Inhibition of Pannexin 1 Reduces the Tumorigenic Properties of Human Melanoma Cells

Taylor J. Freeman, Samar Sayedahossein, Danielle Johnston, Rafael E. Sanchez-Pupo, Brooke O’Donnell, Kenneth Huang, Zameena Lakhani, Daniel Nouri-Nejad, Kevin J. Barr, Luke Harland, Steven Latosinsky, Aaron Grant, Lina Dagnino and Silvia Penuela

Supplementary Material

Supplementary Figure 1. Immunofluorescence of PANX1 expression in representative patient-derived primary melanoma tumors, nodal and distant melanoma sections from different tumor locations provided by OICR. Each panel represents a different patient. PANX1: green, Hoechst: blue; Scale: 20μm.
Supplementary Figure 2. (A) A WST-1 cytotoxicity assay was used to assess A375-MA2 cell viability when CBX or PBN is applied. Cytotoxic effects do not occur at 100μM CBX and 1mM PBN indicating that results from in vitro and in vivo experimental assays are due to channel blockade rather than a decrease in cell viability. Significant cytotoxic effects occur at 250μM CBX or 5mM PBN in A375-MA2 melanoma cells. Statistical analyses for WST-1 assays were performed using a two-way ANOVA with multiple comparisons followed by a Sidak test. (B) Doubling times of A375-MA2 cells increased when 100μM CBX (N = 4, n = 12) or 1mM PBN (N = 3, n = 9) was applied to cells in comparison to vehicle control. Data for doubling time was derived from the curves in Figure 2A using a nonlinear regression for exponential growth. **** p < 0.0001; Bars indicate S.E.M.