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Abstract: The application of Fractional Calculus to control mechatronic devices is a promising research
area. The most common approach to Fractional-Order (FO) control design is the PI*D* scheme, which
adopts integrals and derivatives of non-integer order A and p. A different possible approach is to
add FO terms to the PID control, instead of replacing integer order terms; for example, in the PDD'/?
scheme, the half-derivative term is added to the classical PD. In the present paper, by mainly focusing
on the transitory behaviour, a comparison among PD, PD¥, and PDD2 control schemes is carried out,
with reference to a real-world mechatronic implementation: a position-controlled rotor actuated by a
DC brushless motor. While using a general non-dimensional approach, the three control schemes
are first compared by continuous-time simulations, and tuning criteria are outlined. Afterwards,
the effects of the discrete-time digital implementation of the controllers are investigated by both
simulation and experimental tests. The results show how PDD'? is an effective and almost cost-free
solution for improving the trajectory-tracking performance in position control of mechatronic devices,
with limited computational burden and, consequently, easily implementable on most commercial
motion control drives.
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1. Introduction

The generalization of the concept of derivative and integral to non-integer order
(Fractional Calculus) dates back to the beginning of the theory of differential calculus: there are
notes by Leibnitz regarding the calculation of the half-derivative (that is the derivative of order 1/2) [1].
In the last decades, the advances in the chaos theory revealed deep relationships with fractional
differential and integrals, and this motivated a renewed interest in this research area. In the scientific
literature, there is a wide variety of works regarding the applications of fractional derivatives and
integrals in physics [2], chemistry [3], and biology [4].

Fractional Calculus is not only a powerful tool for modelling some physical phenomena, but it can
also be used in engineering applications, such as electronics, signal processing, and bioengineering [5].
In particular, Fractional Calculus can be profitably applied in the area of control system design. Most
control system algorithms are based on integer-order derivatives and integrals of the error; if the
derivation/integration order is not integer, but fractional, there are additional parameters that can be
tuned to improve the closed-loop system behavior.

The PI'D¥ scheme is the most common approach to Fractional-Order (FO) control design, which
generalizes the PID scheme by adopting integrals and derivatives of non-integer order A and u [6].
Design techniques, optimization tools and practical implementations of PI'D¥ controllers are discussed
in [7-14]. In particular, the FO derivative of the PD! can lead to performance improvements in the
transient behavior with respect to the classical PD in many motion control applications [15-24].
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Besides the PI'D#-PD¥ scheme, in the scientific literature there are many other examples of
extensions of control techniques based on Fractional Calculus; for instance, the performance of sliding
mode control can be enhanced by using a FO disturbance observer [25] or by applying it to systems
that are better approximated by FO models [26].

Another possible approach to FO control is to add FO terms to the classical PID scheme, instead of
replacing the integer order terms; for example, in the PDD'? scheme, the half-derivative term is added
to the derivative term instead of replacing it as in the HPD# [27-32]. One immediate advantage of this
approach is that the well-known PID/PD scheme can be maintained, while performance improvements,
if needed, can be achieved with the only addition of the half-derivative term.

In [31] the PD, PD¥, and PDD'? schemes are compared by simulation in the control of a
second-order (inertial) system, analyzing the dynamic behavior of the closed-loop system in terms
of settling time, rise time, overshoot, and settling energy. The integral action is not used, since the
focus of the research is the transient behavior and not the steady-state accuracy. A non-dimensional
approach is used for the sake of generality. The simulation results show that, while considering the
case of step input and keeping constant the settling energy, the PDD'? scheme has a better readiness
than PD and PD# The main drawback is a limited increase of overshoot.

The present paper continues and deepens the comparison between PD, PD¥, and PDD'2, with the
aim of an experimental validation of the benefits of the FO control approach in real working conditions,
not limited to the step response. The main advancements and differences with respect to [31] are
the following:

e  after a more detailed discussion of their performances in terms of settling time, rise time, overshoot
and settling energy: in case of step response, the three controllers are compared by simulation,
while keeping the overshoot constant (Section 5);

e then, the comparison is extended to the response in case of trapezoidal speed law, which is
commonly used as reference signal for finite displacements of mechatronic systems, again by
adopting a non-dimensional approach (Section 6); and,

e finally, the effects of discrete-time digital implementation of the controller with finite sampling time
and short memory effect, suitable for limited capacity microcontrollers, are investigated both by
simulations and by experimental tests on a real-world mechatronic test-bench: a position-controlled
rotor actuated by a DC brushless motor (Section 7).

The simulations and experimental results show good agreement for both continuous and
discrete-time models of the controller. Moreover, FO controllers PD# and PDDY2 exhibit better
performances, in both simulations and in experiments, than the classical PD scheme, with a limited
increase of computational burden.

2. The Integro-Differential Operator: Definition and Numerical Computation

In Fractional Calculus, according to the Griinwald-Letnikov definition, being suitable for a robust
discrete-time implementation [33], the continuous fractional differential operator for a function x(f) can
be defined as:

" (5]

) I'(a+1)
() = 11m—kz_;) (—1)kr

(k+DI(a—k+1)

x(t—kh) 1

where @ € RT is the order of differentiation, a and ¢ are the fixed and variable limits, I is the Gamma
function,  is the time increment, and [y] is the integer part of y.

Equation (1) can be rewritten in terms of z-transfer notation to obtain a discrete-time digital
implementation with finite sampling time T [34]:

k
as 1 Z _
=0
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where k = [(t—a)/Ts] and:
wg =1

_ _a+tl T (3)
wj" = (1 T)w7—1 ,j=1,2, ...

For the calculation of (2), it is necessary to consider k + 1 previous values of x; from a practical
point of view, for t >> a the number of addends becomes too large for real-time implementation on a
digital controller; therefore, it is necessary to limit the number of steps on which the calculation of the
fractional derivative is based, in order to have a computational burden compatible with the sampling
time and the speed of the controller CPU. Accordingly, if, at each time step, there is a fixed number n of
considered previous steps, with n < k, Equation (2) corresponds to the application of a n' order digital
filter, with fixed memory length L given by the product of the sampling time and of the filter order:

L =nT, 4)

Fortunately, for large ¢ the history of the function x(f) near the start point of the differentiation
process (t = a) becomes negligible on the basis of the so-called short-memory principle [35], which
means that only taking into account the recent past of the function, in the interval [t-L, t], does not
yield relevant approximations in the discrete-time evaluation of the FO derivative.

3. Second-Order Linear System with Fractional-Order Control

There is a wide variety of closed-loop mechatronic systems in which friction is negligible, and
the inertial effects can be suitably modelled by a second-order linear system. In the following a rotor
with inertia ] subject to the control output torque M will be considered (obviously, all the results and
conclusions can be extended to a translating mass m subject to a control output force F).

The plant dynamics is expressed by the following differential equation:

42
256 = M(eo) ©)
where M is the control output, which is a function of the error eg = 6,—0 (difference between the
set-point angle and the current angle).

In the following, for closed-loop control (Figure 1), two possible FO control laws are considered

and compared: PD! and PDD2.

0. M
G(s) 7

-+

Figure 1. Closed-loop system with second-order plant.

In the case of PD# control, the control law is:
a¢
M(eg) = KPEQ + de ﬁ(?e 6)

where K;, and Ky; are the proportional and fractional-order derivative gains and p is the fractional
derivative order.
In the case of PDD'? scheme:

d d1/2
M(eg) = Kpeg + Ka~eo + Khdmee 7)

where Kj, K;, and Kj,; are the proportional, derivative, and half-derivative gains.
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If all of the derivatives of x(t) are null at t = 0, the Laplace transform of FO derivatives has the
same well-known property of integer-order derivatives [34]:

ds "
1| fr0| = sz ®)
Therefore, the transfer functions of the PD# and PDDY? controllers are:
Ge,ppr(s) = Kp + Kpgst* )

G, ppp1/2(s) = Kp + Kys + Kyys'/2 W

4. Non-Dimensional Model

For the sake of generality, the system behaviour is analysed by using a dimensionless formulation.
For the PD¥ control, besides the derivative order p, the dimensionless parameter ¢, proportional to Ky,
is introduced [31]:
= & ot = L (11)
K, " K,(1-1/2) Ju/2
where wy = (Ky/J)/?; for the PDDY2 control, two dimensionless parameters  and ¢, proportional to K,

and Kj,4, are used [31]:
_ Kjwn _ Ky

C = 12
2K, 2 Kp] (12)

Ky 12 Ky
lzb - K_pa)n - Kp3/4]1/4 (13)

The basic concept in the definition of these parameters is that the proportional effect acts as
a torsional spring stiffness, therefore w, is the natural frequency of the undamped closed loop
system. Consequently, Equation (12) corresponds to the well-known definition of damping ratio for a
second-order linear system. The parameters ¢ and 1) have been defined to non-dimensionalize the
gains Ky and Ky on the basis of K, and wy, simply starting from dimensional analysis. The alternative
expressions in Equations (11)—(13) derive from the expression of w; as a function of K, and J.

From Equations (11)—(13) it is possible to recognize that:

e  when p =1 the PD¥ controller is a PD controller with C = ¢/2; and,
e  when u = 1/2 the PD¥ controller is a PD'? controller with ¢ = ¢

To complete the non-dimensional approach, it is necessary to introduce also the dimensionless
time t,; = wyt, the dimensionless position 6,; = 6/6,, and the dimensionless error eg,;= e¢g/0. Using
these variables, and starting from Equations (5)—(7), it is possible to write the dimensionless dynamic
equations of the closed-loop system with the two control laws:

PDH: a2 0 egad+ @ ar e (14)
* 7 Yad = €0,ad 1 €0,ad
dtad dtud
42 dl/z d
PDDY%: —— 0,4 = egaq + P——=€0,04 + 20— 15
dtgd ad 0,ad 11b dt; 0{2 0,ad dtad 0,ad ( )

Figure 2 presents the adoption of the dimensionless parameter and variables, where M, is the
dimensionless torque, 8, is the dimensionless set-point, and G, 4,4(s) is the dimensionless controller
transfer function, which is in the two cases:

PD¥: Ge,ad,pDH (s) =1+ st (16)
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PDDY2: G,y pppr/2(s) = 1+ ¢s'/2 +2Cs 17)

) My, B

rad ] a
‘3,(%)—) G ) r T

Figure 2. Dimensionless closed-loop system with second-order plant.

Starting from Equations (16) and (17), it is possible to obtain the dimensionless closed-loop transfer
function of the system for the two control laws:

0,4 1+ st
PD*: £ =G = 18
By CcladPD! (s) T+ st 452 (18)
0 1+ st/2 4 2Cs
PDDY2: L = G, i popi/2(8) 4 (19)

- 1+ ysl/2 +20s + 52

These dimensionless transfer functions depend only on two parameters: u and ¢ for PD# control,
C and ¢ for PDD'?2 control.
In the rest of this paper:

Qr,ad

e PD,PD¥, and PDD'? controls are compared non-dimensionally by simulation while considering
the response to a step input (Section 5);

e the non-dimensional comparison by simulation is then extended to the response to a set-point
with trapezoidal speed law, suitable for position control of mechatronic devices (Section 6); and,

e finally, the tuned PD, PD¥, and PDD'? controllers are experimentally validated on a mechatronic
test bench, with a discrete-time digital implementation that is suited to be executed by
microcontrollers with limited computing power (Section 7).

5. Step Response

In this first analysis, simulations of system and controllers are performed in continuous time by
using the FOTF Matlab library [34]. The system behaviour in the case of step-input can be evaluated
considering these performance indexes:

e  settling time to within 2% band;

e rise time from 10% to 90% of the final value;

e overshoot (%); and,

e dimensionless settling energy, being defined as follows [31]:

Es,ad = fMiddtud (20)
0

Figures 3-6 collect these indexes both in the case of PD* control, as a function of u (0 + 2), and ¢
(0 = 8), and in the case of PDDY2 control, as a function of { (0 + 2) and Y (0 + 8). These 3D graphs
have been obtained varying the dimensionless parameters u and C in steps of 0.01, and i and ¢ in
steps of 0.05, generating 32000 simulations for PD* and 32000 simulations for PDDY? control. The
considered ranges of dimensionless parameters cover the useful zones for practical applications, as will
be discussed in the following; moreover, since these 3D maps are based on dimensionless variables, they
represent an exhaustive and general tool to compare PD, PD¥, and PDD'? in the case of second-order
plant and step set-point.
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Figure 6. Dimensionless settling energy E; ;4 with PD# control (a) and PDD2 control (b).
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It is possible to note that:

e the 3D surfaces representing the settling time are characterized by discontinuities, which are
related to the number of oscillations, which are performed before reaching the 2% band; for the
PD# control, the number of oscillations increases if ¢ tends to zero or if u is distant from the unit
value; for PDDY? this number increases if both  and  tend to zero (absence of damping);

e overshoot is 100% without any damping (¢ = 0 for PD¥, { = ¢ = 0 for PDD'?); this graph can
be used to impose a lower limit to the total damping: ¢ for PD#, the combination of C and 1 for
PDD'?; and,

e for the PD¥ control, the three-dimensional (3D) graph of the settling energy show that the
derivation order should range around the unit value, with an upper limit for ¢; for PDD'?, this
graph can be used to impose an upper limit to the total damping (the combination of C and ).

A practical method to use these 3D graphs is to single out the loci in the (u, ¢) and (C, 1) planes
characterized by constant value of one index (the contour lines of the corresponding 3D surface), and
then assess the system behaviour along these loci.

For example, starting from the 3D graph of the overshoot for PD¥, it is possible to obtain the five
(4, @) loci with an overshoot equivalent to the PD with C = 0.6, 0.8, 1, 1.2, 1.4 (Figure 7). Let us note
that the integer order case (PD) is along the line with y = 1 and in this case C = ¢/2. Let us consider the
central loci, with an overshoot equivalent to PD; y (where the notation PDy indicates PD with C = x).
Along this line, the five gain sets a’, b’, ¢/, d’, and e’ have same overshoot (13.5%), and = 0.8,0.9, 1,
1.1, 1.2; therefore, ¢’ corresponds to PD .

oy, = 14 (Overshoot §.4%)

= 2 (overshoot 10.5%)
5 =1 (overshoot 13.5%)
. = 0.8 (overshool 18.0%)
= 0.6 (overshoot 24.9%)

Mot

Figure 7. PD! control: (u, ¢) loci with equivalent overshoot.

Similarly, Figure 8 shows for PDDY? the five (C, 1) loci with overshoot equivalent to the PD with
(=06,08,1,12, and 1.4. Along the central line, the five gain sets a”, b”, ¢”, d”, and e” have the same
overshoot (13.5%), and 1 =0, 0.5, 1, 1.5, and 2; therefore a” corresponds to PDy .

Figures 9 and 10 and Tables 1 and 2 summarize the step responses with these ten gain sets. It is
possible to note that the PDD'? scheme allows for reducing the settling and rise time with a lower
increase of settling energy: for example, the gain set b” has slightly better performance than b’ with a
remarkably lower settling energy.
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Figure 10. Step response with PDDY? control: gain sets with equivalent overshoot (13.5%).
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Table 1. PD/PD¥# comparison, u—¢ combinations with constant overshoot (13.5%).

Parameter Colour Dimensionless Dimensionless Dimensionless
Set in Figure 9 H ¢ Settling Energy Settling Time Rise Time
a’ (PD") 0.8 3.75 17.84 3.46 0.46
b’ (PD") 0.9 2.46 5.28 4.78 0.62
¢ (PD,C=1) 1 2 3.14 5.41 0.73
d’ (PDW) 1.1 1.82 22.60 5.87 0.84
e’ (PDH) 1.2 1.76 137.28 6.28 0.95

Table 2. PD/PDD'/2 comparison, (-1 combinations with constant overshoot (13.5%).

Parameter Colour c Dimensionless Dimensionless Dimensionless
Set in Figure 10 k4 Settling Energy Settling Time Rise Time

a (Plt)) C= - 1 0 3.14 5.41 0.73

b” (PDDY2) 1 0.5 3.36 4.66 0.63

¢” (PDDY?2) 1.02 1 4,08 4.07 0.57

d” (PDDY2) 1.05 1.5 5.25 3.58 0.51

e” (PDDY2) 1.09 2 6.83 3.19 0.46

The comparison among PD, PD¥, and PDD'? with equivalent settling energy in the step response
indicates that the PDDY2 control has a better readiness than the PD and PDH schemes, with the
drawback of a limited increase of the overshoot; this comparison is extensively discussed in [31].

In the next section, the results that were obtained with step input will be extended to the more
practical case of trapezoidal speed law, which is usually adopted to define the reference position
in mechatronic applications; in particular, three control laws will be compared in continuous-time
simulation:

e PDj, gain set a” of Table 2, equivalent to ¢’ of Table 1;
e PDH, gainseta’ of Table 1, with u = 0.8 and ¢ = 3.75; and,
e PDD2, gain set e” of Table 2, with { =1.09 and i) = 2.

These control laws have been tuned, imposing the constraint of equal overshoot in the step
response (13.5%); a” and e” are the gain sets that have the lowest settling time and rise time in the
respective tables.

6. Trapezoidal Speed Law Response

Finite displacements of mechatronic devices are never performed while using step inputs for the
position set point, to avoid an instantaneous increase of the error and the consequential saturation
of the control output. On the contrary, finite displacements are usually performed while adopting a
trapezoidal speed law of the position set-point: a phase with constant acceleration, then a phase with
constant speed, and finally a phase with constant deceleration. In the following, the response to this
set-point law is analysed maintaining a non-dimensional approach for the sake of generality. To this
aim, these assumptions are made:

e the total dimensionless rotation 6,5 has unit value; and,

e inthefirstand third phases, acceleration and deceleration are equal in magnitude, and consequently
also the duration of these phases is equal; if the total dimensionless duration of the three phases is
tad fin, the duration of the first and third phases is a t, fin, with 0 < a < 0.5; consequently, the second
phase duration is (1-2a) 44 fin-

The first hypothesis is not restrictive, due to the model linearity; in practice, it corresponds
to the assumption of unit step in the previous section. On the contrary, the second hypothesis
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imposes a restriction, since, in general, the magnitudes of acceleration and deceleration can be different
(for example, in many applications the deceleration rate is lower than the acceleration rate to obtain
a more accurate final positioning). Nevertheless, these assumptions have been introduced to limit
the number of combinations to be investigated, since the dimensionless trapezoidal speed law is
completely defined by only two dimensionless parameters, t,; 4, and a. However, even with these
assumptions, it is possible to obtain information about the system behaviour also in case of asymmetric
speed laws, with different acceleration and deceleration by simply considering two responses with
different values of a: as a matter of fact, the acceleration and deceleration transients are relatively
independent for @ << 0.5 (sufficiently long constant speed phase), as usual in real applications.

As typical cases of the results that are obtained with trapezoidal laws, Figure 11 represents the
response to trapezoidal speed law with a = 0.2 and t444, = 5, in terms of dimensionless angle 6,
error egyy and torque M4, while Figures 12 and 13 represent the same results, but with ¢4, = 10
and tad fin = 20.

@ (b) (0)

Figure 11. Trapezoidal speed law response, a = 0.2, t;4 fin = 5 (PD: green; PD¥: red; PDDY2: blue;
set-point: black); dimensionless angle 0,; (a), dimensionless error eg,; (b) and dimensionless torque
Mg (c).

pDD"?

1)

Figure 12. Trapezoidal speed law response, a = 0.2, t,4 fin = 10 (PD: green; PD¥: red; PDDY2: blue;
set-point: black); dimensionless angle 6,; (a), dimensionless error eg,4 (b) and dimensionless torque
Maa (c).

Obviously, the tracking error decreases for higher values of ¢, 5, with all three controllers, because
the commanded motion is slower. It is possible to note that both the FO controllers show a better
dynamic performance than the PD in terms of maximum tracking error: the peak error is remarkably
reduced with a similar maximum value of the control torque M,;. On the other hand, by using the
classical PD controller, the tracking error decreases towards zero faster. The behaviours of PD* and
PDD!2 controls are very close, even if the second has a slightly lower maximum error for all the
displacement durations.

These results indicate that, also in the case of trapezoidal law, the adoption of FO controllers
reduces the maximum tracking error. Interestingly, such a reduction is obtained without increasing the
required motor torque, which remains very similar for all three control schemes.



Actuators 2020, 9, 13 11 of 17

12 0015 0.02

—m 0015
oorif |

000s ‘J

0.005

001 |
pop'?| | 00 |
0% N

0015
w I B

spin | 4 P ¢
ad 01 ad gp ad
0 0 s ) [ 5 5 s 3

(b) (c)

Figure 13. Trapezoidal speed law response, a = 0.2, 434, = 20 (PD: green; PD: red; PDDY2: blue;

set-point: black); dimensionless angle 6,; (a), dimensionless error ey, (b) and dimensionless torque
Mad (C)

Until now, the simulations and obtained results are based on a continuous-time, non-approximated
implementation of the fractional controllers, based, as already stated, on the FOTF toolbox [34]. In
the case of real mechatronic systems, the control law must be implemented in discrete time by means
of a digital filter, with finite memory length 1, corresponding to the filter order due to the limited
computation power available and real-time constraints (Section 2). Moreover, some non-modelled
effects, such as friction, may arise, and their compensation may possibly be required.

In the next section, such topics will be investigated in two steps:

e by carrying out simulations with discrete-time, limited memory implementations of the controllers:
in such a case, the control laws are implemented with sampling time T by digital filters with
finite memory length 1, with T, and # limited by the computational power of the controller
hardware; and,

e by experimental tests on a physical prototype, to validate the possibility of obtaining the expected
performance improvement also in real applications.

7. Discrete-Time Implementation and Experimental Validation

According to the previous considerations, the results of Section 6 have been validated, bearing in
mind their application in real working environments, in two steps. First, the controllers have been
implemented in discrete time and new simulations have been carried out and compared with the results
of the previous sections. Subsequently, with the validated discrete-time implementation, the controllers
have been tested and compared by means of an experimental set-up (Figure 14) composed of a flywheel
(inertial load) directly connected to a DC motor Kollmorgen AKM42G (maximum continuous torque
3.4 Nm). The overall moment of inertia of the rotor (composed of motor rotor, joint, shaft, and flywheel)
is 1.04 x 1073 kgm?.

Figure 15 represents the overall control scheme. The PD, PD¥, and PDDY2 controls that are
discussed in the previous section are implemented in Simulink Desktop Real Time running on a PC. A
National Instrument PCI-6259 DAQ card, driven by Simulink Desktop Real Time, reads the encoder
signal (position and velocity feedback) and generates the reference torque signal, which is sent to
the Kollmorgen driver AKD-P00606. The no load torque/speed characteristics of the rotor (i.e., the
torque necessary to drive the rotor at constant speed) has been measured and approximated by a
linear characteristic with coefficient Kr=145x% 1073 Nms/rad to compensate for friction. Afterwards, a
compensation torque proportional to the rotor speed with constant Ky has been added to the reference
torque signal M, (Figure 15) in all the three considered cases in order to obtain a coherent comparison:
continuous-time simulation (CTS), discrete-time simulations (DTS), and experimental tests (ET).
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Figure 14. Experimental layout: inertial load directly actuated by the brushless DC motor (a) and
Simulink Desktop Real Time control (b).

PC with NI PCI-6259 DAQ card Kollmorger AKD-P00606 driver Kollmorgen AKM42G motor

position . x|
o, € control M,

(PD/PDH/
PDD!2)

trajectory
generator

b S6i 4 M
w current AN motor Top

control winding

Figure 15. Overall control scheme of the experimental layout.

All of the tests have been performed while using a trapezoidal speed law with overall duration
tin =1 s and a = 0.2. The adopted proportional gain is Kj, = 0.25 Nm/rad, therefore w, = 15.453 rad/s,
and, consequently, t45, = 15.453. Starting from the dimensionless parameters adopted for the
comparison between PD, PD# and PDD'? of the simulations reported in Section 6, the remaining
control gains are calculated. Table 3 summarizes such gains and the other control parameters. For the
discrete-time implementation of the controllers, the FO derivatives (half-derivative for PDD? and
derivative of order u for PD¥) are calculated by means of 6th order digital filters, according to the
Griinwald-Letnikov approach, being expressed by Equations (2) and (3), adopting a sampling time T
= 0.006 s. These values of filter order and sampling time are adequate to the computational capability
of the control system.

Table 3. Experimental set-up and theoretical discrete-time simulation parameters.

e ke K e e
2 0.8
[Nm/rad] [Nms/rad] [Nms“/“/rad] [Nms®8/rad] 0, [rad] i Is] T, Is]
PD 3.236 x 1072 - -
PDD!/2 0.25 3.527 x 1072 0.127 - 80 1 0.006
PD* - - 0.105

Figure 16 shows the CTS results; differently from Section 6, these results are reported while using
dimensional quantities (0, eg and M) instead of dimensionless ones (0,4, egaq and M,,;) to allow for the
comparison with discrete-time control simulations and experimental results. Moreover, the torque
graphs represent M, (Figure 15), comprising the friction compensation term, which corresponds to the
actual reference torque input to the AKD-P00606 motor driver.
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Figure 16. Trapezoidal speed law response, continuous-time simulation; a = 0.2, t5, = 1's (PD: green;

PD¥: red; PDD'?: blue; set-point: black); angle 0 (a), error eg (b) and torque M*, (c).

Discrete-time simulations (Figure 17), carried out by means of Simulink, allow for assessing the
tracking performance of the FO controls with the fractional derivatives that were implemented by the

6th order digital filter. Finally, the same FO discrete-time implementation is adopted to contr

ol the

motion of the experimental test bench of Figure 14, obtaining the results in Figures 18-20 provide
detailed views of the acceleration and deceleration phases, comparing the results of CTS, DTS, and ET,
while Table 4 summarizes the main quantitative results in terms of maximum and mean tracking error

€9 max and eg mean), maximum torque (M*,,,¢), and settling energy (E).
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Figure 17. Trapezoidal speed law response, discrete-time simulation; a = 0.2, t5, = 1 s (PD: green; PD¥
red; PDDY2: blue; set-point: black); angle 0 (a), error eg (b) and torque M*, (c).
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Figure 18. Trapezoidal speed law response, experimental test; « = 0.2, tfin = 1s (PD: green; PD!: red;

PDDY2: blue; set-point: black); angle 6 (a), error eg (b) and torque M*; (c).



Actuators 2020, 9, 13 14 of 17

6 [rad] eg[rad]

——pp'2, TS
P, CTS

,CTS
[T o 4 | #—ppD'2, DTS
17 g te —+— P, DTS
) 3 PD.DTS
’ \ ==== D', ET

i f
{ \ P ET
o4t § \ PD.ET
i
I
alf
,

0 005 01 015 02 025 03 035

(a) (c)

Figure 19. Trapezoidal speed law response, comparison of continuous-time simulation (CTS),
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PDDY2: blue; set-point: black); zoom of the acceleration phase; angle 0 (a), error eg (b) and torque
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Figure 20. Trapezoidal speed law response, comparison of CTS, DTS, ET; a = 0.2, tin = 1s (PD: green;
PDH: red; PDDY2: blue; set-point: black); zoom of the deceleration phase; angle 0 (a), error eg (b) and
torque M* (c).
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Table 4. Comparison of simulation results with PD, PDD!2, and PDH.

eg,max [rad] €9, mean [rad] M* 14y [Nm] E; [NZm?2s]

CTS 1.679 0.624 0.704 22.016

PD DTS 1.769 0.632 0.710 23.774
ET 1.732 0.626 0.627 18.217

CTS 0.897 0.346 0.671 21.699

PDD12 DTS 0.789 0.279 0.699 24.201
ET 0.741 0.296 0.616 18.319

CTS 0.997 0.386 0.670 21.631

PD* DTS 0.832 0.294 0.715 24.508
ET 0.782 0.313 0.635 18.477

Starting from these results, we can draw the following conclusions:

e  The simulated dynamics of the system with the discrete-time digital implementation of the FO
controllers exhibits the same advantage with respect to the integer-order controller, which has
been evidenced by the continuous-time model, as shown in Figures 16, 17 and 19: the peak
tracking error is strongly reduced, and the improvement is even greater than in continuous time
(—47% for PDDY2 and —41% for PD* in CTS, —55% for PDD2, and —53% for PD¥ in DTS).

e  The percentage decrease of the mean tracking error with respect to PD is similar to the decrease of
the maximum tracking error: (—45% for PDDY2 and —38% for PD* in CTS, —56% for PDDY2, and
—53% for PD* in DTS).
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e  On the other hand, the maximum peak torque is similar or even lower (~4.7% for PDD'? and
—4.8% for PD* in C.T.S., —=1.5% for PDD'2 and +0.7% for PD* in DTS); also the settling energies
are similar (—1.4% for PDDY2 and —1.7% for PD* in C.T.S., +1.8% for PDD2 and +3.1% for PDH
in DTS).

e  Discrete-time simulation results and experimental data are in good agreement: the reduction of
the peak tracking error with respect to PD is —57% for PDD'? and —55% for PD¥; the reduction of
the mean tracking error with respect to PD is —53% for PDDY2 and —50% for PD¥; the variation
of maximum peak torque with respect to PD is —1.7% for PDDY2 and +1.3% for PD¥ ; and, the
variation of settling energy with respect to PD is +0.6% for PDD"? and +1.4% for PDH.

e CTS and DTS both highlight the benefits of FO controllers and can be considered valuable tools
for their tuning.

e The difference between PD¥ and PDDY? is small, but, in the discrete-time implementation,
PDD'? exhibits slightly better performances, both in simulations and in experimental tests,
since it provides slightly lower maximum and mean errors, with lower maximum torque and
settling energy.

8. Conclusions

In the present paper, we highlight some of the benefits obtained by adopting FO motion controllers
in mechatronic applications. The considered application is the position control of a rotor with constant
inertia and actuated by a brushless motor, corresponding to quite a general case in motion control. In
particular, the PDD'/? law is compared to the classical integer-order PD and the better-known FO PD
in the control of a second-order linear system.

First, while using a dimensionless approach, different possible tuning criteria based on the step
response are discussed for PD, PD¥, and PDD2 by means of simulations, and then a tuning criterium
based on imposed overshoot value is adopted.

A digital implementation based on finite sampling time and finite memory length and a
compensation of the friction losses are introduced, simulated, and implemented on an experimental
workbench in order to compare the three controllers according to a real computational implementation
and in experimental tests. Based on the tuning results for the step response, the controllers’ performance
has been tested with a trapezoidal speed law, a case that is more suited for real position control of
mechatronic devices. The experimental results are coherent with the discrete-time simulations and
confirm the efficacy of the proposed FO PDDY? algorithm.

The work shows a practical demonstration that PDD'? is an effective and almost cost-free solution
to improve the trajectory-tracking performance in position control of mechatronic devices, with very
limited computational burden (6th order digital filter) and, consequently, easily implementable on
most commercial motion control drives.

As regards future works and challenges, there are several issues to be investigated. First, also
integral terms will be added to the PDD'? control algorithm in order to extend the proposed approach
to applications in which the steady-state error must be bounded. The comparison between PIDH
and PITY?DDY? (comprising the half-integral term) is currently in progress. Numerical optimization
techniques that are based on the available and validated continuous-time and discrete-time models can
be obviously applied, but it is even more interesting from a theoretical point of view the development
of a general treatment in the frequency domain of the proposed control algorithms based on the
half-derivative and half-integral terms.

Moreover, a fundamental and open problem for FO linear time invariant closed-loop systems is
their robust stability, which is related to the preservation of the control properties in the presence of
uncertainties of the controlled plant model [36-38]; also, this aspect will be considered in future research.
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