In this study, we completed a simple low-temperature synthesis of nest-like titanium oxide (TiO$_2$) microspheres with exposed (001) facets. For the first time, the photocatalytic performance was enhanced by sodium hydroxide (NaOH) alkalization. The characterization of as-synthesized F-TiO$_2$ and OH-TiO$_2$ were analyzed by field emission scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopic analysis, ultraviolet-vis diffuse reflection spectra and Raman spectroscopy. The photocatalytic activity of the as-prepared catalyst was evaluated through the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RhB) under simulated solar light. The results showed that modification using NaOH can lead to an increase in the percentage of (001) facets from 27.8% for F-TiO$_2$ to 39.2% for OH-TiO$_2$. OH-TiO$_2$ showed superior catalytic photoactivity toward MB. The mechanism of NaOH on TiO$_2$ is also discussed.

Keywords: F-TiO$_2$; OH-TiO$_2$; (001)TiO$_2$; methylene blue; nest-like

1. Introduction

Since Fujishima discovered that titanium oxide (TiO$_2$) could split water in 1972 [1], TiO$_2$ has been studied for its lack of toxicity, low cost and stability, which make it a promising photocatalyst for environmental remediation [2–4] and hydrogen evolving [5]. The decreasing order of the surface energies of anatase TiO$_2$ has been found to be 0.90 J/m2 for (001), 0.53 J/m2 for (100) and 0.44 J/m2 for (101) [6,7], so most anatase TiO$_2$ has a low-energy (101) surface rather than high-energy (001) facets [8–16]. The (001) surface of anatase TiO$_2$ is much more reactive than the (101) surface [17,18]. Developing a technique to exposure the surface of (001) has proven to be a challenge.

In 2008, Yang et al. successfully prepared anatase TiO$_2$ crystals with as much as 47% of the (001) facets being exposed using a surface fluorination method [19]. Since then, studies on (001) faceted anatase TiO$_2$ have been completed [20–27]. However, most of the (001) faceted anatase TiO$_2$ crystals were prepared at high temperature through calcination or hydrothermal techniques [20–27].

Akali-modification of catalysts have also been proven to be effective on enhancing the photo-activity in methane dehydroaromatization, cumene cracking and carbon monoxide (CO) oxidation [28–30]. For example, Han et al. [28] found that alkali could form more hydroxyl on gold (Au) catalysts to enhance their catalytic activity. Alkali modified ZSM-5 zeolite also showed enhanced catalytic performance due to the formation of additional mesopores and the improvement of mass transfer and reaction kinetics [29,30]. The performance of sodium hydroxide (NaOH)-modified Pt/TiO$_2$ was enhanced with the oxidation of formaldehyde at room temperature [30]. This present study attempted to modify TiO$_2$/TiOF$_2$ by NaOH to enhance its catalytic performance.
Furthermore, F-doped TiO$_2$ is thought to have (001) facet exposure, and the fluoride ions remain well bound and stable on the surface of F-TiO$_2$ samples. Further study is required on the mechanism by which the NaOH modification occurs on F-TiO$_2$, the morphology, (001) facet exposure, crystal properties, ultraviolet (UV)-vis adsorption properties, and the crystal defect changes of F-TiO$_2$ after NaOH-modification. In this paper, a low-temperature synthesis method for TiO$_2$ microspheres with exposed (001) facets is reported, and the photocatalytic performance was enhanced by NaOH alkalization (nest-like OH-TiO$_2$) for the first time. The morphology, (001) facet exposure, crystal properties, UV-vis adsorption properties, and crystal defects changes were studied. The photocatalytic performance of the as-prepared catalyst was tested using the photocatalytic degradation of methylene blue (MB) and Rhodamine B (RhB) under simulated solar light. The NaOH alkalized microspheres showed superior catalytic photoactivity towards MB. The mechanism of NaOH toward TiO$_2$ is also discussed.

2. Results and Discussion

2.1. Structural Characterization

Figure 1 shows the X-ray diffraction (XRD) patterns of as-prepared F-TiO$_2$ and OH-TiO$_2$ samples. No apparent peaks of other phases were found, meaning that both samples were pure crystals. The XRD peak positions for both the samples at 2θ were 25.28°, 37.80°, 48.04°, 53.89°, 55.06°, 62.68°, 70.31° and 75.03°, which matches well with anatase TiO$_2$ (JCPDS card No. 21-1272) and different from P25 (mixed crystals of anatase and rutile TiO$_2$). The characteristic diffraction peak intensity of F-TiO$_2$ is obviously stronger than that of OH-TiO$_2$, meaning that the crystallinity of the sample can be increased with fluorine ions, which aligns with the results of Xiang et al. [31]. After NaOH treatment, the crystal form of the catalyst changed, which aligns with the results of Hou Chentao et al. [32].

![Figure 1. X-ray diffraction (XRD) patterns of as-prepared F-TiO$_2$ and OH-TiO$_2$ samples.](image)

The morphology of the as-prepared samples was characterized by field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscopy (HRTEM) in Figure 2. The as-synthesized F-TiO$_2$ has a hollow microsphere shape with an average size of around 700–900 nm covered with compact particles of around 50 nm (Figure 2a). This shape may be explained by the Ostwald ripening process [33]. In the HRTEM (Figure 2c and, especially in Figure 2d), the spacing of the lattice fringe was 0.352 nm and 0.235 nm, respectively, corresponding to the lattice distance of the (101) and (001) plane of anatase TiO$_2$ [34,35]. So the surfaces of the F-TiO$_2$ microspheres are covered with small (001) exposure crystals. From Figure 2b, after modification by NaOH, the microspheres were destroyed and the compact particles became loose and hairy, developing a nest-like structure.
As can be seen in Figure 2e,f, the nest-like structure also has the (001) surface exposed, permitting light-scattering inside the shell wall and enhancing absorption in light. We think the mechanics may be as follows. When the NaOH is added, the F ions will be exchanged by OH of NaOH, the transformation takes place starting from the edges and corners of the F-TiO$_2$ [36], which are of high surface energy. The transformation leads to the gradual formation of OH-TiO$_2$ with more (001) facets exposure and flatter TiO$_2$ sheets. The transformation also makes the compact F-TiO$_2$ crystals looser and take on a nest-like shape. The nest-like structure increases the OH-TiO$_2$ surface area (S_{BET}) to 55 m2/g, which is much larger than that of F-TiO$_2$ at 20 m2/g.

![Figure 2](image-url)
Figure 2. Field emission Scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscope (HRTEM) of as-prepared F-TiO$_2$ and OH-TiO$_2$ samples. (a) FE-SEM images of F-TiO$_2$; (b) FE-SEM images of OH-TiO$_2$; (c,d) HRTEM images of F-TiO$_2$; (e,f) HRTEM images of OH-TiO$_2$.

Raman spectroscopy was used to calculate the percentage of (001) facets of the as-prepared catalysts (Figure 3). The percentage of (001) facets was calculated using the peak intensity ratio of the Eg and A1g peaks at 144 cm$^{-1}$ and 514 cm$^{-1}$, respectively [27,37]. The percentage of (001) facets for F-TiO$_2$ was 27.8%, but after modification with NaOH, the percentage of OH-TiO$_2$ increased to 39.2%, which helped to enhance the photocatalytic performance of catalyst.
2.3. FT-IR Analysis

The peaks around 930 cm$^{-1}$ are attributed to F–Ti which disappeared after NaOH washing, meaning F was exchanged by OH. The span between 2934 and 3416 cm$^{-1}$ may promote light-scattering inside the pores of the shell wall and enhance absorption in light [25].

2.2. UV-Vis DRS Analysis

The UV-vis diffuse reflectance spectra (DRS) and bandgap of the as-prepared samples are shown in Figure 4. From Figure 4a, the F-TiO$_2$ and OH-TiO$_2$ catalysts of are almost identical in terms of absorption between 230 and 550 nm. In the range of 550 to 850 nm, OH-TiO$_2$ has a light stronger absorption than F-TiO$_2$, showing that OH-TiO$_2$ exhibits stronger light absorption ability in the visible light range. From Figure 4b, the OH-TiO$_2$ bandgap is 3.09 eV, which is somewhat smaller than that of F-TiO$_2$ (3.17 eV). This may be attributed to the nest-like microstructure morphology of OH-TiO$_2$, which may promote light-scattering inside the pores of the shell wall and enhance absorption in light [25].

2.3. FT-IR Analysis

The Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the chemical bonding of the catalysts (Figure 5a). The absorption peaks of F-TiO$_2$ and OH-TiO$_2$ were observed at 3416 cm$^{-1}$ and 1630 cm$^{-1}$, respectively, which could be assigned to the adsorbed and bound H$_2$O on the particles, respectively [38–40]. The span between 2934 and 3416 cm$^{-1}$ is attributed to the O–H bonds or associated O–H. O–H bonds appeared both in F-TiO$_2$ and OH-TiO$_2$ [39,40]. The peaks around 672 cm$^{-1}$ correspond to the characteristic absorption of Ti–O [29]. The peaks around 930 cm$^{-1}$ are attributed to F–Ti which disappeared after NaOH washing, meaning F was exchanged by OH.
we can see that light played little role on the discoloration. Therefore, we can conclude that with
(Figure 5b). Six peaks were observed in the spectra. The broad emission band centered at 396 nm
process is a photocatalytic degradation.

2.5. Photocatalytic Activity

In the present work, the photocatalytic activity of F-TiO₂ and OH-TiO₂ was evaluated by monitoring the degradation of methylene blue (MB) and Rhodamine B (RhB) solution under simulated solar irradiation. The degradation performance of catalysts and the variation in the UV-vis absorption spectra of the MB solution exposed to different TiO₂ samples are shown in Figure 6. From Figure 6a, after modification with NaOH, the degradation performance of TiO₂ was considerably enhanced, especially for MB. The performance was almost the same as or better than TiO₂ samples synthesized under high temperature or samples having other morphology [14,42]. In Figure 6b, from the line of no light, 20 mg, C/C₀ almost no longer decreased after 0.5 h, meaning that it is an adsorption process in this 0.5 h, and the adsorption balance is reached after 0.5 h. From the line representing no catalysts, we can see that light played little role on the discoloration. Therefore, we can conclude that with catalysts the discoloration process is adsorption process in dark for 0.5 h, after that the discoloration process is a photocatalytic degradation.

Figure 6c,d shows the UV-vis absorption spectral changes of the MB solution by OH-TiO₂ and F-TiO₂, respectively. According to previous research, two processes can cause the discoloration of MB: oxidative degradation and two-electron reduction to leuco-MB which can be detected by the UV-vis absorption at 256 nm [43,44]. From Figure 6d, a blue-shift from 665 to 625 nm and an absorbent peak at 256 nm emerged in the spectral change of MB with irradiation on OH-S0.5. This means that reductive conversion to leuco-MB occurs in the degradation path of MB.
was added, demonstrating that the hydroxyl radicals play a leading role in photocatalysis.

The degradation system, the efficiency decreased more than with benzoquinone when benzoquinone radicals (\(\cdot\)OH) to reduce the activity of the catalyst, and the benzoquinone can combine with the superoxide radical (O\(_2^.-\)) to decrease the activity of the catalyst. When terephthalic acid was added to the degradation system, the efficiency decreased more than with benzoquinone when benzoquinone was added, demonstrating that the hydroxyl radicals play a leading role in photocatalysis.

2.6. Radical-Scavenging Experiments

Radical-scavenging experiments were performed to complete an in-depth study of the photocatalytic degradation mechanism (Figure 7). Terephthalic acid can combine with the hydroxyl radicals (-OH) to reduce the activity of the catalyst, and the benzoquinone can combine with the superoxide radical (O\(_2^.-\)) to decrease the activity of the catalyst. When terephthalic acid was added to the degradation system, the efficiency decreased more than with benzoquinone when benzoquinone was added, demonstrating that the hydroxyl radicals play a leading role in photocatalysis.
3. Materials and Methods

3.1. Materials

Tetrabutyl titanate, hydrofluoric acid, methylene blue, and benzoquinone (AR, KeLong Co., Ltd., Chengdu, China), anhydrous ethanol (AR, ChuanDong Co., Ltd., Chongqing, China), sodium hydroxide (AR, Kermel Co., Ltd., Tianjin, China), Rhodamine B (AR, FuChen Co., Ltd., Tianjin, China), barium sulfate (AR, XiLong Co., Ltd., Chengdu, China), and terephthalic acid (AR, Shanghai Macklin Biochemical Co., Ltd., Shanghai, China) were used for the experiments.

3.2. Preparation of Catalysts

A total of 15.20 mL anhydrous ethanol was added to 17.60 mL tetrabutyl titanate, denoted as solution A; then 15.20 mL anhydrous ethanol was added to 90 mL ultra-pure water, with 6 mL HF, recorded as solution B; solution A was added dropwise into solution B with a dropping speed of 2–3 drops per second and mixed at a low speed for 2 h, the obtained titanium dioxide gel was stored at room temperature for two days. The aged TiO$_2$ gel was moved to a stainless-steel reactor containing polytetrafluoroethylene, and kept at constant temperature of 100°C for 2 h. After cooling, the as-prepared power was washed with deionized water and ethanol 3 times and dried in a 100°C drying oven. After grinding, white powder was obtained, which was F-TiO$_2$.

Half of the above F-TiO$_2$ powder was mixed with 10 g NaOH and added to 100 mL distilled water, and stirred at medium speed for 2 h, then centrifugally settled, washed 3 times with deionized water, dried in a 100°C drying oven, and grinded to obtain the OH-TiO$_2$ samples.

3.3. Catalyst Characterization

The crystal structure of the powders were analyzed by X-ray diffractometry (XRD) (Bruker, D8-Advance, Rheinstetten, Germany) with Cu Kα radiation (λ = 0.154 nm, 40 kV, 40 mA) with a scanning range of 20° to 80°. The UV-Vis absorption spectra of the powders were obtained from dry-pressed disk samples with a UV-Vis spectrometer (TU-1911, Shanghai, China), BaSO$_4$ was used as a reflectance standard in the UV-Vis diffuse reflectance. The microstructure of the powders were examined by field-emission scanning (FE-SEM) (JEOL, JSM-6700F, Tokyo, Japan) operating at 5.0 KV and transmission electron microscopy and high resolution transmission electron microscopy (HRTEM) (Tecnai G2 F20, FEI, Hillsboro, OR, USA), using a 200 kV accelerating voltage. Fourier transform infrared (FT-IR) spectra were analyzed (Bruker, Tensor27, Rheinstetten, Germany) in the wavenumber range from 4000 to 400 cm$^{-1}$. The Photoluminescence (PL) emission spectra were measured at room temperature with a fluorescence spectrophotometer (Hitachi F-2700, Tokyo, Japan) using 325 nm line with a Xe lamp.

3.4. Photocatalytic Activity Tests

The photocatalytic activities of both samples were evaluated by the degradation of methylene blue (MB) and Rhodamine B (RhB) solution under simulated solar light. The photocatalytic degradation tests were performed in an 200 mL double-layered quartz glass reactor With either 100 mL 10 mg/L MB or RhB and certain quantities of catalysts. Cooling water was introduced into the interlayer of the quartz reactor to maintain the solution at room temperature. A Jiguang-300W Xe lamp (simulating solar light) was located 30 cm away from the MB or RhB solution. When the solution was magnetically stirred for 0.5 h in dark to obtain the adsorption-desorption equilibrium, the Xe lamp was turned on to initiate the degradation. About 4.0 mL of solution was extracted and centrifuged at a speed of 11,000 r/min to remove catalysts every 0.5 h. Then, the MB or RhB concentration were analyzed on a Purkinje UV1901 UV-vis spectrophotometer at 665 nm or 554 nm. The photocatalyst was separated from the MB or RhB solution and another run was started to investigate the catalysts durability. Because the absorbance of simulated azo dye wastewater has a linear relationship with the concentration of
dye contained therein, the degradation of dyes is indirectly reflected by measuring the absorbance change of simulated dye wastewater.

The photocatalytic reaction efficiency (100%) = A/A₀ × 100% = C/C₀ × 100%.

Where A₀ is the absorbance before the reaction, and A is the absorbance of every 0.5 h centrifuge in the reaction; C₀ is the absorbance before the reaction, and C is the absorbance obtained by every 0.5 h centrifuge in the reaction.

Terephthalic acid (3 mmol/L) and p-benzoquinone were added to a mixed solution containing 20 mg of OH-TiO₂ and 100 mL of 10 mg/L of methylene blue solution, and methylene blue was degraded as a control.

4. Conclusions

A simple low-temperature synthesis of nest-like TiO₂ microspheres with exposed (001) facets was reported and its photocatalytic performance was enhanced by NaOH alkalization for the first time in this study. The photocatalytic activity of the as-prepared catalyst was evaluated by photocatalytic degradation of methylene blue and Rhodamine B under simulated solar light. The results show that the NaOH alkalized microspheres had superior catalytic photoactivity compared to (001)TiO₂ towards MB. The reason for this result may be related to its unique nest-like morphology, increased (001) facet exposure, more O–H, and more oxygen vacancy sites. Radical-scavenging experiments revealed that the hydroxyl radicals play a leading role in photocatalysis.

Acknowledgments: Financial support was provided by Shaanxi key industrial projects (2014GY2-07) and Shaanxi Province education department science and technology research plan (15JK1460).

Author Contributions: In this paper, Chentao Hou and Jiaming Zhu designed the experiments; Jiaming Zhu and Qiaoqiao Song conducted the experiments; Chentao Hou and Jiaming Zhu analyzed the data; Chentao Hou wrote the article.

Conflicts of Interest: No conflict of interest exists in this manuscript submission, and it has been approved by all of the authors for publication. All authors listed have approved the manuscript enclosed.

References

