Cholate Adsorption Behavior at Carbon Electrode Interface and Its Promotional Effect in Laccase Direct Bioelectrocatalysis

Masato Tominaga*, Motofumi Tsutsui, Takuya Takatori

Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
* Correspondence: masato@cc.saga-u.ac.jp; Tel.: +81-952-28-8561

Results and Discussion

Simulated analysis of steady-state current density

The steady-state current density (j_s) for the adsorption model is given by [1-4]

$$j_s = nFk_cJ^\alpha / [1 + (k_c/k_t) + (k_b/k_t)]$$

$$k_t = k^\circ \exp[-\alpha (nF/RT) (E - E^\circ')]$$

$$k_b = k^\circ \exp[(1 - \alpha) (nF/RT) (E - E^\circ')]$$ (1)

where n and F are the number of electrons ($n = 1$ for the T1 Cu site of Lac) and the Faraday constant, respectively; k_c is the catalytic constant (s$^{-1}$), and was assumed to be 2600 s$^{-1}$ because the theoretical rate of O$_2$ reduction by the T2/3 Cu site of bilirubin oxidase is expected to be as high as 2600 s$^{-1}$ under air-saturated conditions [5,6]; k_t and k_b are the surface electron transfer rate constants expressed by the Butler–Volmer equation; and E°' is similar to the formal redox potential for the T1 Cu site of Lac. In this study, E°' was estimated from the half-wave potential from the steady-state sigmoidal wave obtained at each modified SWCNT electrode. k° and α are the heterogeneous electron transfer rate constant (s$^{-1}$) at E°' between the adsorbed Lac and SWCNT electrode, and the transfer coefficient, respectively. In this study, k°, Γ_a, and α were adjustable parameters. We assumed that the dependence of the catalytic reduction current on the mass transport of oxygen could be ignored.
References