Three Polyhydroxyl-Bridged Defective Dicubane Tetranuclear MnIII Complexes: Synthesis, Crystal Structures, and Spectroscopic Properties

Hao-Ran Jia, Jian Chang, Hong-Jia Zhang, Jing Li and Yin-Xia Sun*

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; jiahr12@163.com (H.-R.J); chemdennis@163.com (J.C); zbj020809@163.com (H.-J.Z); iclijing1@163.com (J.L)* Correspondence: sun_yinxia@163.com; Tel.: +86-0931-7670893

Received: 22 May 2018; Accepted: 21 June 2018; Published: 28 June 2018

Abstract: Three polyhydroxyl-bridged tetranuclear MnIII complexes [Mn\textsubscript{4}(L\textsubscript{1a})\textsubscript{2}(µ\textsubscript{3}-OMe)\textsubscript{2}(µ\textsubscript{2}-OMe)(MeOH)\textsubscript{2}] (1), [Mn\textsubscript{4}(L\textsubscript{2a})\textsubscript{2}(µ\textsubscript{3}-OMe)\textsubscript{2}(µ\textsubscript{2}-OMe)(H\textsubscript{2}O)\textsubscript{2}] (2), and [Mn\textsubscript{4}(L\textsubscript{3a})\textsubscript{2}(µ\textsubscript{3}-OMe)\textsubscript{2}(µ\textsubscript{2}-OMe)(H\textsubscript{2}O)\textsubscript{2}] (3) derived from MnII+-promoted reactivity of Schiff base ligands (HL\textsubscript{1}=1-(4-[(E)-3,5-dichlorine-2-hydroxybenzylidene]amino}phenyl)ethanone O-benzyloxime, HL\textsubscript{2}=1-(4-[(E)-3-bromine-5-chloro-2-hydroxybenzylidene]amino}phenyl)ethanone O-benzyloxime, and HL\textsubscript{3}=1-(4-[(E)-3,5-dibromine-2-hydroxybenzylidene]amino}phenyl)ethanone O-benzyloxime) have been synthesized and characterized. In the MnIII complexes 1, 2, and 3, the newly formed ligands (L\textsubscript{1a})\textsubscript{4}−, (L\textsubscript{2a})\textsubscript{4}−, and (L\textsubscript{3a})\textsubscript{4}− are derived from the chemoselective cleavage of the C=N bond in the original Schiff base ligands HL\textsubscript{1}, HL\textsubscript{2}, and HL\textsubscript{3} to form corresponding halogenated salicylaldehyde, 3,5-dichlorosalicylaldehyde, 3-bromine-5-chlorosalicylaldehyde, and 3,5-dibrominesalicylaldehyde, respectively. Then, the further addition of acetone to two halogenated salicylaldehyde molecules in situ a,a double aldol reaction promoted by MnII+ ions in the presence of base to give the new ligands ((L\textsubscript{na})\textsubscript{4}−. X-ray crystallographic analyses of the MnIII complexes 1, 2, and 3 show that the three complexes are all tetranuclear structure and crystallizes in the triclinic system, space group P-1. The four MnIII ions and bridging alkoxido groups are arranged in a face-shared dicubane-like core with two missing vertices. In the three MnIII complexes, the asymmetric unit contains two kinds of different MnIII ions (Mn1 and Mn2), where the MnIII ions are all hexacoordinated with slightly distorted octahedral geometries. Simultaneously in the synthesis of multinuclear MnII+ complexes above, we explored the crystal structure, spatial configuration, and spectroscopic properties of the multinuclear MnIII complexes with different halogen substituents.

Keywords: defective dicubane tetranuclear MnIII complex; Schiff base ligand; manganese-promoted; double aldol addition; crystal structure; spectroscopic property

1. Introduction

There is a wide range of research space in aldol condensation reactions, in particular, in its asymmetric and catalytic field, via an asymmetric organic catalyst or chelating agent of the metal complex unit. Normally, the B, Ti, or Sn ions because of their specific Lewis acid properties are used for promoting enolization followed by aldol addition [1–3]. To a lesser extent, the other first row of transition metal Zr, Co, Ni, Cu, or Zn ions also have been used [4–6]. In addition, we have recently reported a tetranuclear ZnII complex using a double aldol ligand formed in situ by a,a-double aldol addition of acetone to 3,5-dichlorosalicylaldehyde promoted by ZnII ion in the presence of base [7]. In efforts to design new multidentate ligands which can form novel polynuclear complexes with attractive structural features, we are probing into this reaction using Lewis acid metal assistance. This
favorable reaction will allow to obtaining ligands that are extremely difficult to separate by classical anionic organic chemistry under conventional conditions. This, in turn, will allow the synthesis of novel-innovative metal complexes that are pre-restricted by ligand design [8–17]. Based on this, the transition metal Mn ion has become our target of choice due to its various oxidation states and Lewis acidity [18], which acts as a potential promoter to study the extent of the in situ aldol reaction of acetone and salicylaldehyde derivatives. Up to now, the use of Mn ions for the synthesis of aldol products has been relatively little explored, as reported, a unique one-pot α,α-double aldol addition of acetone to two o-vanillin molecules promoted by Mn\(^{n+}\) ions in situ, leading to a novel multidentate ligand, further obtained a rare defect-dicubane [Mn4] complex [19]. Therefore, we hope that we can synthesize a variety of multinuclear Mn complexes, explore the spatial structure and crystal parameters, and perhaps determine the laws.

Moreover Schiff base ligands and their complexes have been application in many fields [20–23], such as biological activity reagents [24–34], magnetic materials [35–43], luminescent materials [44–52]. Based on this, we designed and synthesized three Schiff base ligands with different halogen substituents and their Mn\(^{III}\) complexes 1, 2, and 3, respectively. In the synthesis of this Mn\(^{III}\) complexes, due to the hydrolysis chemoselective cleavage of the C=N bond of the original Schiff base ligands (HL\(^1\), HL\(^2\), and HL\(^3\)), forms the corresponding halogenated salicylaldehyde molecules and further the α,α double aldol addition of acetone to two halogenated salicylaldehyde molecules promoted by Mn\(^{n+}\) ions in situ, leading to a unique corresponding multidentate polyhydroxyl ligand (L\(^{na}\)\(^{4−}\)), acetone-disalicylaldehyde aldol (Scheme 1). On the basis of the synthesis of multinuclear Mn\(^{III}\) complexes, we have investigated the crystal structure and spatial configuration of the multinuclear Mn\(^{III}\) complexes with different halogen substituents. To the best of our knowledge, a few aldol additions were previously reported as a one-pot reaction or a specific Mn\(^{n+}\)-promoted reaction.

![Scheme 1](image)

Scheme 1. Synthesis of the multidentate polyhydroxyl ligand (L\(^{na}\)\(^{4−}\)) and their corresponding Mn\(^{III}\) complexes 1, 2, and 3.

2. Experiments

2.1. Reagents and Physical Measurements

4-aminoacetophenone, O-benzylhydroxylamine and 3,5-dichlorosalicylaldehyde, 3-bromine-5-chlorosalicylaldehyde, and 3,5-dibrominesalicylaldehyde were purchased from Aldrich and used without further purification. The other reagents and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory. C, H, and N analyses were carried out with a GmbH VariuoEL V3.00 automatic elemental analyzer (Hanau, Germany). FT-IR spectra were recorded on a VERTEX70 FT-IR
spectrophotometer (Bruker, Karlsruhe, Germany), with samples prepared as KBr (500–4000 cm\(^{-1}\)). UV–vis absorption spectra were recorded on a Shimadzu UV-2550 spectrometer (Kyoto, Japan). X-ray single crystal structure was determined on a Bruker Smart Apex-II CCD diffractometer (Karlsruhe, Germany). \(^1\)H NMR spectra were recorded using a Mercury-400BB spectrometer (Varian, Palo Alto, CA, USA) at 500 MHz. Melting points were measured by the use of a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company (Beijing, China) and the thermometer was uncorrected. Fluorescent spectra were performed on aLS-55fluorescence photometer (Perkin-Elmer, Norwalk, CA, USA).

2.2. Synthesis of HL\(^1\), HL\(^2\), and HL\(^3\)

HL\(^1\), HL\(^2\), and HL\(^3\) were synthesized according to an analogous method reported previously in the literature [53–60]. The synthetic route involved in the synthesis of HL\(^1\), HL\(^2\), and HL\(^3\) are given in Scheme 2.

![Scheme 2. Synthetic route of the ligands HL\(^1\), HL\(^2\), and HL\(^3\).](image)

1-(4-Aminophenyl)ethanone O-benzyl oxime was synthesized according to an analogous method reported early [7]. To an ethanol solution (5 mL) of 1-(4-aminophenyl)ethanone (272.0 mg, 2.2 mmol) was added an ethanol solution (5 mL) of O-benzylhydroxylamine (270.0 mg, 2.2 mmol). The mixture solution was stirred at 55°C for 18 h. After cooling to room temperature, the precipitate was filtered and washed successively with ethanol and n-hexane, respectively. The product was dried under vacuum and purified with recrystallization from ethanol to obtain 411.80 mg of 1-(4-aminophenyl)ethanone O-benzyl oxime. Yield, 85.2%. m.p. 352–353 K. Anal. Calcd. for C\(_{22}\)H\(_{16}\)Br\(_2\)N\(_2\)O\(_2\): C, 57.73; H, 4.71; N, 11.66; Found (%): C, 57.93; H, 4.39; N, 6.78. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta = 2.16\) (s, 2H, CH\(_2\)), 2.52 (s, 3H, CH\(_3\)), 5.15 (s, 2H, Ar-NH\(_2\)), 6.84 (d, \(J = 8.1\) Hz, 2H, Ar-H), 7.67–7.70 (m, 7H, Ar-H).

Add ([4-aminophenyl]ethanone O-benzyl oxime (240.0 mg, 1.0 mmol) into ethanol solution (7 mL) of 3,5-dichlorosalicylaldehyde (191.5 mg, 1.0 mmol). The mixture solution was stirred at 333 K for 18 h. After cooling to room temperature, the precipitate was filtered and washed successively with ethanol and ethanol/n-hexane (1/4), respectively. The product was dried under reduced pressure to obtain 301.84 mg of HL\(^1\), Yield, 79.2%. m.p. 402–403 K. Anal. Calcd. for C\(_{22}\)H\(_{18}\)Cl\(_2\)N\(_2\)O\(_2\) (HL\(^1\)) (%): C, 63.93; H, 4.39; N, 6.78. Found (%): C, 63.99; H, 4.42; N, 6.75. \(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(\delta = 2.25\) (s, 3H, –CH\(_3\)), 5.23 (s, 2H, Ar-CH\(_2\)-O), 7.32–7.79 (m, 11H, Ar-H), 9.06 (s, 1H, CH=N), 14.35 (s, 1H, OH).
The ligands HL2 and HL3 were prepared by a method similar to that of HL1 except substituting 3,5-dichlorosalicylaldehyde with 3-bromine-5-chlorosalicylaldehyde or 3,5-dibrominesalicylaldehyde, respectively. HL2: 351.33 mg, Yield, 76.8%. m.p. 429–431 K. C\textsubscript{22}H\textsubscript{18}BrClN\textsubscript{2}O\textsubscript{2} (HL2) (%): C, 57.73; H, 3.96; N, 6.12. Found: C, 58.04; H, 4.02; N, 6.08. 1H NMR (500 MHz, DMSO-\textit{d}\textsubscript{6}) \(\delta = 2.25\) (s, 3H, –CH\textsubscript{3}), 5.23 (s, 2H, Ar–NH\textsubscript{2}), 7.32–7.87 (m, 11H, Ar–H), 9.04 (s, 1H, CH=\text{N}), 14.49 (s, 1H, OH). HL3: 419.84 mg. Yield, 83.8%. m.p. 441–442 K. C\textsubscript{22}H\textsubscript{18}Br\textsubscript{2}N\textsubscript{2}O\textsubscript{2} (HL3) (%): C, 52.62; H, 3.61; N, 5.58. Found: C, 52.71; H, 3.57; N, 5.75. 1H NMR (500 MHz, DMSO-\textit{d}\textsubscript{6}) \(\delta = 2.25\) (s, 3H, –CH\textsubscript{3}), 5.23 (s, 2H, Ar–CH\textsubscript{2}–O), 7.32–7.93 (m, 11H, Ar–H), 9.08 (s, 1H, CH=\text{N}), 14.55 (s, 1H, OH).

2.3. Syntheses of MnIII Complexes 1, 2, and 3

Complex 1: A solution of Mn(OAc)\textsubscript{2}·4H\textsubscript{2}O (2.5 mg, 0.01 mmol) in methanol (5 mL) was added dropwise to a solution of HL1 (10.2 mg, 0.02 mmol) in acetone (3 mL) containing three drops of trimethylamine at room temperature. The color of the mixed solution turned red-brown immediately, then stirred for 0.5 h at room temperature. The mixture solution was filtered and the filtrate was allowed to stand at room temperature for about two weeks. The solvent was partially evaporated and obtained several red-brown prismatic single crystals suitable for X-ray crystallographic analysis. The yield was 52% (based on the total available Mn). Anal. Calcd. for C\textsubscript{40}H\textsubscript{40}Cl\textsubscript{8}Mn\textsubscript{4}O\textsubscript{16} (%): C, 37.53; H, 3.15. Found: C, 37.59; H, 3.21.

Complex 2: Complex 2 and 3 were synthesized by adding a solution of Mn(OAc)\textsubscript{2}·4H\textsubscript{2}O (2.5 mg, 0.01 mmol) in methanol (5 mL) dropwise to HL2 (10.3 mg, 0.02 mmol) in acetone (3 mL), HL3 (10.4 mg, 0.02 mmol) in acetone (3 mL), respectively, and others steps are same as complex 1. The yields were 56% and 59% (based on the total available Mn), respectively. Complex 2: C\textsubscript{38}H\textsubscript{36}Cl\textsubscript{4}Br\textsubscript{4}Mn\textsubscript{4}O\textsubscript{16} (%): C, 31.92; H, 2.54. Found: C, 32.17; H, 2.38. Complex 3: C\textsubscript{38}H\textsubscript{36}Br\textsubscript{8}Mn\textsubscript{4}O\textsubscript{16} (%): C, 28.39; H, 2.26. Found: C, 28.37; H, 2.28.

2.4. X-Ray Crystallography

The selected single crystals of complexes 1, 2, and 3 were put in a sealed tube, and the measurement was performed on a Bruker Smart Apex-II CCD diffractometer (Karlsruhe, Germany). The reflections were collected by a graphite monochromated Cu Ka radiation (\(\lambda = 1.54184\) Å) at 293(2) K and 296.15(2) K for MnIII complexes 1 and 3, respectively, and that of 2 was collected by a graphite monochromated Mo Ka radiation (\(\lambda = 0.71073\) Å) at 296.15(2) K. The SMART and SAINT software packages [61] were used for data collection and reduction respectively. Absorption corrections based on multiscans using the SADABS software [62] were applied. The structures were solved by direct methods and refined by full-matrix least-squares against \(F^2\) using the SHELXL program [63]. All non-hydrogen atoms were refined anisotropically. The positions of hydrogen atoms were calculated and isotropically fixed in the final refinement. Details of the crystal parameters, data collection, and refinements for complexes 1, 2, and 3 are summarized in Table 1. Supplementary crystallographic data for this paper have been deposited at the Cambridge Crystallographic Data Centre (1538187, 1538179, and 1538146 for complexes 1, 2, and 3) and can be gained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.
Table 1. Crystal data and structure refinement for MnIII complexes 1, 2, and 3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C\textsubscript{40}H\textsubscript{38}Cl\textsubscript{3}Mn\textsubscript{3}O\textsubscript{16}</td>
<td>C\textsubscript{38}H\textsubscript{36}Br\textsubscript{4}Cl\textsubscript{4}Mn\textsubscript{3}O\textsubscript{16}</td>
<td>C\textsubscript{38}H\textsubscript{36}Br\textsubscript{3}Mn\textsubscript{4}O\textsubscript{16}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1280.08</td>
<td>1429.87</td>
<td>1607.71</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>293(2)</td>
<td>296.15</td>
<td>296.15</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
<td>P-1</td>
<td>P-1</td>
</tr>
<tr>
<td>a/Å</td>
<td>9.3045(13)</td>
<td>9.4483(15)</td>
<td>9.3658(4)</td>
</tr>
<tr>
<td>b/Å</td>
<td>11.792(3)</td>
<td>11.392(2)</td>
<td>11.2509(7)</td>
</tr>
<tr>
<td>c/Å</td>
<td>12.408(3)</td>
<td>12.650(4)</td>
<td>12.7732(7)</td>
</tr>
<tr>
<td>α/°</td>
<td>70.12(2)</td>
<td>72.261(6)</td>
<td>72.341(4)</td>
</tr>
<tr>
<td>β/°</td>
<td>75.412(16)</td>
<td>75.408(6)</td>
<td>76.598(4)</td>
</tr>
<tr>
<td>γ/°</td>
<td>80.928(15)</td>
<td>81.766(6)</td>
<td>81.729(4)</td>
</tr>
<tr>
<td>Volume/Å3</td>
<td>1235.1(5)</td>
<td>1251.7(5)</td>
<td>1243.68(13)</td>
</tr>
<tr>
<td>Space group</td>
<td>triclinic</td>
<td>triclinic</td>
<td>triclinic</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>μ/mm-1</td>
<td>12.696</td>
<td>12.456</td>
<td>16.170</td>
</tr>
<tr>
<td>F(000)</td>
<td>644.0</td>
<td>700.0</td>
<td>774.0</td>
</tr>
<tr>
<td>Crystal size/mm3</td>
<td>0.28 × 0.26 × 0.24</td>
<td>0.26 × 0.25 × 0.24</td>
<td>0.28 × 0.25 × 0.22</td>
</tr>
<tr>
<td>Radiation</td>
<td>Cu Ka (λ = 1.54184)</td>
<td>Mo Ka (λ = 0.71073)</td>
<td>Cu Ka (λ = 1.5418)</td>
</tr>
<tr>
<td>20 range/°</td>
<td>7.756 to 131.996</td>
<td>3.764 to 50.016</td>
<td>7.412 to 131.958</td>
</tr>
<tr>
<td>Index ranges</td>
<td>−10 ≤ h ≤ 5, −13 ≤ k ≤ 8, −8 ≤ l ≤ 15</td>
<td>−13 ≤ k ≤ 13, −14 ≤ l ≤ 14</td>
<td>−9 ≤ h ≤ 10, −13 ≤ k ≤ 13, −14 ≤ l ≤ 15</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>4258 [R\textsubscript{int} = 0.0927, R\textsubscript{sigma} = 0.1358]</td>
<td>4201 [R\textsubscript{int} = 0.0532, R\textsubscript{sigma} = 0.0759]</td>
<td>4135 [R\textsubscript{int} = 0.0386, R\textsubscript{sigma} = 0.0485]</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.027</td>
<td>1.023</td>
<td>1.101</td>
</tr>
<tr>
<td>R (I ≥ 2σ(I))</td>
<td>R\textsubscript{1} = 0.0765, wR\textsubscript{2} = 0.1792</td>
<td>R\textsubscript{1} = 0.0904, wR\textsubscript{2} = 0.2548</td>
<td>R\textsubscript{1} = 0.0627, wR\textsubscript{2} = 0.1871</td>
</tr>
<tr>
<td>R (all data)</td>
<td>R\textsubscript{1} = 0.1275, wR\textsubscript{2} = 0.2256</td>
<td>R\textsubscript{1} = 0.1329, wR\textsubscript{2} = 0.2905</td>
<td>R\textsubscript{1} = 0.0743, wR\textsubscript{2} = 0.1979</td>
</tr>
<tr>
<td>Largest diff. peak/hole/eÅ-3</td>
<td>0.571/−1.079</td>
<td>1.011/−0.840</td>
<td>1.23/−0.81</td>
</tr>
</tbody>
</table>

3. Results and Discussion

3.1. Synthesis

Synthesis of MnIII complexes 1, 2, and 3 consisting of the addition of Schiff base ligands (HL1, HL2, and HL3) to the acetone solution containing a small amount of triethylamine, respectively, followed by addition of a solution of Mn(OAc)\textsubscript{3}·4H\textsubscript{2}O in methanol (5 mL). It is worth noticing that the C=N bond of the original Schiff base ligands HL1, HL2, and HL3 have chemoselectively cleaved due to the hydrolytic action and gave the corresponding halogenated salicylaldehyde derivatives, 3,5-dichlorosalicylaldehyde, 3-bromine-5-chlorosalicylaldehyde, and 3,5-dibrominesalicylaldehyde, respectively. Then a unique one-pot α,α double aldol addition in situ of acetone to two corresponding aldol products in the solution (analyzed by NMR), which leads us to believe that MnIII is more likely to promote the α,α double aldol addition, and the acetone is also a necessary factor.
Based on the above findings, our proposed mechanism to rationalize the formation of the new generated polyhydroxyl multidentate ligands, H₄L₁a, H₄L₂a, and H₄L₃a, by Mn⁺⁺⁺-promoted α,α'-double aldol additions [7,19] is described in Scheme 3. Firstly, the initial Schiff base ligands (HL¹, HL², and HL³) underwent hydrolysis to get 1-(4-aminophenyl)ethanone O-benzyl oxime and corresponding salicylaldehyde derivatives (3,5-dichlorosalicylaldehyde, 3-bromine-5-chlorosalicylaldehyde, 3,5-dibrominesalicylaldehyde), respectively (Scheme 3A). Then, a molecule of acetone is deprotonated by the hydroxide moiety of the base, triethylamine, yielding enolate i, which is stabilized by the keto-enolate mesomeric effect as well as coordination to Mn⁺⁺⁺ (Scheme 3B). Moreover, the phenol position of salicylaldehyde derivatives is also deprotonated by the hydroxide base leading to a Mn⁺⁺⁺-phenolate complex ii. The concomitant coordination of the Mn⁺⁺⁺ ion to the neighboring carbonyl oxygen atom of salicylaldehyde derivatives allows the activation of the aldehyde function which undergoes the first aldol addition of the acetone enolate i, yielding the first aldol product iii (Scheme 3C). The latter can then be further deprotonated either in the α or α' position from the carbonyl of the acetone residue. Deprotonation of iii occurs predominantly in the α position due to the thermodynamic conditions used which favor deprotonation on the most substituted α position (Scheme 3D). The formation of enolate iv, stabilized by the keto-enolate mesomeric effect, is also promoted by Mn⁺⁺⁺ coordination assistance. Enolate iv can undergo another aldol addition on a second molecule of salicylaldehyde derivatives, activated by its coordination to Mn⁺⁺⁺, leading to the ligand acetone-di-salicylaldehyde aldol v (H₄L₁a, H₄L₂a and H₄L₃a) which is quadruply deprotonated and coordinated to two Mn⁺⁺⁺ ions.

3.2. IR Spectra
The FT-IR spectra of Mn⁺⁺⁺ complexes 1, 2, and 3 exhibit various bands in the 500–4000 cm⁻¹ region. The most important FT-IR bands are listed in Table 2. In the Mn⁺⁺⁺ complexes 1, 2, and 3, the bands appear at about 3437, 3416, and 3445 cm⁻¹, respectively, are attribute to O–H stretching frequency coordination methanol or water molecules, which confirmed by the crystal structure [64–69]. No characteristic C=N stretching band is found in complexes 1, 2, and 3 indicating that the ligands HL¹, HL², and HL³ are converted into the polyhydroxy deprotonation ligands and coordinated to the Mn⁺⁺⁺ ions. The frequency of Ar–O and C–O stretching vibration shows a strong band at 1244 and 1156 cm⁻¹, 1296 and 1167 cm⁻¹, and 1275 and 1173 cm⁻¹ in the Mn⁺⁺⁺ complexes 1, 2, and 3, respectively [70–73]. The characteristic stretching of the carbonyl (C=O) group appears at 1587, 1602, and 1620 cm⁻¹ as the strong bands in the Mn⁺⁺⁺ complexes 1, 2, and 3, respectively. The moderate and weak vibrations appearing around 698 and 503 cm⁻¹ in 1 (698 and 503 cm⁻¹ in 2, 698 and 503 cm⁻¹ in 3) correspond to the asymmetric and symmetric stretching vibrations of the Mn–O–Mn, respectively, indicating that the Mn-O bond forms at the Mn⁺⁺⁺ ions and the oxygen atoms.

<table>
<thead>
<tr>
<th>Complex</th>
<th>ν(O–H)</th>
<th>ν(Ar–O, C–O)</th>
<th>ν(C=O)</th>
<th>ν(Mn–O)</th>
<th>ν(C=C)</th>
<th>Benzene Ring Skeleton</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3437</td>
<td>1244, 1155</td>
<td>1587</td>
<td>698, 503</td>
<td>1449, 1412</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3416</td>
<td>1296, 1167</td>
<td>1602</td>
<td>695, 494</td>
<td>1449,1352</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3445</td>
<td>1275, 1173</td>
<td>1620</td>
<td>694, 471</td>
<td>1476, 1368</td>
<td></td>
</tr>
</tbody>
</table>
Scheme 3. Proposed mechanism for the Mn\(^{n+}\)-promoted \(\alpha,\alpha\) double aldol additions. (A) Hydrolysis of Ligands HL\(^1\), HL\(^2\), and HL\(^3\). (B) Deprotonation of the acetone. (C) Activation of the salicylaldehyde derivatives and aldol addition. (D) Deprotonation of the aldol product and second aldol addition.
3.3. UV–vis Absorption Spectra

The UV–vis spectra of the MnIII complexes 1, 2, and 3 were recorded in 1.0 × 10$^{-5}$ mol·L$^{-1}$ DMF solution at room temperature shown in Figure 1.

Figure 1. UV–vis absorption spectra of the MnIII complexes 1, 2, and 3 in DMF solution (c = 1 × 10$^{-5}$ mol/L).

A broad absorption band at 443, 417, and 410 nm in complexes 1, 2, and 3 are observed, respectively, which can be attributed to the L→M charge-transfer transitions. In the complex 2, the peak at 297 can be assigned to the n→π* charge transition of the C=O bond of the new ligand (L2a)4$^{-}$ unit, probably arising from the charge transfer of an oxygen atom in the methoxy group to the MnIII center. The shoulder band at 472 nm can attribute to the d-d transitions for elongated octahedral MnIII ions [74–77], however, which are not observed in complexes 1 and 3 maybe because of the weaker d-d transitions absorption peak of MnIII ions are obscured by the stronger L→M charge-transfer absorption peak of the complexes.

3.4. Crystal Structure of MnIII Complexes 1, 2, and 3

Crystal structures and atom numberings of complexes 1, 2, and 3 are depicted in Figures 2–4, respectively. Selected bond lengths and angles for the MnIII complexes 1, 2, and 3 are listed in Table S1. X-ray crystal structure analyses revealed that the MnIII complexes 1, 2, and 3 take on similar crystal structures, which all are centrosymmetric tetranuclear cluster. The crystals of MnIII complexes are all solved as triclinic space group P-1. All the MnIII complexes 1, 2, and 3 consist of four MnIII ions, two (Lna)4$^{-}$ ($n = 1$ (1), $n = 2$ (2), $n = 3$ (3)) moieties, two μ$_3$-OME and two μ$_2$-OME units, two coordinated methanol molecules (in 1) or water molecules (in 2 and 3) (Figure 2a). The MnIII ions and bridging alkoxido groups are arranged in a face-shared dicubane-like core with two missing vertices, which is typical Mn$_4$ “defect-dicubane” structure known [78]. The planar Mn$_4$ rhombus can be described as being composed of two Mn$_3$ triangular faces, each held together by a μ$_3$-oxygen atom [O6 or O6a (a = 1 − x, 1 − y, 1 − z)] of a CH$_3$O$^-$ ligand with distances to the Mn$_{III}$ atoms in the range 2.004(5)–2.265(5) Å in 1 (1.996(6)–2.272(6) Å in 2, 2.009(4)–2.256(4) Å in 3), which are nearly equal to that in the similar complexes [MnIII$_4$(AcVn$_2$)$_2$(μ$_3$-OME)$_2$(μ-OME)$_2$(MeOH)$_2$] [19]. The Mn$_2$–O6–Mn1, Mn2–O6–Mn1a, and Mn1–O6–Mn1a (a = 1 − x, 1 − y, 1 − z) angles are 101.4(2)$^\circ$, 93.9(2)$^\circ$, and 99.1(2)$^\circ$ in 1, respectively (101.4(3), 93.3(3)$^\circ$, and 100.4(3)$^\circ$ in 2; 101.1(2)$^\circ$, 93.4(2)$^\circ$, and 100.3(2)$^\circ$ in 3). The two
MnIII (Mn1 and Mn1a (a = 1 – x, 1 – y, 1 – z)) ions lie on the common edge of the two triangular faces. The external edges of each triangle are hold by μ$_2$-oxygen atoms (O2, O2a (a =1 – x, 1 – y, 1 – z)) and (O7, O7a (a = 1 – x, 1 – y, 1 – z)) with distances of 1.866(6) and 2.226(5) Å of O2 to Mn1 and Mn2 in 1 (1.863(6) and 2.210(6) Å in 2, 1.863(4) and 2.227(4) Å in 3) as well as 1.922(6) and 1.968(6) Å of O7 to Mn1 and Mn2 in 1 (1.904(6) and 1.967(6) Å in 2, 1.918(4) and 1.966(5) Å in 3), respectively (Figure 2b), which are similar to the complexes of Schiff base ligands previously reported [79]. The Mn1–O2–Mn2 and Mn1–O7–Mn2a (a = 1 – x, 1 – y, 1 – z) angle is 99.5(2)$^\circ$ and 108.1(2)$^\circ$ in 1 (99.8(3)$^\circ$ and 108.3(3)$^\circ$ in 2, 99.6(2)$^\circ$ and 107.6(2)$^\circ$ in 3), respectively.

Figure 2. (a) Molecule structure and atom numbering of complex 1 (hydrogen atoms are omitted for clarity); (b) the planar Mn$_4$ rhombus and (c) the coordination polyhedra for MnIII atoms of complex 1 (symmetry code: a = 1 – x, 1 – y, 1 – z).
Figure 3. (a) Molecule structure and atom numbering of complex 2 (hydrogen atoms are omitted for clarity); (b) the planar Mn$_4$ rhombus and (c) the coordination polyhedra for MnIII atoms of complex 2 (symmetry code: $a = 1 - x, 1 - y, 1 - z$).

Figure 4. (a) Molecule structure and atom numbering of complex 3 (hydrogen atoms are omitted for clarity); (b) the planar Mn$_4$ rhombus and (c) the coordination polyhedra for MnIII atoms of complex 3 (symmetry code: $a = 1 - x, 1 - y, 1 - z$).
In the crystal structures of MnIII complexes 1, 2, and 3, the asymmetric unit contains two kinds of different MnIII ions, the metal center Mn1 is hexa-coordinated by three O (O7, O6, O6a (a = 1 − x, 1 − y, 1 − z)) atoms from one μ$_2$-OMe and two μ$_3$-OMe units, respectively, and the remaining three O atoms (O1, O2, and O5) are from a multidentate polyhydroxyl (Lna)$_4$$^-$$^-$ ligands. The coordination geometry of Mn1 can be described as a slightly distorted octahedron geometry based on the corresponding bond lengths and angles (Figure 2c). The equatorial donor atoms O1, O2, O6, and O7 are nearly co-planar, with slight deviation from the mean plane: 0.050(2), −0.053(1), 0.051(2), and −0.048(3) Å in 1 (0.051(3), −0.054(2), 0.052(2), and −0.050(1) Å in 2, 0.050(2), −0.053(4), 0.050(2), and −0.048(3) Å in 3), respectively, and the Mn1 atom deviates by only 0.091(2) Å in 1 (0.095(3) Å in 2, 0.093(1) Å in 3) from this plane. As expected for the MnIII ion, the axial Mn1–O5 and Mn1–O6a (a = 1 − x, 1 − y, 1 − z) distances of 2.194(6) Å and 2.265(5) Å in 1 (2.210(7) Å and 2.272(6) Å in 2, 2.208(5) Å and 2.256(4) Å in 3) are longer than the four Mn-O distances in equatorial sites with Mn1–O1 = 1.899(6) Å, Mn1–O2 = 1.866(6) Å, Mn1–O6 = 2.005(5) Å, Mn1–O7 = 1.922(6) Å in 1 (Mn1–O1 = 1.882(7) Å, Mn1–O2 = 1.862(6) Å, Mn1–O6 = 1.996(6) Å, Mn1–O7 = 1.904(6) Å in 2 and Mn1–O1 = 1.885(5) Å, Mn1–O2 = 1.863(4) Å, Mn1–O6 = 2.008(4) Å, Mn1–O7 = 1.918(4) Å in 3). Obvious bond elongation, due to Jahn–Teller effect, is observed for the apical bonds O5–Mn1–O6a, which is expected for high-spin MnIII as well as on the basis of charge considerations. This phenomenon is often found in the MnIII complexes [80]. The Mn2 atoms are also hexa-coordinated by one O atom (O8) of solvent methanol (in 1) or water molecule (in 2 and 3), two O atoms (O7, O6) from μ$_2$-OMe and μ$_3$-OMe units, respectively, and the remaining three O atoms (O2, O3, O4) come from the (Lna)4$^-$$^-$ ligands, which generate an elongated octahedron around Mn2 on the basis of the corresponding bond lengths and angles (Figure 2c). The square bases of the octahedron for Mn2 consist of O3, O4, O6, O7a (a = 1 − x, 1 − y, 1 − z), with the apical position occupied by O2 and O8. Similarly, the apical bonds along O2-Mn2-O8 direction are elongated. The Mn···Mn separations are 3.253(2) Å for Mn1···Mn1a (a = 1 − x, 1 − y, 1 − z), 3.133(2) Å for Mn1···Mn2a, 3.149(2) Å for Mn1···Mn2a (a = 1 − x, 1 − y, 1 − z), and 5.374(2) Å for Mn2···Mn2a (a = 1 − x, 1 − y, 1 − z) in 1 (that of 3.282(2) Å, 3.123(3) Å, 3.138(2) Å and 5.332(2) Å in 2, 3.277(1) Å, 3.133(1) Å, 3.135(1) Å and 5.343(1) Å in 3). This phenomenon is consistent with the literature report [19,81,82].

The molecular structures of MnIII complexes 1, 2, and 3 are similar to each other, but because of the intra- and inter-molecular hydrogen bond interactions (Table 3), their supramolecular structures are different. As illustrated in Figure 5, in the MnIII complex 1, there are three pairs of intramolecular (O8a–H8A···O1, C18–H18B···O7 and C19a–H19c···O4 (a = 1 − x, 1 − y, 1 − z)) hydrogen bond interactions which are helpful to stabilize the whole architecture. Furthermore, the complex 1 molecules interlink into one 1D infinite chains along the a axis by a pair of weak intermolecular C19b–H19Ab···O5 (b = 2 − x, 1 − y, 1 − z) hydrogen bond interactions and the other 1D infinite chains [83,84] along the b axis by a pair of C11c–H11c···O3 (c = 1 − x, 2 − y, 1 − z) hydrogen bond interactions, respectively (Figures 6 and 7). Thus, these two 1D chains interlink to each other resulting to the crystal packing of the MnIII complex 1 shown a 2D-layer supramolecular structure [85–89] parallel to the ab-planes (Figure 8).
Table 3. Main hydrogen bonds [Å,°] for MnIII complexes 1, 2, and 3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>D–H···A</th>
<th>d(D–H)</th>
<th>d(H···A)</th>
<th>d(D···A)</th>
<th>∠D–H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O8A–H8A···O1</td>
<td>0.85</td>
<td>2.01</td>
<td>2.767(1)</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>C18–H18B···O7</td>
<td>0.96</td>
<td>2.59</td>
<td>3.159(1)</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>C19–H19C···O4</td>
<td>0.96</td>
<td>2.65</td>
<td>2.992(1)</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>C11–H11···O3</td>
<td>0.98</td>
<td>2.57</td>
<td>3.470(1)</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>C19–H19A···O5</td>
<td>0.96</td>
<td>2.60</td>
<td>3.406(1)</td>
<td>142</td>
</tr>
<tr>
<td>2</td>
<td>O8–H8B···O1</td>
<td>0.85</td>
<td>2.06</td>
<td>2.830(1)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>C18–H18A···O7</td>
<td>0.96</td>
<td>2.58</td>
<td>3.128(1)</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>C19–H19B···O4</td>
<td>0.96</td>
<td>2.40</td>
<td>2.954(2)</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>C11–H11···O3</td>
<td>0.98</td>
<td>2.38</td>
<td>3.286(1)</td>
<td>154</td>
</tr>
<tr>
<td>3</td>
<td>C19–H19B···O4</td>
<td>0.96</td>
<td>2.45</td>
<td>2.991(1)</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>C11–H11···O3</td>
<td>0.98</td>
<td>2.28</td>
<td>3.182(8)</td>
<td>152</td>
</tr>
</tbody>
</table>

Figure 5. Part of intramolecular C–H···O hydrogen-bonding interactions in MnIII complex 1 (symmetry code: a = 1 − x, 1 − y, 1 − z).

Figure 6. Part of 1D supramolecular structure containing C19b–H19Ab···O5 hydrogen bond interactions along a axis of the MnIII complex 1 (symmetry code: b = 2 − x, 1 − y, 1 − z).
In complex 2, three pairs of intra-molecular O8–H8B···O1, C18–H18A···O7, and C19a–H19Ba···O4 (a = 1 − x, 1 − y, 1 − z) hydrogen bonds are formed (Figure 9), which are helpful to stabilize the whole architecture. The –O8H8B of coordinated water is hydrogen-bonded to the O1 atom of the (L$^{2\alpha}$)$^{4−}$ ligand. The proton (~C18H18A) of the μ_3-MeO$^-$ units is hydrogen-bonded to the O7 atom of the μ_2-MeO$^-$ units. The proton (~C19aH19Ba (a = 1 − x, 1 − y, 1 − z)) of the μ_2-MeO$^-$ units is hydrogen-bonded to the O4 atom of the (L$^{2\alpha}$)$^{4−}$ ligand. Synchronously, the independent complexes are held together from zero-dimension into 1D supramolecular chains along the crystallographic b axis through a pair of intermolecular C11c–H11c···O3 (c = 1 − x, 2 − y, 1 − z) hydrogen bonding (Figure 10).
Meanwhile, the complex (Fig 8) is stabilized by weak intermolecular hydrogen bonds formed (Fig 9) through a pair of intermolecular C11c–H11c···O3 hydrogen bond interactions along the b axis (symmetry codes: c = 1 − x, 2 − y, 1 − z).

In the crystal structure of complex 3, there are a pair of intramolecular hydrogen bonds C19a–H19Ba···O4 (a = 1 − x, 1 − y, 1 − z) to stabilize the whole architecture (Figure 11, Table 3). Meanwhile, the complex 3 interlinks into one 1D infinite chain along the b axis by a weak intermolecular C11c–H11c···O3 (c = 1 − x, 2 − y, 1 − z) hydrogen bond interaction [90–93] (Figure 12).
3.5. Fluorescence Properties

The emission spectra of the Mn(III) complexes 1, 2, and 3 were investigated in dilute DMF solution (5.0 × 10⁻⁵ mol/L) at room temperature (Figure 13). The complexes exhibit the bluish violet photoluminescence with maximum emissions at 486, 494, and 501 nm (π-π*) upon excitation at 320 nm. The changes of the maximum emission wavelength and fluorescence intensity may be related to the different substituents on complexes 1, 2, and 3 [94–100]. As discussed above, because of the coordination of Mn(III) ions to the ligand, which resulting in increasing of the delocalization of electrons and reducing the energy gaps between the π-π* molecular orbitals of the ligand in the complexes (from 3, 1 to 2).

Figure 11. Part of intramolecular C–H···O hydrogen-bonding interactions in Mn(III) complex 3 (symmetry codes: a = 1 − x, 1 − y, 1 − z).

Figure 12. Part of 1D supramolecular structure containing C11c–H11c···O3 hydrogen bond interactions along the b axis in complex 3 (symmetry codes: c = 1 − x, 2 − y, 1 − z).
| Figure 13. Emission spectra of the Mn$^{	ext{III}}$ complexes 1, 2 and 3 ($	ext{ex}$ = 320 nm) in DMF solution (5.0 × 10^{-3} \text{ mol/L}). |

4. Conclusions

Based on the above data, description and discussion, three tetranuclear Mn$^{	ext{III}}$ complexes with defective double-cubane cores, namely [Mn$_4$(L$_{1a}$)$_2$(μ$_3$-OMe)$_2$(μ$_2$-OMe)$_2$(MeOH)$_2$] (1), [Mn$_4$(L$_{2a}$)$_2$(μ$_3$-OMe)$_2$(μ$_2$-OMe)$_2$(H$_2$O)$_2$] (2), and [Mn$_4$(L$_{3a}$)$_2$(μ$_3$-OMe)$_2$(μ$_2$-OMe)$_2$(H$_2$O)$_2$] (3) have been synthesized and characterized. X-ray crystal structure determinations revealed that the structural features of complexes 1, 2, and 3 are similar except for the differences in the coordinated solvent molecules and the substituent of the ligands. There are worth noting that when the Schiff base ligand reacted with Mn$^{	ext{III}}$ acetate tetrahydrate, they undergo an one-pot chemoselective cleavage of the C=N bond and further the α,α double aldol addition of acetone to two salicylaldehyde derivatives molecules promoted by Mn$^{n+}$ ions in situ, leading to the novel multidentate polyhydroxyl ligand (L$_{1a}$)$_4$, (L$_{2a}$)$_4$, and (L$_{3a}$)$_4$. This has proved an effective route to obtain the multidentate ligands and their tetranuclear Mn$^{	ext{III}}$ compounds. In these Mn$^{	ext{III}}$ complexes, all hexa-coordinated Mn$^{	ext{III}}$ atoms adopt elongated slightly distorted octahedral geometries. In addition, the Mn$^{	ext{III}}$ complex 1 possess a self-assembling infinite 2D supramolecular structure, whereas complexes 2 and 3 show the 1D chain. Interestingly, the existence of substituent effect in complexes 1, 2, and 3 may be responsible for the slight differences in their coordination geometries, supramolecular structure, and fluorescence properties.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/7/272/s1, Table S1: Selected bond lengths (Å) and angles (°) for Mn$^{	ext{III}}$ complexes 1, 2 and 3.

Author Contributions: Y.-X.S. conceived and designed the experiments; H.-R.J. and J.C. performed the experiments; H.-J.Z. and J.L. analyzed the data; H.-R.J., and Y.-X.S. wrote the paper.

Funding: This research received no external funding.

Acknowledgments: This work was supported by Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), which is gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

53. Li, J.; Zhang, H.J.; Chang, J.; Jia, H.R.; Sun, Y.X.; Huang, Y.Q. Solvent-induced unsymmetric Salamo-like trinuclear Ni⁡II complexes: Syntheses, crystal structures, fluorescent and magnetic properties. *Crystals* 2018, 8, 176. [CrossRef]

61. SAINT, version 6.02; Bruker AXS Inc.: Madison, WI, USA, 2002.
62. SADABS, version 2.03; Bruker AXS Inc.: Madison, WI, USA, 2002.
63. Sheldrick, G.M. SHELXL-2014/7; University of Gottingen: Gottingen, Germany, 2014.
64. Zhang, L.W.; Li, X.Y.; Kang, Q.P.; Liu, L.Z.; Ma, J.C.; Dong, W.K. Structures and fluorescent and magnetic behaviors of newly synthesized NiII and CuII coordination compounds. Crystals 2018, 8, 173. [CrossRef]
65. Yang, Y.H.; Hao, J.; Li, X.Y.; Zhang, Y.; Dong, W.K. Hetero-trinuclear CoII2-DyIII complex with a octadentate bis(Salamo)-like ligand: Synthesis, crystal structure and luminescence properties. Crystals 2018, 8, 174. [CrossRef]
69. Gao, L.; Wang, F.; Zhao, Q.; Zhang, Y.; Dong, W.K. Mononuclear Zn(II) and trinuclear Ni(II) complexes derived from a coumarin-containing N2O2 ligand: Syntheses, crystal structures and fluorescence properties. Polyhedron 2018, 139, 7–16. [CrossRef]

87. Dong, W.K.; Sun, Y.X.; Li, L.; He, X.N.; Tang, X.L. Synthesis, crystal structure, and DNA-binding studies of different coordinate binuclear Silver(I) complexes with benzimidazole based on bis(N-allylbenzimidazol-2-ylmethyl) aniline: Synthesis, crystal structures and antioxidative activity. *Crystals* 2018, 8, 144. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).