validation sets of PCA-SVM model for the following: (a) number
of principal components used in linear kernel function; (b) number of principal components used in
poly kernel function; (c) number of principal components used in RBF kernel function; (d) number of
principal components used in sigmoid kernel function.

3.4. LDA-SVM Model

LDA is a dimensionality reduction technique. The main factors that affect the classifica-
tion results of the LDA-SVM model are as follows: the principal component number, kernel
function, and kernel function parameters. When the principal component number is 2, 3,
or 4, and the kernel functions of SVM are linear, poly, RBF, and sigmoid, respectively, grid
search is used for automatic hyperparameter search to obtain the optimal solutions. The
%CC of the calibration and validation sets is listed in Figure 8. The %CC of the calibration
and validation sets increases with an increase in the principal component number of LDA,
and when the principal component number is 4, the %CC of the calibration and validation
sets becomes maximized. Comparing the results of different kernel functions, the best
prediction result of the PCA-SVM model is exhibited by the poly kernel function, and the
%CC of the calibration and validation sets is 100%.
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Figure 8. %CC for calibration and validation sets as LDA-SVM model of the following: (a) number of
principal components used in linear kernel function; (b) number of principal components used in
poly kernel function; (c) number of principal components used in RBF kernel function; (d) number of
principal components used in sigmoid kernel function.

3.5. Comparison of Model Classification Results

The classification results of PLS-DA, LDA, PCA-SVM, and LDA-SVM are listed in
Table 4. The PLS-DA model exhibits the worst recognition ability, the over-fitting phe-
nomenon is serious, and the CRR of calibration and validation sets is poor. When classified
using the LDA and PCA-SVM model, the CRR of the calibration set achieved 100%, but the
CRR of the validation set is unfavorable; the LDA-SVM has the best recognition, and the
CRR of the calibration and validation sets is 100%.

Table 4. Correct classification of calibration and validation sets of different models.

Model Parameter
Calibration Sets

(%CC)
Validation Sets

(%CC)

PLS-DA LV = 22 86% 78%
LDA Decomposition method = SVD 100% 95%

PCA-SVM PC = 2, kernel = RBF 100% 94%
LDA-SVM PC = 4, kernel = poly 100% 100%

4. Conclusions and Future Scope

A classification model based on LDA-SVM was proposed. In this model, LDA was
used for the dimensionality reduction of the MIR spectrum of lubricating oils, the samples of
the same class were clustered together, and the samples of different classes were separated
as far as possible. The results of dimensionality reduction were input to SVM. The results
demonstrated that LDA-SVM exhibited higher recognition accuracy and robustness than
PLS-DA, LDA, and PCA-SVM models. LDA-SVM is a suitable tool to identify lubricating
oil types via MIR spectra.

In the next work, a semi-supervised learning method and an interval selection algo-
rithm will be combined to study the improved LDA-SVM algorithm for oil classification.
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Abstract: Improving the frictional response of a functional surface interface has been a significant
research concern. During the last couple of decades, lubricant oils have been enriched with several
additives to obtain formulations that can meet the requirements of different lubricating regimes
from boundary to full-film hydrodynamic lubrication. The possibility to improve the tribological
performance of lubricating oils using various types of nanoparticles has been investigated. In
this study, we proposed a data-driven approach that utilizes machine learning (ML) techniques to
optimize the composition of a hybrid oil by adding ceramic and carbon-based nanoparticles in varying
concentrations to the base oil. Supervised-learning-based regression methods including support
vector machines, random forest trees, and artificial neural network (ANN) models are developed
to capture the inherent non-linear behavior of the nano lubricants. The ANN hyperparameters
were fine-tuned with Bayesian optimization. The regression performance is evaluated with multiple
assessment metrics such as the root mean square error (RMSE), mean squared error (MSE), mean
absolute error (MAE), and coefficient of determination (R2). The ANN showed the best prediction
performance among all ML models, with 2.22 × 10−3 RMSE, 4.92 × 10−6 MSE, 2.1 × 10−3 MAE, and
0.99 R2. The computational models’ performance curves for the different nanoparticles and how
the composition affects the interface were investigated. The results show that the composition of
the optimized hybrid oil was highly dependent on the lubrication regime and that the coefficient
of friction was significantly reduced when optimal concentrations of ceramic and carbon-based
nanoparticles are added to the base oil. The proposed research work has potential applications
in designing hybrid nano lubricants to achieve optimized tribological performance in changing
lubrication regimes.

Keywords: machine learning; friction; lubrication; nanoparticles; tribology; artificial neural network;
Bayesian optimization

1. Introduction

Metal-on-metal interfaces are found abundantly in engineering applications. Some
examples are mechanical seals, bearings, pistons/plungers, and gears. These interfaces
are prone to wear for various loading conditions. For instance, an intuitive mapping of
the wear mechanism of metallic and non-metallic materials with lubricating conditions
was graphically presented by Lim et al. [1]. A lubricant may be utilized to establish a
thin lubricating film to separate the interfacial surfaces and reduce friction and wear.
However, the lubricating film developed by traditional and non-traditional lubricants may
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not be sustained during operation due to the high loads and relative speed of the mating
surfaces [2,3]. Recent advances in nanoparticle (NP)-based lubricant additives have shown
promising results in reducing the coefficient of friction (CoF) and wear of highly loaded
interfaces operating in the boundary lubrication regime and increasing the load-carrying
capacity of full-film hydrodynamic lubricated interfaces. Single-NP-based lubricant oil
blends have been evaluated extensively for the last two decades. However, optimizing oil
blends for more than one additive particle is needed to address the varying demands of the
tribo-pairs for varying lubricating domains.

Several studies have investigated the use of NP as lubricant additives to improve the
antiwear and frictional performance of lubricating oils. For example, CuO/Al2O3 [4] and
Bi2O3 [5] NPs were found to reduce friction and wear scar diameter (WSD), whereas CeO2
was shown to facilitate the frictional performance of polyamide-imide/polytetrafluoroethylene
lubricating coatings [6] and engine oils [7]. When used in combination with ZDDP, CeO2
NP was found to improve antiwear performance even further [8]. Cu [9] and CuO [10],
and TiO2 [11] NPs were also found to improve the thermal conductivity and rheological
properties of lubricating oils, respectively. The addition of SiO2 NP was reported to increase
the load-carrying capacity of soya bean and sunflower oil [12], whereas the addition of CuO
NP to coconut oil resulted in the lowest friction and a polishing effect on worn surfaces [13].

Mirzaamiri et al. [14] introduced nanodiamonds to water, resulting in a 70% reduction
in friction and an 88% reduction in wear that was attributed to the ball-bearing effect of the
nanodiamond. Wu et al. [15] added sulfonated graphene to water, increasing viscosity by
25.8% and reducing the WSD and CoF by 74% and 15.7%, respectively. Xu et al. [16] studied
the effect of graphene nanosheet (GNS) and Ag hybrids on phenolic composites, reporting
that a 9 wt% GNS/Ag hybrid reduced the friction coefficient and wear rate by 40% and
72%, respectively, due to strong molecular interactions. Wang et al. [17] found that thicker
copper coated with molybdenum disulfide had a lower friction coefficient but exhibited
more severe wear. Yu et al. [18] reported that hydrated silica tribofilm reduced the CoF of
MoAlB ceramic to 0.12. Pham et al. [19] showed that SiO2 enhances the anti-oxidation of
lubricants. Simonovic et al. [20] found that the wear of WSC-coated ceramic is reduced
under low loads and more WS2 monolayers are present; however, abrasive wear occurs at
loads above 8 N. Xu et al. [21] investigated materials containing 1% kyanite with the best
braking performance. Chen et al. [22] compared Si3N4-based and carbon-rich MLG-based
MLG/Si3N4 ceramics and found that the combination of MLG and Si3N4 improved wear
resistance and reduced the CoF. Fahad et al. [23] studied base oil containing modified
TiO2/CuO NPs, which improved the viscosity index and load-carrying capacity. Sharma
et al. [24] found that mixing alumina/graphene (GnP) hybrid NPs reduced cutting tool
wear and nodal temperature. Huang et al. [25] found that GO–Al2O3 hybrid NPs provided
better friction and wear performance than pure GO or Al2O3 due to the GO layer preventing
surface asperities from direct contact and the Al2O3 tribo-layer acting as a load bearer to
polish asperities.

Besides ceramic and carbon-based NPs, various studies [26–28] have also investigated
the tribological performance of ferrous-NP-based lubricants. Oliveira et al. [26] additized
PAO 8 oil with Fe2O3 NP to evaluate the lubricant performance for reduced friction and
wear. The boundary lubrication resulted in increased scuffing resistance and reduced wear
rates by up to 27% for high loads due to the intrinsic properties of metallic oxides. Another
study [27] investigated the effect of coated magnetic NPs dispersed in trimethylolpropane
trioleate base oil. The Nd and Fe3O4 NPs in 0.015 wt% concentration significantly reduced
the CoF and WSD by 29% and 67%, respectively, in comparison with the base oil. Alvi
et al. [28] enhanced the tribological performance of drilling fluids with iron oxide-based
NP. Fe2O3 NP in a 0.019 wt% concentration reduced the CoF by 47% and 45% with dis-
persion in bentonite and KCl-based base fluids, respectively. This indicates that hybrid
lubricant blends can outperform previously formulated lubricants; however, application-
and operating-condition-dependent optimization is needed. It is a delicate task involving
many independent parameters and requiring a highly robust optimization scheme.
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Machine learning (ML)-based methodology has shown the capability to handle many
multi-featured input parameters and target the desired outcome with high accuracy and
precision. Bhaumik et al. [29] presented a method for designing multiple NP-based bio-
lubricants using a multi-layered artificial neural network (ANN). The ANN-based model
was optimized with a genetic algorithm and the additized biolubricant showed a decrease
in the CoF of 45–50% compared with mineral oils. Humelnicu et al. [30] used a feed-forward
ANN to obtain the minimum CoF for blended diesel fuel by optimizing the concentrations
of two vegetable oils. A CoF of 0.00156 was achieved using 4% sunflower oil, based
on the results from the ANN computations. Haldar et al. [31] designed an ANN-based
regression estimator to predict the dynamic viscosity of multi-walled carbon nanotubes
(MWCNT) and SiO2-based nano lubricant in a 20:80 ratio. The perfect estimation was
found within a 2.62% maximum deviation by comparing experimental data with the model
predictions. Recently, Esfe et al. [32] used a quasi-Newton algorithm based on a multi-
layered ANN to predict the viscosity of a hybrid nano lubricant with high precision. The
trained Levenberg–Marquardt (LM)-based regression learner achieved a mean squared
error (MSE) of 6.15 × 10−4 while estimating the observed behavior of a hybrid lubricant
blend of SAE40 oil additized with MWCNT and Al2O3 at a 10:90 concentration ratio. Table 1
summarizes studies that effectively employed ML-based data-driven approaches to model
the inherent non-linearities of nano lubricants.

Table 1. List of similar studies on ML-based approaches for tribological performance prediction.

Ref. Methodology Input/Output Parameter Base Oil/Additive Performance

[29] ANN, GA Load, speed, concentration/
CoF

NCO, CMO/
GRT, MWCNT, GRPHN,

ZnO

CoF ↓ by 45–50%
WSD ↓ by 87.5%

[30] FF-ANN Concentration/
CoF

Regular diesel fuel/
Sunflower oil, Rapeseed oil

CoF: 1.56 × 10−3 with
4% sunflower oil

[31] ANN Temperature, volume fraction,
shear rate/Viscosity prediction

SAE68 hydraulic oil/
MWCNT, SiO2

R2: 0.998
RMSE: 2.135415

[32] LM-based MLP Temperature, volume fraction,
shear rate/Viscosity prediction

SAE40/
MWCNT, Al2O3

R: 0.9999
MSE: 6.15 × 10−4

−2% < MOD < 2%

[33] DT, RF, GLM, ANN Temperature, volume fraction/
Kinematic viscosity prediction

SAE30, Hydrex100, EP90/
Al2O3, CeO2

R2: 0.861 (SAE30)
R2: 0.971 (Hydrex100)

R2: 0.973 (EP90)

[34] LM-ANN Temperature, volume fraction,
shear rate/Viscosity prediction

SAE50/
MWCNT, Al2O3

MSE: 3.58
R: 0.999

GA: genetic algorithm; NCO: neat castor oil; CMO: commercial mineral oil; GRT: graphite; GRPHN: graphene; FF:
feed-forward; MLP: multi-layer perceptron; MOD: margin of deviation; DT: decision trees; RF: random forest;
GLM: generalized linear model; ↓ shows a decrease.

The studies reviewed above show that NP enrichment can be used to control the
dynamic and static properties of the lubricant. However, the mechanisms that govern the
changes in lubrication performance are complex and not yet fully understood. Moreover,
there exist many parameters that affect the outcome of NP addition to the base lubricant.
Due to the complexity of the mechanism and the numerous design parameters of hybrid
lubricant blends containing multiple NPs, there is a gap in the literature presenting studies
on the possibilities of obtaining performance improvements. In this work, random forest
trees (RFT) and support vector machines (SVM)-based regression models are initially
developed to capture the NP-based lubricant behavior. In the final approach of designing
computational methods, multi-layered ANNs are developed and trained to predict the
performance of multiple-NP-based lubricants and their hybrids to minimize the CoF. The
details of the experiments, training dataset, modeling, and results are discussed and the
capabilities of the ML-based techniques are compared. The CoF is analyzed for varying
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operating conditions and the evolution of lubricating regimes is analyzed for individual
and hybrid oils. Optimization of the NP concentrations for varying lubricating regimes is
also evaluated.

2. Design of Experiment

The experimental dataset was created using a pin-on-disc tribometer for experiments
with different NP-based lubricants as shown in Figure 1. A commercially available oil,
5W30 by Shell plc, was used in this study to create NP-based blends, and a comparison
is drawn with the same oil without NP. The experiments were carried out with varying
values of the parameters involved. The parameters under consideration were the NP
concentrations in weight percentages (wt%) for silicon dioxide (SiO2) and nano graphite
(NG) with varying load (Newton, N) and speed (revolutions per minute, RPM). The
single output CoF was recorded for each experiment. The experiments were conducted
at two load levels and five speed levels for all the lubricants comprising the plain oil (PO)
without NP and PO with both NPs individually. For each NP, two levels of concentration,
along with the above load and speed levels, are used because the load and speed both
influence the lubrication regime. Similarly, the NP concentration affects the oil viscosity,
which in turn is an important parameter controlling the lubricating regime experienced by
the tribo-pair. Therefore, five factors and the corresponding three levels have been adopted
to explore the pure hydrodynamic, mixed, and boundary lubrication of the tribo-interface
for varying design parameters and to explore the effect of the combination of NPs on the
said lubricating regimes.

Figure 1. Pin-on-disk schematic illustrating surface parameters, geometry, and loading conditions.

The dataset array was generated for 30 experiments (number of samples) according to
the values shown in Table 2. The NPs used in this study are nearly spherical in powder
form, with an average size of 20 μm and 7 nm for NG and SiO2, respectively. Dispersion
of the NPs and their static stability in the oil over time is ensured based on the dispersion
test. A volumetric sample is taken from each blend and examined after each hour by the
naked eye for any visible sedimentation. No sedimentations were observed during the
first day of sample preparation; therefore, all the tribological tests were performed on the
same day as the sample preparation, which was accomplished through the signification
process. Multigrade oil was used to create the NP-based blends, and the viscosity of such
oils is highly dependent on the temperature. The actual temperature of the interface may
vary significantly depending on the lubrication domain being experienced by the interface.
This oil temperature variation is in comparison with the ambient temperature and the bulk
oil temperature in the sump. Therefore, conducting a comparative analysis for variations
in oil viscosities because of NP concentration requires an in-depth study considering the
lubrication condition in the actual tribo-pair and is hence deliberately not presented here.
This is a limitation of the present study, which will be addressed in the future.
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Table 2. List of parameters involved and their values for the conducted experiments with
multiple NPs.

Parameters Minimum Maximum Average

SiO2 NP concentration (wt%) 0.2 0.4 0.3

NG NP concentration (wt%) 0.2 0.4 0.3

Load (N) 30 50 40

Speed (RPM) 35 100 58

Coefficient of friction 0.02 0.3 0.16

3. Computational Models of Lubricants

The initial study to develop the computational models of NP-based lubricants was
initiated by training the RFT- and SVM-based regression models. The shortcomings of
these two models directed the study to create more comprehensive ANN-based regression
models to cater for the non-linearity involved in the experimental data of the lubricants. De-
veloping the ANN-based computational model for hybrid nano lubricants with optimized
parameters is daunting. It is required to capture the true behavior of the lubricant’s tribol-
ogy, as evident from the experimental data. This study employs the Bayesian optimization
(BO) method to find optimal hyperparameters for the ANN models of NP-based lubricants.
Once optimized hyperparameters are known, the ANN regression models are developed
accordingly to estimate the CoF for the individual- and multiple-NP-based lubricants.

3.1. Training Dataset Generation

Multiple training datasets were developed from the experimental data to train the
regression models. Two datasets contained the NP concentration, load, and speed as inputs
along with the response variable CoF for both the NPs, i.e., SiO2 and NG. The third dataset
contained multiple NP concentrations as input along with the other parameters. All the
inputs were rescaled with min–max normalization to regularize the data for loss function
and to achieve rapid convergence during training. Input normalization was applied using
the normalize built-in function of MATLAB 9.12 (MathWorks, Natick, MA, USA) according
to the following relationship:

X′
i = a +

Xi − min(Xi)

max(Xi)− min(Xi)
(b − a) (1)

where X′
i is the normalized value and Xi is the original value of the input i, a and b are the

normalization range limits which are set as [a b] = [0 1] for all the inputs.

3.2. Random Forest Trees

The initial regression model is developed using the ensemble method with bootstrap
aggregating (bagging) of multiple decision trees (DT)-based regression learners. The
random forest is developed at each ensemble split with a minimum leaf size of eight. A
total of 30 DT learners were bagged in the ensemble with 100 learning cycles. The objective
function is the MSE, which is minimized, and a threshold is set as a stopping criterion.
The RFT training performance is evaluated via various regression performance assessment
metrics such as root mean square error (RMSE), MSE, mean absolute error (MAE), and
coefficient of determination (R-squared or R2). All the training sessions are conducted
using the 10-fold cross-validation, and the assessment metrics are calculated upon the
validation results. The RFT model is implemented using the fitrensemble built-in function of
MATLAB 9.12.
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3.3. Support Vector Machines

The other initial regression model is the non-linear SVM regression learner with a
radial basis function (RBF) kernel for more accurate predictions. The rapid variations in the
CoF are well predicted with the fine Gaussian SVM as compared with the polynomial-based
SVM models. The fine Gaussian SVM employed a Gaussian kernel RBF with the kernel
scale set to

√
P

4 for P number of predictors. For three input parameters of the individual
NP-based datasets, the kernel scale is set to 0.43. In model designing, the box constraint and
epsilon values are calculated heuristically by gradually increasing and decreasing them.
Both these parameters are fine-tuned to generate a flexible model that avoids overfitting the
predictions. The 10-fold cross-validation-based model training is conducted to achieve the
best RMSE, MSE, MAE, and R2 metrics results. The SVM regression model is implemented
using the fitrsvm function of MATLAB 9.12.

3.4. Hyperparameter Estimation with Bayesian Optimization

The well-tuned hyperparameters for all the ANN models are computed with the BO
algorithm, a derivative-free optimization method for non-analytical models. The MSE is
used as the objective function f (x), which is minimized upon subsequent iterations of the
BO with different random samples of x according to the following relationship:

min
x∈A

f (x) = min
x∈A

(MSE) = min
x∈A

(
1
N ∑N

i=1(Ti − Oi)
2
)

x=R6
(2)

where Ti and Oi are the actual target and predicted output values, respectively, for training
sample i ranging from 1 to N number of observations, x is a random sample of six optimiza-
tion variables for each iteration of the BO algorithm and always selected from the bounded
domain of the structure A, containing search ranges for all the optimization variables as
stated in Table 3.

Table 3. Optimized hypermeters and their search range for Bayesian optimization.

Optimization Variable (Hyperparameter) Search Range for Optimization

Number of hidden layers
[
1 3

]
Number of neurons in 1st, 2nd, 3rd hidden layers

[
1 300

]
for each layer

L2 Regularization strength (λ)
[
1 × 10−6 1 × 104]

Activation function
[
ReLU Sigmoid Tanh None

]
The selection of x from A for each iteration of BO is based upon the Gaussian distri-

bution model, which is updated after each iteration to sample the x from the region that
maximizes the acquisition function. The acquisition function (expected improvement per
second plus) is used here, which is best for the global minimization of the objective function
by avoiding the local minima. The local minima are avoided by the balanced exploration
ratio of 0.5, which means an equal trade-off between the exploitation of already explored
regions and the exploration of comparatively unexplored regions of A for sampling the
new x. The maximization of the acquisition function, and hence, the convergence of the
BO algorithm, is obtained by an iterative quasi-Newton numerical optimizer known as the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. This way, the
fine-tuned hyperparameters of x for global minimization of the MSE are computed using
the BO method.

The additional hyperparameters are the data standardization and training iterations
limit, which were not optimized and were set manually for multiple sessions of the BO
algorithm for all the training datasets. As all the datasets were already normalized before
the BO application, data standardization during the optimization process was set to false.
All the sessions of BO were conducted with 10-fold cross-validation to find out the optimal
and validated trained model. Ten sessions of the BO method were applied to each dataset

198



Lubricants 2023, 11, 254

to ensure optimal hyperparameter tuning. After validation, the optimization results were
selected for the session with the minimum RMSE, MSE, and MAE values and the maximum
R2. The BO computational method is implemented using the bayesopt built-in function of
MATLAB 9.12 and various optimization settings.

3.5. Design of Lubricant ANN Model

Once the optimized hyperparameters for all the lubricant models are computed, regres-
sion ANNs are developed from all three training datasets with fine-tuned hyperparameters.
The general mathematical model for a single perceptron in all the ANNs is given below:

zj,i = bj + ∑n
i=1 wj,i xj−1,i (3)

hj,i = σ
(
zj,i
)
=

1
1 + e−zj,i

(4)

where wj,i is the weight for neuron i of the layer j, bj is the bias term for a particular layer
j, x is the input value from the preceding neuron, zj,i is the linear output value of all the
connected weighted inputs subjected to the activation function, σ is the non-linear sigmoid
activation function generating the final value hj,i for the neuron i in layer j.

Using the tuned hyperparameters, the regression ANN models are trained with
different training algorithms for neural networks. The two variants of training algorithms
were tested here for multiple training sessions, the scaled conjugate gradient (SCG) and the
LM backpropagation from the conjugate gradient and the quasi-Newton families. These
learning algorithms were implemented in MATLAB 9.12 with the built-in functions trainscg
for SCG and trainlm for LM training methods. Among the various comparative runs for both
methods, the SCG showed the best validation performance compared with LM for these
smaller datasets. The SCG converged to a lower MSE with fewer iterations at the expense
of training time. It also performed well during the testing of the approach with a varying
number of hidden neurons, as it is less sensitive to hyperparameter changes than LM. The
final design models of lubricant ANNs are generated with optimized hyperparameters and
an SCG backpropagation learning scheme. The convergence information for all the ANNs,
along with the hyperparameters, is shown in Table 4. The optimized number of hidden
layers, hidden neurons, and their activation functions are obtained from the multi-session
BO application on the datasets. To further validate the BO-based hyperparameter tuning
results, trial tests were conducted by changing the numbers of hidden layers and hidden
neurons. It was observed that further increasing the number of hidden layers and their sizes
did not significantly improve the regression performance in terms of assessment metrics.
Moreover, the prediction results of such trial models showed significant deviations from
the experimental data. This ensured that the best hypermeter combination was selected
by the BO, which reproduced the experimental results with high accuracy and precision.
The best validation results of performance assessment metrics are obtained with these
hyperparameters, as shown in Table 4.

Table 4. BO-estimated hyperparameters and convergence results for all lubricant ANN models.

ANN Model

Optimized Model Hyperparameters and Convergence Results

Hidden
Layer Size

Activation
Function

L2 Regularization ‘λ’
Validation

MSE at
Epoch

Iterations
Training

Loss
Gradient

Training
Time (s)

SiO2 NP 10 sigmoid 0 7.81 × 10−4

at 37
43 52.31 × 10−4 7.02 × 10−4 213

NG NP 4 sigmoid 0 5.89 × 10−4

at 27
33 2.02 × 10−4 10.01 × 10−4 188

Multi-NP 2 sigmoid 0.11 × 10−4 1.44 × 10−4

at 22
28 5.97 × 10−4 3.96 × 10−4 142
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4. Results and Discussion

Figure 2 shows the regression plots for each NP with initial regression models, i.e.,
RFT and SVM. The best regression models with the most promising performance metrics
are selected out of multiple training sessions with each regressor. The RFT regression
plots show a significant sensitivity drift compared with the perfect predictions for both
NPs, as shown in Figure 2a,b. The RFT prediction function follows the positive kurtosis
with the leptokurtic distribution of predictions that can be observed from the regression
plots. The RFT model failed to capture the complete variance of target data for the CoF
predictions with 0.87 and 0.757 mean values for the coefficient of correlation (R) and R2,
respectively. Moreover, a slight negative skewness of prediction distribution is observed
towards higher target values of the CoF. On the other hand, the SVM regression model
performed better with comparatively higher R and R2 values, as shown in Figure 2c,d for
SiO2 and NG NPs, respectively. The sensitivity drift is significantly reduced as compared
with the RFT, but few predicted values of the CoF still vary significantly from the target CoF.
The kurtosis of prediction distribution is significantly reduced to mesokurtic in comparison
with the leptokurtic distribution of the RFT model. These attributes and performance
metrics results for both models are further compared with the final design of ANN-based
regression models.

 
Figure 2. CoF computational efficiency for individual-NP-based lubricants with initial regression
models (a) SiO2 and (b) NG with RFT (c) SiO2 and (d) NG with SVM.

The regression plots for the individual-NP-based and hybrid lubricant ANNs are
shown in Figure 3. The regression plots for SiO2 and NG ANN models in Figure 3a,b
represent the best fit between the actual target values and ANN computed predictions of
the CoF with higher R values.

200



Lubricants 2023, 11, 254

 
Figure 3. ANN models (regression plots, error histograms) for individual NP lubricants (a) SiO2

(b) NG and (c) the multi-NP-based hybrid nano lubricant.

The R2 is almost equal to one for all the models, representing the perfect estimation
power of the designed ANNs and good confidence level in their computations. Moreover,
these models are trained over a wide target range as compared with the initial models
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and they performed better with comparatively good sensitivity over a larger spread of the
target CoF. The error histograms show the perfect Gaussian distribution of training, testing,
and validation errors during ANN model convergence.

These models can be further investigated to exhibit the behavior of NP-based lu-
bricants in terms of the CoF, with varying input parameters such as NP concentration,
load, and speed. Individual-NP-based lubricants mostly exhibit limitations in achieving
the required tribological characteristics. To overcome these limitations, the hybrid nano
lubricant ANN model is trained to achieve the benefits of both NPs to gain the required
tribological properties of the lubricants. Figure 3c represents the regression plot along with
the error histogram obtained during this ANN training. The regression plot with 0.9546 R2

shows the good computational power of this model to find out the optimum CoF against
the number of observations from the multi-NP-based training dataset. Few outlier samples
in the regression plot achieved the training errors, with higher magnitudes on both sides of
the zero error. Despite these countering outliers, the perfect regression fit is achieved. The
rest of the error histogram shows that the ANN is well trained with the SCG method and
has achieved minimal errors during the training, testing, and validation phases.

Table 5 shows the validation results of four regression performance assessment metrics,
i.e., RMSE, R2, MSE, and MAE, for all the computational models (RFT, SVM, ANN) for
both NPs and their hybrid (with ANN only). For SiO2 NP, the ANN achieved the lowest
RMSE, MSE, and MAE values with less difference from the SVM results and a significant
difference from the RFT results. The R2 for ANN and SVM is almost equal. For NG NP,
SVM achieved slightly lower RMSE, MSE, and MAE values than the ANN, whereas the
ANN achieved the best R2 among all models.

Table 5. Performance assessment metrics results for all regression models with individual NP and
hybrid nano lubricants.

Regression Model Nanoparticle

Performance Assessment Metrics
(10-Fold Cross-Validation)

RMSE R2 MSE MAE

Random Forest Trees
SiO2 8.8662 × 10−3 0.7373 7.8609 × 10−5 7.9509 × 10−3

NG 6.7444 × 10−2 0.7778 4.5487 × 10−3 6.3266 × 10−2

Support Vector Machines
SiO2 2.2689 × 10−3 0.9790 5.1481 × 10−6 2.1874 × 10−3

NG 3.2127 × 10−2 0.9727 1.0321 × 10−3 1.8183 × 10−2

Artificial Neural Network

SiO2 2.2181 × 10−3 0.9753 4.9199 × 10−6 2.1026 × 10−3

NG 4.2407 × 10−2 0.9909 1.7983 × 10−3 3.1608 × 10−2

Hybrid 3.6296 × 10−2 0.9546 1.3174 × 10−3 2.3902 × 10−2

Hence, these ANN models can be further investigated to study the tribological behav-
ior of computationally designed lubricants that are influenced by the individual character-
istics of multiple NPs. The inherent properties of such lubricant models can be utilized to
achieve better CoF values with varying NP concentrations, load, and speed trends.

During the investigation of lubricant characteristics, it was observed that the speed is a
less significant input as compared with the NP concentration and load. Substantial changes
in the operating speed do not considerably affect the CoF for any load and concentration,
whereas changing the NP concentration significantly affects the CoF of the lubricant.
Figure 4 represents the characteristics of individual-NP-based lubricants with varying
speeds and concentrations at a fixed load of 50 N. In an agreement with Bhaumik et al.’s
study [29], it is evident that varying the concentration (with identical speeds) varies the
CoF significantly. Thus, varying loading conditions results in variation in the optimum
concentration to achieve CoF minima.
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Figure 4. Significance of speed and NP concentration inputs to predict the CoF at a fixed load (50 N)
for (a) SiO2 and (b) NG nanoparticles.

Surface plots are developed to incorporate the influence of input parameters on the
performance of the lubricants. Figure 5 represents the load–speed effects on the CoF
with NP concentrations obtained for the individual-NP-based lubricants. These surfaces
indicate that the load and NP concentrations are the influential input parameters in the
NP-based lubricants and can drastically affect their tribological properties, as evident from
the varying CoFs.

In Figure 5, the CoF has been plotted for varying loads and speeds for both NPs, i.e.,
SiO2 and NG. Notably, regardless of the same base oil, the lubricating regimes vary for
different NPs for the same loading conditions. An increasing and then decreasing CoF
with increasing speeds for SiO2 occurs, in contrast with NG, where the CoF decreases for
growing speeds. This is attributed to the already fully developed lubricant oil film for the
former one for identical loading conditions against the interface still experiencing mixed
lubrication for the latter one. The decreasing CoF also highlights a thicker lubricant film
with an increasing load because of shearing thinning for NG.

Moreover, a precise offset is evident in friction reduction with increasing concentration,
regardless of the loading conditions. The percentage of each NP is different in oil to achieve
an identical CoF, e.g., 1 wt% of SiO2 and 0.1 wt% of NG results in a similar CoF at 100 RPM
and counterbalance weight load conditions. This, and the above-mentioned existence of the
interface in different lubricating regimes for identical loading conditions, makes it possible
to develop a hybrid lubricant with more than one NP.

The magnitude of influence caused by a combination of NPs is illustrated in Figure 6
for identical speeds but at varying loads, i.e., 10–100 N. This is to observe the effect of
NP combinations in different lubrication domains and how it influences the optimum
concentration of the NPs to develop a composite N-enriched lubricant oil. NG facilitates
the interface to reduce friction at low loads when the lubrication film thickness is well
developed and the interface is experiencing pure hydrodynamic lubrication at a 10 N
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load, as shown in Figure 6c. In contrast, when the load is increased, e.g., 50 N, as shown
in Figure 6b, the local minima for the CoF move toward a high concentration for both
the NPs and keep moving until they reach an equal concentration near (1,1). Similarly,
with another increase in load, e.g., at 100 N, as in Figure 6a, the SiO2 tends to facilitate
the decrease in friction more compared with the NG. This could be because of the high
molecular weight of SiO2, which increases the viscosity more than NG, or better tribofilm
development caused by SiO2. The mechanism of friction reduction, and hence the different
optimum concentrations at varying lubrication domains, is a limitation of the present work
and will be reported on in a future publication.

Figure 5. Speed and load effects on CoF for (a) SiO2 with 1% concentration and (b) NG with
0.5% concentration.

Figure 6. CoF estimation with hybrid-nano-lubricant-enriched lubricant oil containing ceramic and
carbon- based NPs against varying concentrations at a constant speed (50 RPM) and three different
loads; (a) 100 N, (b) 50 N, and (c) 10 N.
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5. Conclusions

The coefficient of friction (CoF) in nano lubricants has a complex and non-linear
relationship with its composition and loading conditions. Therefore, analytical models
for predicting the tribological behavior of such lubricants are not available. A study is
conducted utilizing machine learning (ML), and the following conclusions can be made
from the observations of this study.

• The computational models given by the data-driven ML-based approaches such as ran-
dom forest trees (RFT), support vector machines (SVM), and artificial neural networks
(ANN) are promising solutions to predict non-linearity in such complex interactions.

• The multi-layered ANN-based regression models of lubricants having single and
multiple nanoparticles (NP) are developed to examine their tribological behavior. The
complex interactions of input parameters (load, speed, and NP concentration) and the
output parameter (CoF) is well estimated by the ANNs when their hyperparameters
are optimized.

• A better performance for ML-optimized nano lubricant models is found in decreasing
the CoF between metal-to-metal interactions in sliding lubricated contact for engineer-
ing applications.

• The results have shown that the optimum concentration of NP varies with varying
lubrication domains and that a composite lubricant based on multiple NPs can be
beneficial to reduce frictional energy loss and improve the lubrication conditions.

• The optimum concentration of multiple NPs can be reached for interfaces that experi-
ence fluctuating loads and thus varying lubrication conditions during their service.

The future scope of this study is to examine the mechanism of friction reduction in
hybrid nano lubricants with different NPs and base oil combinations. Finding out the
optimum NP concentrations at varying lubrication domains is an underexplored research
area requiring the further study of such ML-based applications.
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Abstract: Pivoted pad thrust bearings are common machine elements used in rotating mechanisms
in order to support axial loads. The hydrodynamic lubrication of such bearings has been a major
subject of many investigations over the years. However, the majority of these investigations are based
on full film lubrication models, when, in fact, incomplete oil film profiles appear during various
operating conditions, such as startups and shutdowns. The lack of lubricant during operations
can have severe impact on the bearing’s performance, affecting its ability to carry the applied axial
load. The scope of the current investigation is to combine numerical analysis and machine-learning
techniques in order to create a model that predicts the thrust bearing’s performance in terms of the
pad’s load-carrying capacity. For this purpose, the 2-D Reynolds equation is solved numerically for
a variety of angular velocities and three different lubricants: SAE 20, SAE 30 and SAE 10W40. The
position of the lack of lubricant within the oil film’s control volume is studied and evaluated, together
with the percentage of oil film coverage in the inlet of the pad. The results of the numerical analysis
are used as input, in order to train and evaluate three different machine-learning models: Quadratic
Polynomial Regression, Quadratic SVM Regression and Regression Trees. The results showed that
the position of the film incompleteness affects the ability of the bearing to carry the axial load. At the
same time as less lubricant entered the domain, the pressure drop could reach lower values, up to
93%. From the studied lubricants, SAE 10W40 was the one that showed the best performance results
during incomplete oil film operation. Finally, the Quadratic Polynomial Regression model showed
the best fit and 99% accuracy in predicting the pad’s load-carrying capacity.

Keywords: thrust bearing; hydrodynamic lubrication; numerical analysis; machine-learning;
polynomial regression; SVM; regression trees

1. Introduction

Over the years, hydrodynamically lubricated tilting pad thrust bearings have been
widely used in many applications, such as agriculture, electrical generators, mining, naval
and automotive industry. They are designed to carry axial loads of rotating machinery
based on the hydrodynamic principals. A wedge created from the stationary thrust pads
and the rotor, as well as the relative motion of these two friction surfaces with the lubri-
cation film flowing in the middle, describe the fundamental principal of operation for
such bearings. Many researchers have built computational algorithms in order to model
the flow of the lubricant inside these mechanisms and calculate the major tribological
parameters that affect the operation of the bearings [1–4]. At the same time, a wide variety
of lubricants, surface profiles, texturing and coatings have been investigated in order to
improve pad thrust bearings’ operation targeting to maximize the load-carrying capacity
with the minimum possible power losses [5–8]. The majority of these studies are based on
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the assumption of a full lubricant film along the pad’s surface. However, in many applica-
tions, the lubricant’s flow in the inlet of the pad is not sufficient enough to cover the full
width, resulting in incomplete oil film operating conditions. Such operating conditions can
occur in several occasions, such as in startups and shutdowns, as well as in cases of direct
lubrication, regardless of the supply method. This oil film incompleteness can result in
severe pressure drop inside the pad, reducing the bearing’s load-carrying capacity. To begin
with, Etsion et al. [9] used the finite difference technique to solve the Reynolds equation
for a flat, sector-shaped pad thrust bearing with incomplete oil film. By calculating and
comparing the bearing’s load-carrying capacity and power loss with the results of a com-
plete fluid film bearing, they concluded that the bearing’s performance was affected by the
location of the lubricant’s supply. Furthermore, Heshmat et al. [10] performed a parametric
study on thrust bearings with insufficient oil supply. They investigated different numbers
of pads and inner and outer radii, as well as multiple degrees of starvation for tapered land
bearings. The results showed that 12-pad thrust bearings with (R2 − R1)/R2 = 1

2 were the
optimum geometry under starved conditions. Finally, Artiles and Heshmat [11] performed
an analysis on starved thrust bearings that included temperature effects. They used a finite
difference mesh in order to solve the 2-D temperature and pressure fields. The investigation
was performed for tapered land thrust bearings for different minimum film thicknesses and
levels of starvation. It was found that the effects of starvation were small when the bearing
was flooded with lubricant, but accelerated rapidly below 50% of starvation level. The start
of the film was mainly independent of geometric characteristics, but directly dependent on
the starvation level.

Modern technological advances in the field of computer engineering and networks
have already positively affected the more traditional mechanical engineering in many
aspects. The so-called 4th Industrial Revolution has provided researchers with impressive
computational power and digital tools, such as AI, machine-learning and IoT: enough to
support more revolutionary investigations and applications. In the field of tribology, and
specifically in bearings, researchers have mainly applied these tools for fault diagnosis,
prognosis and residual life estimation. It was not until recently that progress was reported in
applying such techniques on the design and performance prediction of bearings. First of all,
A. Moosavian et al. [12] proposed a diagnostic method that can reliably separate different
fault conditions for the main journal bearings of an internal combustion engine. Vibration
signals of three different operating conditions were examined (normal, oil starvation and
extreme wear) and then used as inputs to train two classifiers: K-nearest neighbor and
artificial neural network. The artificial neural network showed better performance in
journal bearing fault diagnosis compared to the K-nearest neighbor classifier. Furthermore,
Alves et al. [13] presented promising results for training machine-learning algorithms with
simulated data in order to perform ovalization fault diagnosis in hydrodynamic journal
bearings. They built a numerical model to simulate the ovalization fault conditions; then,
they used the numerical analysis results as a training data set for a deep convolutional
neural network algorithm that was able to predict the fault conditions. Moreover, S. Poddar
and N. Tandon [14] developed an application that takes acoustic emission data as input and
diagnoses the category of faults in journal bearing operation. To do so, they used acoustic
emission signals from journal bearings operating under normal conditions, cavitation,
particle contamination and oil starvation. These data were then used in order to train
different decision tree and K-nearest neighbor machine-learning models. The weighted
k-NN classifier model showed the best prediction results and was eventually used for the
application. R.L. Lorza et al. [15] proposed a combined Finite Element and Data Mining
method to determine the maximum load-carrying capacity in tapered roller bearings. The
FE model was run for different input loads and the corresponding contact stresses were
obtained. This training data set was then used to train a regression model. Linear regression,
Gaussian processes, artificial neural networks, support vector machines and regression
trees were investigated in this study. The best combination of input loads was achieved
by applying evolutionary optimization techniques based on genetic algorithms to the best
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regression models. In addition, K.P. Katsaros and P.G. Nikolakopoulos [16] proposed a
combination of numerical and machine-learning techniques in order to identify optimal
designs in hydrodynamically lubricated pivoted pad thrust bearings. A 2-D Reynolds-
based finite difference numerical model was solved for three different lubricants and
multiple operating conditions. The obtained tribological data were then used to train
linear, quadratic and SVM regression models. AWS 100 was found to be the most efficient
lubricant; it showed the maximum load-carrying capacity and the minimum friction force
for the thrust pad. Moschopoulos et al. [17] developed a machine-learning procedure in
order to predict journal bearings’ performance characteristics. To this end, they recorded
sound and vibration signals, applying the one-third octave filter to post process them. With
this data set, they trained three ML algorithms: K-nearest neighbor, random forest classifier
and gradient-boosting regressor. The investigation showed that ML algorithms that used
sound signals had better prediction accuracy compared to those based on vibration signals.
Finally, Zavos et al. [18] proposed a machine-learning approach, in order to design piston
rings and thrust bearings with optimum coating selection. For this purpose, analytical
results from the friction models of both assemblies were used as input data in order to train
quadratic polynomial regression and support vector machine models. By predicting the
minimum friction coefficient, the investigation showed that, in the case of piston rings, the
TiN2 and TiAlN were the best design selection. On the other hand, in the case of the tiling
pad thrust bearing, the DLC was the optimum coating selection.

The aim of this study is to combine numerical and machine-learning algorithms in
order to create a model that predicts the performance of tilting pad thrust bearings that
operate under various incomplete oil film profiles. Focusing on the load-carrying capacity
of the pad as a critical performance characteristic, the pad bearing’s operation is simulated
for rotational velocities from 2000 up to 12,000 rpm. Three lubricants are used during
the investigation: the mono-grade oils SAE 20 and SAE 30, as well as the multi-grade
SAE10W40. Three different machine-learning methods (quadratic polynomial regression,
support vector machine, regression trees) are applied and compared in terms of predictions
accuracy. The novelty of this study lies in the fact that no similar work can be found in
literature combining numerical and ML methods for incomplete oil film study and design
of hydrodynamically lubricated tilting pad thrust bearings.

2. Theory

2.1. Hydrodynamic Lubrication Model

The 2-D Reynolds Equation (1) is used in the current study in order to calculate the
hydrodynamic characteristics of the lubricant’s flow. The pivoted pad under consideration
is approximated and considered to be a center-pivoted rectangle. A schematic of the
rotor–pad conjunction is presented in Figure 1. The film thickness is assumed to be small
compared to the length and the width of the pad. To add to that, Newtonian, incompressible
lubricants are assumed to follow a laminar and isothermal flow inside the pad- rotor
conjunction. Cavitation effects, although important in specific pad geometries and high
rotational velocities, are not taken into consideration for the current investigation, based
on the assumption that the minimum pressure is not reaching the vapor pressure value.
In the rotor-lubricant interface, the oil is assumed to gain the velocity of the wall that it
comes in contact with; thus, the no-slip condition is applied [19]. Moreover, the viscosity is
considered to be constant throughout the film thickness. The film thickness h is assumed to
be a function of the pad’s length and is calculated from equation (2), while any change in the
radial direction and the corresponding misalignment issues are not taken into consideration.
Normally, the inclination of the pad and the minimum film thickness are calculated at the
equilibrium position, so that the pad can carry the applied load. In this study, given the
specific minimum film thickness and the inclination value, the load-carrying capacity of the
pad is calculated in the equilibrium position by integrating the pressure p over the bearing
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pad area (3). In the cases of incomplete oil film, the lubricant’s width (l) is calculated based
on the continuity of the flow (4).

∂
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h3 ∂p
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)
+

∂

∂y

(
h3 ∂p
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)
= 6μU

∂h
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x
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0
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∫ L0

0
(qx)0dy ±

∫ L

0
qydx (4)

 

Figure 1. Pivoted pad thrust bearing schematic.

2.2. Viscosity Model

During operation, the rise in temperature leads to a decrease in the lubricant’s viscosity
value. As mentioned, from Nacer Tala-Ighil and Michel Fillon [20], the concept of the “effec-
tive temperature” can be considered in order to approximate the operating viscosity value
without applying complex and time-consuming THD algorithms. The effective temperature
value inside the lubricant’s domain is calculated from Equations (5) and (6) [21]. T is the
effective temperature of the lubricant, while T0 is considered to be the inlet temperature.
The constant ke is empirical and, with a value of 0.8, gives good agreement between theory
and experiment. The variation of temperature ΔT is considered to be a function of friction,
rotating velocity and average axial fluid flow. The lubricant’s density and specific heat
capacity are also taken into consideration. To add to that, the fraction lin

L is applied, in
order to define the various percentages of inlet oil coverage during the investigation. An
iterative procedure is followed, in order to define the final average effective temperature
for each simulation.

The Sutherland’s law is used to model the viscosity variation according to temperature (7), (8).
Specific coefficients are calculated as the model is adapted to fit the known dynamic
viscosity values for each lubricant. A graphical representation of the dynamic viscosity
variation according to temperature is shown in Figure 2.

T = T0 + keΔT (5)
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Figure 2. Dynamic Viscosity variation according to Temperature for SAE 20, SAE 30 and SAE 10W40.

2.3. Numerical Analysis

In order to numerically solve the Reynolds equation, the control domain of the lubri-
cant inside the pad-rotor tribocouple is discretized with a typical 2-D mesh of approximately
2500 finite cells; 50 in x direction, and 50 in y direction. Spatial resolution tests showed
differences in the order of 1% between typical and fine meshes. The inlet and outlet of the
lubricant’s control volume are assumed to be openings, and a constant pressure P = patm
is applied as a boundary condition. To add to that, an outflow condition is prescribed
in both inner and outer pad sides: r = Rin, Rout. In addition, no inflow is allowed in the
computational domain and the ambient pressure P = patm is applied. The rotor is assumed
to be moving with a constant rotational velocity ω, which corresponds to U = ωrmean at the
pad’s mid sector. An iterative algorithm is built based on the finite differences—central
differences—methodology. The Reynolds equation is adapted so that the algorithm is
able to swipe over the grid and compute the corresponding pressure Pij at any internal
node (9). A representation of the calculation is presented in Figure 3, where c is the node
at which the pressure is calculated and n, w, s, e are the neighboring nodes used for this
calculation. Convergence to steady-state condition is verified by monitoring the computed
nodal pressure based on the defined convergence criteria (10). In the cases of incomplete oil
film (Figure 4), the lubricant’s width limit lines LB (i), LT (i) are calculated by swiping over
the nodes in the direction of the flow (11). The amount of lubricant that enters the domain
lin flows through the pad-rotor conjunction and adapts to the inclination of the pad. As
a result, the same amount of lubricant at every step of the way through the pad (i) has to
cover more and more of its surface until (if) it reaches the pad’s sides or the end of the pad
in the flow direction. Pressure P = patm is then applied as a boundary condition on the area
where no lubricant flows. The calculation of pressure distribution in the y-direction is then
limited to the new boundary conditions. In addition, Case A refers to lack of lubricant on
the outer part of the pad, and is modeled with LB (i) placed on the inner pad border, while
LT (i) takes values within the domain. Case B refers to the lack of lubricant on the inner
part of the pad. As a result, LT (i) is placed on the outer border and LB (i) runs through the
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fluid film domain. Finally, Case C refers to the scenario where both LB (i) and LT (i) are
calculated symmetrically through the fluid film.

Pi,j = CnPn + CwPw + CsPs + CePe + G i, j = 0, . . . , 50 (9)

Errpress =
∑N

1

∣∣∣Pj
i − Pj

i−1

∣∣∣
∑N

1

∣∣∣Pj
i

∣∣∣ ≤ 1 × 10−6 (10)

li = lin
hin
hi

(11)

Figure 3. Finite Difference-Central Differences Computation Grid.

Figure 4. Computation grid, along with the incomplete oil film areas.

The hydrodynamic lubrication model is validated with experimental data obtained
from the paper of Bielec and Leopard [22]. Figure 5 shows that there is a good agreement
between the experimental and computed pad-specific load for different angular velocities
and film thicknesses.
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Figure 5. Numerical and Experimental Specific Pad Load- Data Validation.

2.4. Machine-Learning

For the purpose of this study, all the data obtained from the numerical simulations
are used as input, in order to train and compare machine-learning models based on three
different methods: the Multi-Variable Quadratic Polynomial Regression, the Quadratic
Support Vector Machine and Regression Trees. These regression models are widely used in
machine-learning applications, mainly due to their simplicity and accuracy to predict the
corresponding response values. To begin with, the Multi-Variable Quadratic Polynomial
Regression model is based on the least-squares fit methodology, in which the sum of the
squares of the residuals needs to be minimized. Two independent variables, or predictors,
are used x1i: rotational velocity [rpm]; x2i: percentage of inlet oil coverage, in order to
predict the response values of one dependent variable Y: Pad’s Load-carrying Capacity [N].
For a set of n-observations, Equation (12) or, in matrix form, Equation (13), is solved, in
order to calculate the y-intercept: β0 and the corresponding slopes: β1, . . . ,β5.

Y = XB (12)

Y =

⎡⎢⎢⎢⎣
y1
y2
...

yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 x11 x21 x11

2 x11x21 x21
2

1 x12 x22 x12
2 x12x22 x22

2

...
...

...
...

...
...

1 x1n x2n x1n
2 x1nx2n x2n

2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

β0
β1
β2
β3
β4
β5

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

Furthermore, the Support Vector Machine models were trained in Matlab’s Regression
Learner application, using the quadratic polynomial kernel function (14). In addition, with
the same application, regression trees were trained and evaluated accordingly. To perform
the analysis, all data were sorted in ascending order for both predictors, x1i and x2i. Then,
all the mean squared errors were calculated separately for all the response values of both
predictors (15) in each splitting candidate node t. At every iteration, the splitting node t
of the regression tree was defined as the one that provided the minimum mean-squared
error from all the examined data. The procedure continues repeatedly until each branch
reaches the pre-defined leaf size. For the current study, a leaf size equal to 4 has been
selected, as it provides the finest tree results for the Matlab’s application with the optimum
accuracy. In addition, the criteria chosen in the current study, in order to measure and
evaluate the goodness of fit for the generated machine-learning models, is the coefficient of
determination, or R2 (16). This coefficient indicates the difference between the values of
the dependent variable yfit calculated from the model and the observations ynum obtained
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from the relevant numerical simulations. The higher the value of R2, the better the model
is at predicting the data. Finally, the Matlab’s standard 5-fold, cross-validation procedure
was applied for 5 randomly chosen partitions of the original data set. All the models where
trained with 80% of the data from the data lake, while the rest 20% of the data was used for
testing. Experimental data were used for the validation of the ML model as shown in [16].

(X, Y) =
(

c + XTY
)2

(14)

MSE = ∑
1
n
(yi − yt)

2 (15)

R2 = 1 −
∑n

1

(
ynum − ˆyfit

)2

∑n
1 (ynum − y)2 (16)

3. Results

The simulations were performed for three different types of inlet incomplete oil
profiles: Case A: where there was lack of oil on the outer radius; Case B: where there was
lack of oil on the inner radius; Case C: symmetrical lack of oil from the center of the pad.
Three different lubricants were examined: the mono-grade SAE 20 and SAE 30, as well
as the multi-grade SAE 10W40. The simulations were run for rotational velocities, from
2000 up to 12,000 rpm, and a k = 0.1 inclination of the pad. The corresponding Reynolds
numbers vary from Re = 60 up to Re = 200, indicating a laminar flow. The coverage of the
pad’s inlet with lubricant varied from 1 (full film lubrication) up to 0.4 (40% of the inlet
covered with oil). The film thickness variation to rotational velocity has been considered
similar to the one presented in Figure 13.3a from Bielec and Leopard [22]. All the input
parameters are shown in Table 1.

Table 1. Input parameters for the simulations.

Pad’s Length 32 mm
Pad’s Width 28 mm
Pad’s Outer Radious 62 mm
Pad’s Inclination 0.1
Pad’s Pivot center
Rotational Velocity 2000–12,000 rpm
Percentage of Inlet Oil Coverage 0.4–1
SAE 20 dynamic viscosity @50 ◦C 0.033 Pasec
SAE 30 dynamic viscosity @50 ◦C 0.046 Pasec
SAE 10W40 dynamic viscosity @50 ◦C 0.054 Pasec
SAE 20 density @40 ◦C 861 Kg/m3

SAE 20 specific heat capacity 2021 J/kgK
SAE 30 density @40 ◦C 869 Kg/m3

SAE 30 specific heat capacity 1950 J/kgK
SAE 10W40 density @40 ◦C 851 Kg/m3

SAE 10W40 specific heat capacity 1980 J/kgK
Lubricant’s Inlet Temperature 323 K

Figures 6–8 below show typical representations of the corresponding pressure profiles
for the three different incomplete oil film cases studied: A, B, C, at 60% inlet coverage and
6000 rpm rotational velocity.
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Figure 6. Typical pad’s pressure distribution for the Case A incomplete oil film profile at 60% oil film
coverage for the inlet of the pad.

 

Figure 7. Typical pad’s pressure distribution for the Case B incomplete oil film profile at 60% oil film
coverage for the inlet of the pad.
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Figure 8. Typical pad’s pressure distribution for the Case C incomplete oil film profile at 60% oil film
coverage for the inlet of the pad.

The total amount of 2079 simulation data was used as input in order to train the
machine-learning models that predict the load-carrying capacity of the pad according to
rotational velocity and the percentage of oil coverage in the inlet of the pad. Table 2 shows
all the Quadratic Polynomial Regression ML models, along with the corresponding R2

values of each case:

Table 2. Quadratic Polynomial Regression models.

Case Study ML Model R2

SAE 30 Case A y = 139.4 − 891x1 − 0.016x2 + 1577x1
2 + 0.075x1x2 − 0.1 × 10−5x2

2 0.99
SAE 30 Case B y = 5.1 − 405.3x1 − 0.021x2 + 1240.7x1

2 + 0.08x1x2 − 0.8 × 10−6x2
2 0.99

SAE 30 Case C y = −57.7 − 189.7x1 − 0.02x2 + 1087.3x1
2 + 0.08x1x2 − 0.8 × 10−6x2

2 0.99
SAE 10W40 Case A y = 172.3 − 1035.4x1 − 0.023x2 + 1792.5x1

2 + 0.09x1x2 − 0.1 × 10−5x2
2 0.99

SAE 10W40 Case B y = 101.7 − 748.3x1 − 0.026x2 + 1593.4x1
2 + 0.09x1x2 − 0.8 × 10−6x2

2 0.99
SAE 10W40 Case C y = 23.1 − 496.5x1 − 0.023x2 + 1419.2x1

2 + 0.09x2 − 0.9 × 10−6x2
2 0.99

SAE 20 Case A y = 80.3 − 729.3x1 − 0.01x2 + 1409.1x1
2 + 0.07x1x2 − 0.1 × 10−5x2

2 0.99
SAE 20 Case B y = −38.7 − 325.4x1 − 0.009x2 + 1127.1x1

2 + 0.07x1x2 − 0.1 × 10−5x2
2 0.99

SAE 20 Case C y = −909 − 1418.2x1 − 0.09x2 + 9977.2x1
2 + 0.7x1x2 − 0.1 × 10−4x2

2 0.99

The R2 values in all models are close to 0.99, which means that there is a good
agreement between the numerical data and the prediction models’ response values. At the
same time, this is also an indicator of 99% accuracy for the ML model to predict the pad’s
load-carrying capacity at the given predictor values.

Figures 9–11 are the graphical representations of the Quadratic Polynomial Regression
ML models for all three lubricants and incomplete oil film profiles. In all cases, the load-
carrying capacity of the pad decreases along with the percentage of inlet oil coverage,
with the pressure drop reaching up to 93% for 40% inlet oil coverage. Furthermore, it is
clearly shown that, in all cases, the lack of lubricant in the outer area of the pad—profile
A—shows the minimum load-carrying capacity for the pad. On the other hand, profile C,
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with the symmetrical lack of lubricant, shows the maximum load-carrying capacity for the
pad in all the studied cases. All three lubricants show identical response to the area of oil
film incompleteness. Regardless of the angular velocity, data show a better load-carrying
capacity for the profile C compared to the profile A, from 6 up to 15%, depending on the
coverage of the inlet with oil. As the percentage of the lubricant’s coverage decreases, the
case C profile shows better and better performance for the pad of the bearing compared to
the profiles A and B. For the worst studied conditions, 12,000 rpm rotational velocity and
40% of inlet oil coverage, the profile C provides up to 15% more load-carrying capacity for
the pad compared to the case A profile.

 

Figure 9. Quadratic Polynomial Regression model of SAE30 for all the incomplete oil film profiles.
Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity.

Figure 12 shows the comparison results for Case C—symmetrical oil film incompleteness—
for all studied lubricants. SAE 20 shows the minimum load-carrying capacity values in
comparison to SAE 10W40, which has by far the highest values in all studied conditions.
This outcome is consistent with the corresponding dynamic viscosities of the lubricants.
SAE 10W40 shows up to 135% better performance when studying the most extreme condi-
tions of 12,000 rpm angular velocity and 40% coverage for the inlet of the pad.

For comparison purposes, the numerical data of the case study C (symmetrical incom-
plete oil film profile) were used as input, in order to train a Quadratic SVM ML model and
a Binary Regression Tree model. The R2 values, which will define the goodness of fit for
all the trained models, are presented in Table 3. First of all, values of the order of 0.95 for
the R2 are, in general, accepted as very good for the fitness of the models in the data. That
means that all trained models in this study have a very good response and higher than
95% accuracy to predict the load-carrying capacity of the pad. Nevertheless, in a more
detailed approach, the Quadratic SVM models show better results than Regression Trees,
while the Quadratic Polynomial Regression models present, in general, the best values
of R2.
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Figure 10. Quadratic Polynomial Regression model of SAE10W40 for all the incomplete oil film
profiles. Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity.

 

Figure 11. Quadratic Polynomial Regression model of SAE 20 for all the incomplete oil film profiles.
Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity.
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Figure 12. Quadratic Polynomial Regression model of incomplete oil film profile C for all the studied
lubricants. Load-carrying capacity according to percentage of inlet oil coverage and rotational velocity.

Table 3. Quadratic SVM and Regression Tree models and their corresponding R2.

Case Study R2

SAE 30 Quadratic SVM ML model 0.98

SAE 30 Regression Tree ML model 0.95

SAE 10W40 Quadratic SVM ML model 0.98

SAE 10W40 Regression Tree ML model 0.95

SAE 20 Quadratic SVM ML model 0.98

SAE 20 Regression Tree ML model 0.95

Taking a closer look at the results of case study C for the SAE 10W40, the lubricant
with the optimum performance in terms of pad load-carrying capacity, one can notice
that the Quadratic Polynomial Regression model has 99% accuracy in predicting the
results. The Quadratic SVM model shows just 1% less accuracy with R2 = 0.98, while the
Regression Tree model has an R2 = 0.95, which gives 4% less accuracy in load-carrying
capacity prediction compared to the Quadratic Polynomial Regression model. Figure 13
is a graphical representation of the predicted versus the true response values for the
Quadratic SVM and the Regression Tree models that were trained with Matlab’s Regression
Learner tool. It is visually verified that the Quadratic SVM model has a better fit to the
results compared to the Regression Tree model, since the observations (blue markers) are
gathered very close to the prediction line compared to the Regression Tree model on the
right, which shows a few observations with a higher deviation from the prediction line,
mainly on the upper left corner. Figures 14 and 15 (below) are the typical representation of
the response plots for the SAE 10W40, case study C and Quadratic SVM model for each
predictor. Similarly, Figures 16 and 17 are the typical representations of the response plots
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for SAE 10W40, case study C and Regression Tree model. Finally, Figure 18 is the graphical
representation of the Regression Tree machine-learning model for the lubricant SAE 10W40
and case study C- symmetrical, incomplete oil film profile.

 

Figure 13. SVM model VS Regression Tree model- True and Prediction response plots for SAE 10W40,
case C.

 

Figure 14. Typical response plot of the pad’s inlet oil coverage and load-carrying capacity for the
Quadratic SVM model, SAE 10W40, case C profile.
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Figure 15. Typical response plot of the rotational velocity and load-carrying capacity for the Quadratic
SVM model, SAE 10W40, case C profile.

 

Figure 16. Typical response plot of the pad’s inlet oil coverage and load-carrying capacity for the
Regression Tree model, SAE 10W40, case C profile.
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Figure 17. Typical response plot of the pad’s rotational velocity and load-carrying capacity for the
Regression Tree model, SAE 10W40, case C profile.

 

Figure 18. Graphical representation of the Regression Tree model for the SAE 10W40, case C incom-
plete oil film profile.

4. Conclusions

In the current paper, the performance of a tilting pad thrust bearing was investigated
in terms of the pad’s load-carrying capacity under various incomplete oil film profiles
by combining numerical and machine-learning techniques. The 2-D Reynolds equation
was solved numerically with the finite difference, central differences and method for three
different lubricants: SAE 20, SAE 30 and SAE10W40. Three incomplete oil film profiles
were studied, with the percentage of inlet oil coverage varying from 40% to 100%, and the
rotational velocity of the rotor covering a range between 2000 and 12,000 rpm. In addition,
the numerical data were used as input in order to train three machine-learning models:
Quadratic Polynomial Regression, Quadratic SVM and Regression Trees. The conclusions
of the investigation are summarized below:
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� As less oil covers the pad’s surface, the load-carrying capacity drops up to 93% for
40% of inlet oil coverage.

� The load-carrying capacity of the pad is affected by the position of the oil film incom-
pleteness. The lack of lubricant on the outer area of the pad, profile A, shows the
worst load-carrying capacity results, while the case study C profile, with symmetrical
lack of lubricant, presents up to 15% better performance.

� From the studied lubricants, SAE 10W40 shows up to 135% better performance for
the worst studied conditions of 12,000 rpm and 40% inlet oil coverage.

� All the machine-learning models have a good accuracy in predicting the load-carrying
capacity of the pad, since all R2 values are higher than 0.95.

� Finally, the Quadratic Polynomial Regression ML model shows 1% better accuracy
compared to the Quadratic SVM model, and 4% better accuracy when compared to
the Regression Tree ML model.

All in all, the chosen machine-learning model that fits the needs of the current in-
vestigation in the best possible way is the Quadratic Polynomial Regression model. The
lubricant that provides the pad with the optimum load-carrying capacity when facing
incomplete oil film operating conditions is the SAE 10W40, and the worst case scenario is
the lack of lubricant in the outer area of the pad’s surface.
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Nomenclature

A total area of bearing pads [m2]
B pad length in x-direction [m]
Cμ

1 first viscosity coefficient—absolute temperature at which μ = μν (323 K)
Cμ

2 second viscosity coefficient according to Sutherland’s law = 3800
Cμ

3 third viscosity coefficient according to Sutherland’s law = 30,000
Cn,s,w,e constants for each neighbor node
h film thickness [m]
h0, h1 outlet, inlet film thickness [m]
hmin minimum film thickness [m]: hmin = min(h0, h1)
k convergence ratio: k = (h1 − h0)/h0
ke empirical constant = 0.8 [21]
L pad’s width in y-direction [m]
p absolute pressure [Pa]
P absolute nodal pressure [Pa]
qx,y lubricant flow [m3/h]
Qin,out lubricant flow in inlet and outlet area of the pad [m3/h]
Qsr1,2 lubricant outflow from the sides of the pad [m3/h]
T temperature [K]
U linear rotor velocity [m/s]
μ dynamic viscosity coefficient [Pas]
μv nominal dynamic viscosity
x independent variable of length along pad’s width side [m]
ω rotational velocity [rpm]
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