Article

Study on the Physical and Leakage Current Characteristics of an Optimized High-k/InAlAs MOS Capacitor with a HfO$_2$–Al$_2$O$_3$ Laminated Dielectric

He Guan * and Chengyu Jiang

School of Electronics and Information, Northwestern Polytechnical University (NPU), Xi’an 710072, China; 2013301856@mail.nwpu.edu.cn
* Correspondence: he.guan@nwpu.edu.cn

Received: 26 October 2018; Accepted: 20 November 2018; Published: 22 November 2018

Abstract: High-k/n-InAlAs MOS capacitors are popular for the isolated gate of InAs/AlSb and InAlAs/InGaAs high-electron mobility transistors. In this study, a new kind of high-k/n-InAlAs MOS-capacitor with a HfO$_2$–Al$_2$O$_3$ laminated dielectric was successfully fabricated using an optimized process. Compared with the traditional HfO$_2$/n-InAlAs MOS capacitor, the new device has a larger equivalent oxide thickness. Two devices, with a HfO$_2$ (8 nm)–Al$_2$O$_3$ (4 nm) laminated dielectric and a HfO$_2$ (4 nm)–Al$_2$O$_3$ (8 nm) laminated dielectric, respectively, were studied in comparison to analyze the effect of the thickness ratios of HfO$_2$ and Al$_2$O$_3$ on the performance of the devices. It was found that the device with a HfO$_2$ (4 nm)–Al$_2$O$_3$ (8 nm) laminated dielectric showed a lower effective density of oxide charges, and an evidently higher conduction band offset, making its leakage current achieve a significantly low value below 10$^{-7}$ A/cm2 under a bias voltage from -3 to 2 V. It was demonstrated that the HfO$_2$–Al$_2$O$_3$ laminated dielectric with a HfO$_2$ thickness of 4 nm and an Al$_2$O$_3$ thickness of 8 nm improves the performance of the high-k dielectric on InAlAs, which is advantageous for further applications.

Keywords: high-k/InAlAs MOS-capacitor; HfO$_2$–Al$_2$O$_3$ laminated dielectric; leakage current; C–V characteristics

1. Introduction

Owing to the requirements of high speed, low dissipation, and low noise for modern integrated circuits, InAs/AlSb and InAlAs/InGaAs high-electron mobility transistors (HEMTs) are receiving great attention as new III–V compound devices because of their high electron mobility and electron saturation drift speed [1–4]. Because of its good compatibility with AlSb, InAs, and InGaAs, InAlAs is one of the most promising materials for the protection layer of InAs/AlSb and InAlAs/InGaAs HEMTs to enhance the carrier density in the channel [1,3]. Depositing a high-k dielectric film on InAlAs as a MOS capacitor can effectively suppress the leakage current [5–9]. However, the lack of reasonable high-k dielectrics is still a major problem that limits the performance of the isolated gate. HfO$_2$ is the main candidate for the high-k dielectric because of its high dielectric constant [5,7], but its direct deposition on InAlAs limits its performance owing to the poor lattice match with InAlAs [8]. Therefore, a thin Al$_2$O$_3$ film inserted between InAlAs and HfO$_2$ as a buffer layer has been proposed [8]. This structure can increase the quality of the MOS capacitor by providing a better match with InAlAs. Reference [8] initially reported the electrical and interfacial characteristics of a HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS-capacitor. However, in [8], the impact of the thickness of HfO$_2$ and Al$_2$O$_3$ on the performance of the device was not investigated, and the leakage current performance, which is considered as the most important electrical characteristic of the MOS-capacitor was not mentioned either. In order to
optimize the fabrication process and improve the performance of the high-k/InAlAs MOS-capacitor with an HfO$_2$–Al$_2$O$_3$ laminated dielectric, a new kind of HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS-capacitor was manufactured in this study, and its optimized fabrication process was discussed in detail. Two samples with HfO$_2$ (8 nm)/Al$_2$O$_3$ (4 nm) and HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) were designed and prepared to investigate the effect of the different thickness ratios of HfO$_2$ and Al$_2$O$_3$. Devices were tested by atomic force microscope (AFM), Focused Ion beam (FIB), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) to describe the physical characteristics. Based on the capacitance (C)–voltage (V) and current (I)–V test results, their physical characteristics were analyzed and their electrical characteristics, including the leakage current, were investigated in detail.

2. Materials and Methods

The structure diagram of the MOS capacitor is shown in Figure 1. To match with InAlAs and achieve better performance, InP was selected as the substrate rather than GaAs, which were frequently used in other studies [7–9]. InP is semi-insulating and a 350-µm-thick substrate was used. To decrease the lattice mismatch with InAlAs, a 200-nm-thick InP buffer layer was grown on the InP substrate by MBE at $470\,^{\circ}\mathrm{C}$. A 500-nm-thick Si-doped In$_{0.5}$Al$_{0.5}$As layer with a doping concentration of 1×10^{17} cm$^{-3}$ was deposited on the InP buffer layer. The high-k dielectric was then deposited by atomic layer deposition (ALD) [10–13]. The details of the ALD process to produce the HfO$_2$–Al$_2$O$_3$ laminated dielectric are given in Table 1. We controlled the ALD process circle to manufacture different dielectric thicknesses. A post-deposition annealing (PDA) process was applied to increase the quality of the oxide-semiconductor interface [14–17]. The process involved heating the film from ambient temperature to $380\,^{\circ}\mathrm{C}$ in N$_2$ over 15 s, annealing for 60 s, and then cooling to ambient temperature over 300 s [6,7]. Finally, a Ti (20 nm)/Pt (20 nm)/Au (200 nm) metal structure was grown as the electrode by the magnetron sputtering technique. We grew two electrodes with different areas. The area of the small one is 150×150 µm (marked as C$_1$ in Figure 1), and the area of the large one is 1500×1500 µm2 (marked as C$_2$ in Figure 1). When a voltage is applied between the two electrodes, C$_1$ is connected in series with C$_2$. Because the area of C$_2$ is 100 times larger than the area of C$_1$, the influence of C$_2$ on the total capacitance can be neglected, and the measured capacitance can be approximately equal to the value of C$_1$. The electrodes that grow on top of the oxide layer can avoid the pollution caused by the back contact process used in [8] (e.g., the metal directly deposited on the surface of InAlAs).

![Figure 1. Structure diagram of the MOS capacitor.](image-url)
Table 1. ALD process to prepare the HfO$_2$–Al$_2$O$_3$ dielectric.

<table>
<thead>
<tr>
<th>Dielectric</th>
<th>Precursor</th>
<th>Pulse Time (s)</th>
<th>Deposition Temperature (°C)</th>
<th>Pressure (mbar)</th>
<th>Deposition Speed (nm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>TMT + N$_2$ + H$_2$O + N$_2$</td>
<td>0.5 + 2 + 0.5 + 1</td>
<td>245</td>
<td>2.3</td>
<td>0.1</td>
</tr>
<tr>
<td>HfO$_2$</td>
<td>TEMAH + N$_2$ + H$_2$O + N$_2$</td>
<td>1 + 2 + 1 + 2</td>
<td>245</td>
<td>2.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

A simple HfO$_2$/n-InAlAs MOS capacitor with an oxide thickness of 12 nm and two HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS capacitors with HfO$_2$ (8 nm)/Al$_2$O$_3$ (4 nm) and HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) laminated dielectrics were fabricated. These three samples were designed to have the same physical oxide thickness of 12 nm for convenient comparison. The surface roughness RMS (root-mean-square) values of the three samples which are taken from the AFM test are observed as small, around 0.5 nm. The 5 µm × 5 µm AFM graph of the HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) MOS capacitor is show in Figure 2a. The FIB-SEM image of the across-section of the HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) MOS capacitor is shown in Figure 2b. These indicate a compactable and homogeneous device structure.

3. Results and Discussions

The accumulated capacitances of the MOS-capacitors C_{OX} were measured by the high-frequency capacitance method at 1 MHz, and the results are shown in Figure 3. The HfO$_2$/InAlAs MOS capacitor has a highest C_{OX} of 0.68 µF/cm2, while the C_{OX} is lower with an inserted Al$_2$O$_3$ thin film. The C_{OX} value decreases with increasing thickness of the inserted Al$_2$O$_3$ layer. The highest C_{OX} values of the HfO$_2$ (8 nm)/Al$_2$O$_3$ (4 nm)/InAlAs and HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm)/InAlAs MOS capacitors are 0.517 and 0.355 µF/cm2, respectively. It is noted that C_{OX} shows a decrease as the MOS capacitor is driven further into accumulation. This is induced by the obvious leakage current under the high voltage bias condition. In addition, a low C–V hysteresis is observed for the sample with HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) laminated dielectrics. The reason can be explained by its lowest density of oxide charges that we discuss herein.

![Figure 2. (a) AFM graph of the HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) MOS capacitor; (b) FIB-SEM image of the across-section of the HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) MOS capacitor.](image)

![Figure 3. C–V measurements of the MOS capacitors.](image)
The equivalent oxide thickness (EOT) values of the three samples were determined from the C–V curves [7,9]. The results are given in Table 2. Inserting Al₂O₃ increases the EOT. When the thickness of Al₂O₃ is 4 and 8 nm, the EOT values are 6.68 and 9.73 nm, respectively. Because the electric field intensity \(E_i \) is inversely proportional to the EOT for fixed bias voltage \(V_g \), the higher EOT indicates that inserting an Al₂O₃ film between InAlAs and HfO₂ decreases \(E_i \) under the same \(V_g \), which will help to decrease the leakage current. It is noted that the increased EOT would degrade the gate control ability of the device. The equivalent dielectric constant \(\varepsilon_{\text{OX}} \) was calculated according to the C–V test data [18]. The two samples with a HfO₂/Al₂O₃ laminated dielectric have lower \(\varepsilon_{\text{OX}} \) values than the sample with only a HfO₂ dielectric, and the \(\varepsilon_{\text{OX}} \) value decreases as the thickness of the Al₂O₃ film increases. This can be explained by the lower dielectric constant of Al₂O₃ than HfO₂.

Table 2. Physical and electrical parameters of the HfO₂/n-InAlAs and HfO₂–Al₂O₃/n-InAlAs MOS capacitors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HfO₂/n-InAlAs</th>
<th>HfO₂ (8nm)/Al₂O₃ (4nm)/n-InAlAs</th>
<th>HfO₂ (4nm)/Al₂O₃ (8nm)/n-InAlAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{OX}}) (μF/cm²)</td>
<td>0.680</td>
<td>0.517</td>
<td>0.355</td>
</tr>
<tr>
<td>EOT (nm)</td>
<td>5.08</td>
<td>6.68</td>
<td>9.73</td>
</tr>
<tr>
<td>(\varepsilon_{\text{OX}})</td>
<td>9.22</td>
<td>7.01</td>
<td>4.81</td>
</tr>
<tr>
<td>(C_{\text{FB}}) (μF/cm²)</td>
<td>0.374</td>
<td>0.319</td>
<td>0.249</td>
</tr>
<tr>
<td>(V_{\text{FB}}) (V)</td>
<td>−0.31</td>
<td>−0.44</td>
<td>−0.23</td>
</tr>
<tr>
<td>(N_{\text{eff}}) (cm⁻²)</td>
<td>1.83 × 10¹²</td>
<td>1.81 × 10¹²</td>
<td>0.78 × 10¹²</td>
</tr>
<tr>
<td>(\Delta E_{\text{CB}}) (eV)</td>
<td>1.120</td>
<td>1.179</td>
<td>1.563</td>
</tr>
</tbody>
</table>

The effective density of oxide charges \(N_{\text{eff}} \), which indicates the quality of the MOS capacitor, and can be estimated from the flat-band capacitance \(C_{\text{FB}} \) and flat-band voltage \(V_{\text{FB}} \) [7,19]. The estimated values for the samples are listed in Table 2. First, we will compare the \(N_{\text{eff}} \) values of the samples with a single HfO₂ dielectric and a HfO₂ (8 nm)/Al₂O₃ (4 nm) laminated dielectric. Because Al₂O₃ possesses better matching with InAlAs than HfO₂, inserting an Al₂O₃ film improves the interface quality [8,9], which helps to suppress spreading of the impurities in the dielectric layer. However, another interface is generated between Al₂O₃ and HfO₂ because of insertion of the Al₂O₃ film, leading to generation of additional interface states, which will induce an increase in traps. These competing effects mean that the \(N_{\text{eff}} \) values of the two samples are similar. The \(N_{\text{eff}} \) values are 0.78 × 10¹² cm⁻² for the sample with a HfO₂ (4 nm)/Al₂O₃ (8 nm) laminated dielectric and 1.81 × 10¹² for the sample with a HfO₂ (8 nm)/Al₂O₃ (4 nm) laminated dielectric. Thus, \(N_{\text{eff}} \) decreases as the thickness of Al₂O₃ increases. This reduction can be explained by the better interfacial quality of the sample with a thicker Al₂O₃ layer. In addition, the stability of Al₂O₃ is higher than HfO₂ and the oxygen atoms in Al₂O₃ are more difficult to remove by other impurity bonds (e.g., In– and As–) to form In–O and As–O traps, so the sample with a thicker Al₂O₃ layer has lower \(N_{\text{eff}} \). For verification, XPS was performed to check the diffusion states of the As and In elements in the oxide layer. The XPS spectra before and after 30 s etching on the oxide layer are shown in Figure 4 (30 s etching is estimated to reach 6 nm depth of oxide layer). The XPS spectra is shown in Figure 4. In general, the As 3d and In 3d peaks before etching are lower than those after 30 s etching because of the blocking action of the high-k dielectric on impurities. Compared with the Hf–O bond, the Al–O bond shows a stronger blocking effect on diffusion of impurity particles, so the sample with HfO₂ (4 nm)/Al₂O₃ (8 nm) has a lower concentration of As than the sample with HfO₂ (8 nm)/Al₂O₃ (4 nm). Although Al₂O₃ can block the diffusion of As, the 4 nm thickness does not perform a good blocking role, indicating that Al₂O₃ must have a reasonable thickness for a good blocking effect on impurities. Diffusion of As in the oxide layer is suppressed when the thickness of Al₂O₃ is increased to 8 nm, which suppresses the formation of charge traps in the oxide layer and reduces the \(N_{\text{eff}} \) value. In addition, the In content before etching is negligible because of the weak diffusion of In in the oxide layer. The lower \(N_{\text{eff}} \) is helpful to suppress the hysteresis phenomenon in the C–V curve. This explains the lowest C–V hysteresis for the sample with the HfO₂ (4 nm)/Al₂O₃ (8 nm) laminated dielectric (Figure 3).
The leakage currents of the MOS capacitors are shown in Figure 5. For negative bias voltage, compared with the reported results in [7,9], the leakage current density of the new HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm)/n-InAlAs MOS capacitor is significantly lower in the V_g range from -3 to 2 V (below 10^{-7} A/cm2), and it is one order of magnitude lower than that of the HfO$_2$/n-InAlAs MOS capacitor. One reason is that inserting an Al$_2$O$_3$ film enhances the match between HfO$_2$ and InAlAs by suppressing the formation of a low-k interfacial layer. In addition, Al$_2$O$_3$ has a higher barrier height than HfO$_2$, which makes the HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS capacitor possess less accessibility for carriers to overcome the barrier and form leakage current. Under positive bias voltage, electrons cross the barrier at the high-k/InAlAs interface (ϕ$_B$) and contribute to the leakage current [20,21]. In general, the conduction band offset (ΔE_{CB}) between oxide and the semiconductor layer is used to determine ϕ$_B$ [6]. To further investigate the reason for the barrier effect on the leakage current, ΔE_{CB} was calculated by the Krant method [6]. The results are listed in Table 2. It should be noted that the sample with HfO$_2$ (4 nm)/Al$_2$O$_3$ (8 nm) laminated dielectric shows the highest band offset ΔE_{CB} (1.563 eV), which can be explained by its higher barrier height of Al$_2$O$_3$, so the sample with an 8-nm-thick Al$_2$O$_3$ film shows significantly lower leakage current. The sample with HfO$_2$ (8 nm)/Al$_2$O$_3$ (4 nm) laminated dielectric shows a competitive ΔE_{CB} value single (1.179 eV) with the sample with HfO$_2$ dielectric (1.120 eV). However, the sample with HfO$_2$ (8 nm)/Al$_2$O$_3$ (4 nm) laminated dielectric shows a higher leakage current than the sample with single HfO$_2$ dielectric when a positive bias voltage is applied. It can be explained as following: A 4nm Al$_2$O$_3$ layer is too thin to suppress the leakage current effectively; meanwhile, the additional states on the Al$_2$O$_3$–HfO$_2$ interface degrade the leakage current. Therefore, the sample with HfO$_2$ (8 nm)/Al$_2$O$_3$ (4 nm) dielectric shows the lowest leakage. The leakage current mechanism of devices is complicated, and will be investigated in detail in our next work.
Figure 5. Leakage current density J_{leakage} measurements under bias voltage from -3 to 2 V for the three MOS capacitors.

The physical and electrical parameters of the HfO$_2$/n-InAlAs and HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS capacitors are compared in Table 2.

4. Conclusions

In conclusion, compared with the HfO$_2$/n-InAlAs MOS capacitor, the HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS capacitor has the higher EOT and lower N_{eff}, which help to suppress the leakage current. The HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS capacitor has a high conduction band offset, making its leakage current below 10^{-7} A/cm2 under bias voltage from -3 to 2 V. Therefore, the Al$_2$O$_3$–HfO$_2$ laminated dielectric improves the high-k gate dielectric on InAlAs and suppresses the leakage current. The HfO$_2$–Al$_2$O$_3$/n-InAlAs MOS capacitor with HfO$_2$ thickness of 4 nm and Al$_2$O$_3$ thickness of 8 nm is a good candidate for the isolated gate of InAs/AlSb and InAlAs/InGaAs HEMTs.

Author Contributions: Software, C.J.; Formal Analysis, H.G.; Investigation, H.G.; Writing–Original Draft Preparation, H.G.; Writing–Review & Editing, C.J.; Project Administration, H.G.

Funding: The project was funded by the National Science Foundation of Shaanxi Province, China (No. 2018JQ6069) and Natural Science Foundation of Shaanxi Province (No. 2017JQ6051).

Conflicts of Interest: The authors declare no conflict of interest.

References
6. Guan, H.; Lv, H. Study on leakage current mechanism and band offset of high-k/n-InAlAs metal-oxide-semiconductor capacitors with HfO₂ and HfAlO dielectric. Thin Solid Films 2018, 661, 137–142. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).