Supplementary Materials: Palladium-Catalyzed Isomerization-Coupling Reactions of Allyl Chloride with Amines to Generate Functionalized Phosphorus Derivatives

Jing-Hong Wen, Qiang Li, Shao-Zhen Nie, Jing-Jing Ye, Qing Xu, and Chang-Qiu Zhao

Table of Contents
Part 1. Crystallographic Information. S3
Part 2. The NMR spectrum for the mechanism of 1f with benzyl amine. S6
Part 3. Selected 31P, 1H and 13C NMR spectroscopy of 1, 2, 4, 5, 11, 12 and 13. S10
General Chemistry:

The 1H NMR spectrum was recorded on a 400-MHz spectrometer. The chemical shift for 1H NMR spectra is reported (in parts per million) relative to internal tetramethylsilane (Me$_4$Si, $\delta = 0.00$ ppm) with CDCl$_3$. 13C NMR spectra were recorded at 101 mHz. Chemical shifts for 13C NMR spectra are reported (in parts per million) relative to CDCl$_3$ ($\delta = 77.0$ ppm). 31P NMR spectra were recorded at 162 MHz, and chemical shifts are reported (in parts per million) relative to external 85% phosphoric acid ($\delta = 0.0$ ppm). TLC plates were visualized by UV. All starting materials were purchased from commercial sources and used as received. The solvents were distilled under N$_2$ and dried according to standard procedures. 31P NMR spectra were referenced to phosphoric acid. The NMR yields of the articles are determined by integration of all of the resonances in the 31P spectra. The yields obtained by the approach are generally accurate and reproducible.
Part 1. Crystallographic Information.

Table S1. (S)-menthyl 3-oxo-3-phenylpropyl phenylphosphinate, 5a

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C${25}$ H${33}$ O$_{3}$ P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>P212121</td>
</tr>
<tr>
<td>Formula weight</td>
<td>412.48</td>
</tr>
<tr>
<td>a, Å</td>
<td>8.4732(9)</td>
</tr>
<tr>
<td>b, Å</td>
<td>11.1296(11)</td>
</tr>
<tr>
<td>c, Å</td>
<td>25.186(3)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>90</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>2375.1(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>T, K</td>
<td>293(2)</td>
</tr>
<tr>
<td>λ, Å</td>
<td>0.71073</td>
</tr>
<tr>
<td>ρ, g cm$^{-3}$</td>
<td>1.154</td>
</tr>
<tr>
<td>Rint</td>
<td>0.0331</td>
</tr>
<tr>
<td>R1 [I N 2σ(I)]</td>
<td>0.0425</td>
</tr>
<tr>
<td>R1 (all data)</td>
<td>0.0645</td>
</tr>
<tr>
<td>wR2 [I N 2σ(I)]</td>
<td>0.0931</td>
</tr>
<tr>
<td>wR2 (all data)</td>
<td>0.1029</td>
</tr>
<tr>
<td>Flack</td>
<td>-0.02(11)</td>
</tr>
<tr>
<td>CCDC</td>
<td>1575335</td>
</tr>
</tbody>
</table>
Table S2. Diphenyl 3-oxo-3-phenyl propylphosphonate, 5f

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{21}H_{19}O_{3}P</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P21</td>
</tr>
<tr>
<td>Formula weight</td>
<td>334.33</td>
</tr>
<tr>
<td>a, Å</td>
<td>9.4304(7)</td>
</tr>
<tr>
<td>b, Å</td>
<td>19.0866(16)</td>
</tr>
<tr>
<td>c, Å</td>
<td>10.2263(8)</td>
</tr>
<tr>
<td>α, deg</td>
<td>90</td>
</tr>
<tr>
<td>β, deg</td>
<td>102.868(3)</td>
</tr>
<tr>
<td>γ, deg</td>
<td>90</td>
</tr>
<tr>
<td>V, Å³</td>
<td>1794.4(2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>T, K</td>
<td>298(2)</td>
</tr>
<tr>
<td>λ, Å</td>
<td>0.71073</td>
</tr>
<tr>
<td>ρ, g cm⁻³</td>
<td>1.238</td>
</tr>
<tr>
<td>Rint</td>
<td>0.0478</td>
</tr>
<tr>
<td>R1 [I N 2σ(I)]</td>
<td>0.0480</td>
</tr>
<tr>
<td>R1 (all data)</td>
<td>0.1024</td>
</tr>
<tr>
<td>wR2 [I N 2σ(I)]</td>
<td>0.0724</td>
</tr>
<tr>
<td>wR2 (all data)</td>
<td>0.0851</td>
</tr>
<tr>
<td>Flack</td>
<td>0.00(10)</td>
</tr>
<tr>
<td>CCDC</td>
<td>1575336</td>
</tr>
</tbody>
</table>
Figure S3. ORTEP drawing of 5a with thermal ellipsoids at the 50% probability.

Figure S4. ORTEP drawing of 5f with thermal ellipsoids at the 50% probability.
Part 2. The NMR spectrum for the mechanism of 1f with benzyl amine.

31P-NMR spectroscopy of crude 7f/5f=93:7

1H-NMR spectroscopy of crude 7f/5f
31P-NMR spectroscopy of crude 7f/5f=30:70

1H-NMR spectroscopy of crude 7f/5f
31P-NMR spectroscopy of crude 7f/5f=10:90

1H-NMR spectroscopy of crude 7f/5f
31P-NMR spectroscopy of crude 5f

![31P-NMR spectrum]

1H-NMR spectroscopy of crude 5f

![1H-NMR spectrum]
Part 3. Selected 31P, 1H and 13C NMR spectroscopy of 1, 2, 4, 5, 11, 12 and 13.

(Sr)-Menthyl-1-hydroxy-3-phenylallyl phenylphosphinate, 2a, 31P NMR spectroscopy
Ethyl 1-hydroxy-3-phenylallyl phenylphosphinate, 2b, 31P NMR spectroscopy
Diethyl 1-hydroxy-3-phenylallylphosphonate, 2c, 31P NMR spectroscopy

\[\text{1H NMR spectroscopy of 2c} \]
Dimethyl 1-hydroxy-3-phenylallylphosphonate, 2d, 31P NMR spectroscopy

31P NMR spectroscopy of 2d

1H NMR spectroscopy of 2d
Diethyl 1-hydroxy-3-p-tolyl allylphosphonate, 2e, 31P NMR spectroscopy

\[\text{Diethyl 1-hydroxy-3-p-tolyl allylphosphonate, 2e} \]

\[31P \text{ NMR spectroscopy of 2e} \]

\[^1H \text{ NMR spectroscopy of 2e} \]
Diphenyl 1-hydroxy-3-phenylallylphosphine oxide, 2f, 31P NMR spectroscopy

1H NMR spectroscopy of 2f
(Sr)-Menthy 1-hydroxy-3-phenylallylphenylphosphine oxide, 2g, 31P NMR spectroscopy

1H NMR spectroscopy of 2g
(S)-Menthy1 3-chloro-3-phenylprop-1-en-1-ylphenylphosphinate, 1a, 31P NMR spectroscopy
Ethyl 3-chloro-3-phenylprop-1-en-1-ylphenylphosphinate, 1b, 31P NMR spectroscopy

1H NMR spectroscopy of 1b
Diethyl 3-chloro-3-phenylprop-1-en-1-ylphosphonate, 1c, 31P NMR spectroscopy

31P NMR spectroscopy of 1c

1H NMR spectroscopy of 1c
13C NMR spectroscopy of 1c

Dimethyl 3-chloro-3-phenylprop-1-en-1-ylphosphonate, 1d, 31P NMR spectroscopy
1H NMR spectroscopy of 1d

13C NMR spectroscopy of 1d
Diethyl 3-chloro-3-p-tolylprop-1-en-1-ylphosphonate, 1e, 31P NMR spectroscopy
13C NMR spectroscopy of 1e

Diphenyl 3-chloro-3-phenylprop-1-en-1-ylphosphine oxide, 1f, 31P NMR spectroscopy
1H NMR spectroscopy of 1f

13C NMR spectroscopy of 1f
(S)-Menthyl-3-chloro-3-phenylprop-1-en-1-yl phenylphosphine oxide, 1g, 31P NMR spectroscopy

1H NMR spectroscopy of 1g
13C NMR spectroscopy of 1g

31P NMR spectroscopy of 4g
1H NMR spectroscopy of 4g

13C NMR spectroscopy of 4g
Dimethyl 1-chloro-3-phenylprop-1-en-1-ylphosphonate, 4d', 31P NMR spectroscopy

'H NMR spectroscopy of 4d'

\[
\begin{align*}
\text{Dimethyl 1-chloro-3-phenylprop-1-en-1-ylphosphonate, 4d', 31P NMR spectroscopy} \\
\text{'H NMR spectroscopy of 4d'}
\end{align*}
\]
gCOSY NMR spectroscopy of 4d'

13C NMR spectroscopy of 4d'
(Sr)-Methyl 3-oxo-3-phenylpropyl phenylphosphinate, 5a, 31P NMR spectroscopy

1H NMR spectroscopy of 5a
13C NMR spectroscopy of 5a

Ethyl 3-oxo-3-phenylpropyl phenylphosphinate, 5b, 31P NMR spectroscopy
1H NMR spectroscopy of 5b

Diethyl 3-oxo-3-phenyl propylphosphonate, 5c, 31P NMR spectroscopy
\[^1H \text{NMR spectroscopy of 5c} \]

\[^13C \text{NMR spectroscopy of 5c} \]
Dimenthyl 3-oxo-3-phenylpropyl phenylphosphonate, 5d, 31P NMR spectroscopy
13C NMR spectroscopy of 5d

Diethyl 3-oxo-3-p-tolyl propylphosphonate, 5e, 31P NMR spectroscopy
1H NMR spectroscopy of 5e

Diphenyl 3-oxo-3-phenyl propylphosphonate, 5f, 31P NMR spectroscopy
1H NMR spectroscopy of 5f

13C NMR spectroscopy of 5f
(Sr)-Menthy1 3-oxo-3-phenylpropyl phenylphosphinate, 5g/5g’, 31P NMR spectroscopy

\[\text{1H NMR spectroscopy of 5g/5g’} \]
13C NMR spectroscopy of 5g/5g’

(Sr)-Menthy1-3-butylamino-3-phenylpropyl phenylphosphinate, 11aa, 31P NMR spectroscopy
'H NMR spectroscopy of 11aa

13C NMR spectroscopy of 11aa
(S)-Menthyl-3-phenethylamino-3-phenylpropyl phenylphosphinate, 11ab, 31P NMR spectroscopy

1H NMR spectroscopy of 11ab
(S)-Menthy1-3-phenyl-3-pyrrolidin-1-yl propylphosphinate, 11ac, 3P NMR spectroscopy
1H NMR spectroscopy of 11ac

13C NMR spectroscopy of 11ac
Ethyl 3-butylamino-3-phenylpropyl phenylphosphinate, 11ba, 31P NMR spectroscopy

1H NMR spectroscopy of 11ba
13C NMR spectroscopy of 11ba

Ethyl 3-phenethylamino-3-phenylpropyl phenylphosphinate, 11bb, 31P NMR spectroscopy
1H NMR spectroscopy of 11bb

13C NMR spectroscopy of 11bb
Diethyl 3-butylamino-3-phenyl propylphosphonate, 11ca, 31P NMR spectroscopy

1H NMR spectroscopy of 11ca
13C NMR spectroscopy of 11ca

Diethyl 3-phenethylamino-3-phenyl propylphosphonate, 11cb, 31P NMR spectroscopy
^{1}H NMR spectroscopy of 11cb

^{13}C NMR spectroscopy of 11cb
Dimethyl 3-butyramino-3-phenyl propylphosphonate, 11da, 31P NMR spectroscopy

1H NMR spectroscopy of 11da
13C NMR spectroscopy of 11da

Dimethyl 3-phenylethylamino-3-phenyl propylphosphonate, 11db, 31P NMR spectroscopy
1H NMR spectroscopy of 11db

13C NMR spectroscopy of 11db
Dimethyl 3-phenyl-3-pyrrolidin-1-yl propylphosphonate, 11dc, 31P NMR spectroscopy
13C NMR spectroscopy of 11dc

Dimethyl-3-methyl phenylamino-3-phenyl propylphosphonate, 11dd, 31P NMR spectroscopy
1H NMR spectroscopy of 11dd

13C NMR spectroscopy of 11dd
Diethyl 3-butylamino-3-p-tolyl propylphosphonate, 11ea, 31P NMR spectroscopy

1H NMR spectroscopy of 11ea
Diethyl 3-phenethlamino-3-\(p\)-tolyl propylphosphonate, 11eb, \(^{31}\)P NMR spectroscopy
1H NMR spectroscopy of 11eb

13C NMR spectroscopy of 11eb
Diphenyl 3-butilamino-3-phenylpropyl phosphine oxide, 11fa, 31P NMR spectroscopy
13C NMR spectroscopy of 11fa

Diphenyl 3-phenethylamino-3-phenylpropyl phosphine oxide, 11fb, 31P NMR spectroscopy
1H NMR spectroscopy of 11fb

13C NMR spectroscopy of 11fb
(S)-Menthyl-3-butylamino-3-phenylpropyl phenylphosphine oxide, 11gaA/11gaB, 31P NMR spectroscopy
13C NMR spectroscopy of 11ga\textsubscript{A}/11ga\textsubscript{B}

(S\textsubscript{P})-Menthyl-3-phenethylamino-3-phenylpropyl phenylphosphine oxide, 11gb\textsubscript{A}/11gb\textsubscript{B}, 11gb\textsubscript{A’}/11gb\textsubscript{B’}, 31P NMR spectroscopy
'H NMR spectroscopy of 11gb\textsubscript{A}/11gb\textsubscript{B}, 11gb\textsubscript{A'}/11gb\textsubscript{B'}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{1H_NMR_spectrum}
\end{figure}

\[13C\text{ NMR spectroscopy of 11gb\textsubscript{A}/11gb\textsubscript{B}, 11gb\textsubscript{A'}/11gb\textsubscript{B'}}\]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{13C_NMR_spectrum}
\end{figure}
Diphenyl 3-hydroxy-3-phenylprop-1-en-1-ylphosphine oxide, 12a, 31P NMR spectroscopy
\textbf{\(^{13} \text{C} \) NMR spectroscopy of 12a}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{13C_NMR_spectrum_12a}
\caption{\(^{13} \text{C} \) NMR spectrum of compound 12a.}
\end{figure}

\textbf{Dimethyl 3-hydroxy-3-phenylprop-1-en-1-ylphosphonate, 12b, \(^{31} \text{P} \) NMR spectroscopy}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{31P_NMR_spectrum_12b}
\caption{\(^{31} \text{P} \) NMR spectrum of compound 12b.}
\end{figure}
1H NMR spectroscopy of 12b

13C NMR spectroscopy of 12b
Dimenthoxyl 2-benzoyl-4-cyanobutylphosphonate, 13a, 31P NMR spectroscopy
13C NMR spectroscopy of 13a

Ethyl 4-dimethoxyphosphorylmethyl-5-oxo-5-phenylpentanoate, 13b, 31P NMR spectroscopy
\[^1\text{H NMR spectroscopy of 13b} \]

\[^{13}\text{C NMR spectroscopy of 13b} \]