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Abstract: The use of conventional classification techniques to recognize diseases and pests can lead
to an incorrect judgment on whether crops are diseased or not. Additionally, hot pepper diseases,
such as “anthracnose” and “bacterial spot” can be erroneously judged, leading to incorrect disease
recognition. To address these issues, multi-recognition methods, such as Google Cloud Vision,
suggest multiple disease candidates and allow the user to make the final decision. Similarity-based
image search techniques, along with multi-recognition, can also be used for this purpose. Content-based
image retrieval techniques have been used in several conventional similarity-based image searches,
using descriptors to extract features such as the image color and edge. In this study, we use eight
pre-trained deep learning models (VGG16, VGG19, Resnet 50, etc.) to extract the deep features from
images. We conducted experiments using 28,011 image data of 34 types of hot pepper diseases and
pests. The search results for diseases and pests were similar to query images with deep features
using the k-nearest neighbor method. In top-1 to top-5, when using the deep features based on the
Resnet 50 model, we achieved recognition accuracies of approximately 88.38–93.88% for diseases and
approximately 95.38–98.42% for pests. When using the deep features extracted from the VGG16 and
VGG19 models, we recorded the second and third highest performances, respectively. In the top-10
results, when using the deep features extracted from the Resnet 50 model, we achieved accuracies of
85.6 and 93.62% for diseases and pests, respectively. As a result of performance comparison between
the proposed method and the simple convolutional neural network (CNN) model, the proposed
method recorded 8.62% higher accuracy in diseases and 14.86% higher in pests than the CNN
classification model.

Keywords: deep feature; k-nearest neighbor; hot pepper disease; similarity-based image retrieval;
transfer learning

1. Introduction

1.1. Motivation

The hot pepper (Capsicum annuum) is an essential vegetable globally. The FAO (2018) indicates that
its production (item; “Chilles and pepper, green”) in the world has steadily increased to approximately
36.8 million tons, up more than 14.4% compared to 2014, and that China and Mexico are the top two hot
pepper producing countries in the world [1]. The production of hot peppers is considerably affected
by several factors, such as a long growing period, continuous climate changes, and foreign pests,
because of the increased imports of agricultural products.
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The use of conventional classification techniques to identify diseases or pests can lead to the
incorrect detection of diseases. “Anthracnose”, “bacterial spot” and other hot pepper diseases, can be
erroneously judged. The incorrect diagnosis and prescription of diseases and pests can result in crop
damage. To address these issues, multi-recognition methods, such as Google Cloud Vision, suggest
multiple candidates and allow users to make the final decision. A similarity-based image search (SBIS)
technique [2], along with multi-recognition, can also be used for this purpose. A content-based image
retrieval (CBIR) technique was used in many conventional SBISs. CBIR extracts features such as image
color and edge using descriptors and outputs a query image by comparing similarities between features.
However, owing to the limitation of descriptors in extracting features, the search accuracy of diseases
and pests is relatively low compared with that of conventional deep learning-based recognition models.

Conventional deep learning models require a large amount of data and a lot of time and effort
to train [3]. Moreover, issues such as overfitting can arise [4,5]. Images of diseases and pests exhibit
seasonality, but it is difficult to collect a sufficient amount of accurate disease and pest images because
of the lack of experts in this field. Transfer learning techniques [3] can be used in models trained with a
huge amount of data in case of insufficient data or ineffective model training. Transfer learning can be
mainly used for either fine-tuning or feature extraction. In this study, to address the lack of disease and
pest image data, we extracted the deep features of disease and pest images using pre-trained models.

1.2. Related Work

1.2.1. Single Recognition

Conventional studies on the disease and pest recognition often use single recognition. For example,
Ref. [6] developed a robotic system to detect powdery mildew and tomato spotted wilt virus in greenhouse
sweet peppers and reached a recognition accuracy of approximately 85–95%. Francis et al. [7] recognized
hot pepper diseases and pests using a soft computing technique and artificial neural networks (ANNs)
and determined the percentage of infection. Wahab et al. [8] detected the cucumber mosaic virus in hot
peppers by combining k-means clustering and a support vector machine algorithm with an accuracy
of ~90%. Hossain et al. [9] recognized five hot pepper diseases and pests (alternala, anthracnose,
bacterial blight, canker, and leaf spot) using texture features extracted from leaves and k-nearest
neighbors Karadağ et al. [10] detected a pepper fusarium disease using spectral reflectance and
ANN, naïve Bayes, and KNN algorithms. Ferentinos [11] recognized pepper bacterial spots using
approximately 990 images.

Further, many recent disease and pest recognition studies [12–14] implemented convolutional
neural network (CNN) algorithms on crops such as rice and tomatoes and recorded a recognition
accuracy of approximately 90–96%. Yun et al. [15] combined a probabilistic neural network, leaf images of
crops, and weather information to identify three types of cucumber diseases and pests. Deokar et al. [16]
proposed a disease and pest diagnosis system that detects diseases based on diseased parts found on
leaves using the k-means clustering algorithm. Johannes et al. [17] proposed a mobile-based recognition
system that was able to recognize three types of wheat diseases and pests with an accuracy of ~80%.

1.2.2. Transfer Learning and Pre-Trained Models

Most machine learning models were built to operate independently; therefore, they need
re-training when the data are changed. However, considerable time and effort are required for
model re-training. Transfer learning (see Figure 1) is based on utilizing a pre-trained model with its
weights that has been trained on a large dataset. This is so that transfer learning helps in this situation
and can solve a task by reusing the knowledge obtained from previous related tasks [18]. This is so
that it can provide a guaranteed solution for a good performance with fewer training samples [19].
Transfer learning has been actively utilized in research, such as software defect prediction [20], sentiment
classification, activity recognition [21], etc. Pre-trained models, trained on a huge amount of data such
as ImageNet, can be applied to similar tasks and used by updating only some parameters of the model.
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Therefore, considerable time is saved when training the entire network is not required [22,23]. There are
two approaches which can be used in transfer learning: feature extraction and fine-tuning [19,24].
Feature extraction refers to the values extracted from pre-trained models, and they are called deep
features. Fine-tuning is a method of tuning partial weights or changing the partial structure of
pre-trained models.
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Rangarajan et al. [25] recognized six types of tomato diseases and pests using the pre-trained
AlexNet and VGG16 models and achieved recognition accuracies of 97.29 and 97.49%, respectively.
Llorca et al. [26] recognized tomato diseases and pests using the pre-trained Inception V3 model and
recorded an accuracy of 88.9%. Atole et al. [27] classified the rice status into normal, unhealthy,
and snail-infested using the pre-trained AlexNet model and recorded an accuracy of 91.23%.
Ramcharan et al. [28] performed cassava disease detection using the transfer learning technique with
a detection accuracy of ~95%. Nsumba et al. [29] performed cowpea detection using the pre-trained
MobileNet model and a small amount of data and recorded an accuracy of ~96%. Wang et al. [30]
recognized the stage (i.e., healthy, early, middle, end) of leaves through the VGG16, VGG19, Inception
V3, and Resnet 50 models using transfer learning and reached a 90.4% accuracy with the VGG16 model.

1.2.3. Multi-Recognition and Similarity-Based Image Search

Ferentinos [11] performed multi-recognition on 58 diseases and pests for 25 types of crops,
including apples and cabbage peppers. This study used various models, such as VGG and GoogleNet,
and recorded a recognition accuracy of ~99% using the VGG model. Other SBIS studies used the CBIR
technique, which finds an image with the most similar feature using image content (e.g., color, shape,
texture) features. Marwaha et al. [31] investigated the diseases and pests of maize by classifying the
extracted features using three descriptors, (auto color correlograms, color edge directivity descriptor,
and fuzzy color and texture histogram).

Patil et al. [32] proposed a search system based on the texture features extracted using Gabor
and LBP filters and applied it to soybeans. Baquero et al. [33] proposed a system for detecting seven
types of tomato diseases and pests using the KNN algorithm and extracting features from pest images
using the color structure descriptor. However, both studies achieved a relatively low search accuracy
of ~60%.

Yin et al. [34] proposed a search system based on the LIRE open library and applied it to eight types
of diseases and pests of pears, strawberries, and grapes achieving an accuracy of ~83%. Piao et al. [35]
searched diseases and pests by combining various descriptors provided by LIRE. The best performance
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was recorded for multiple descriptors; however, the prediction accuracy was rather low (~75–83%) and
decreased with the increase in the types of diseases and pests.

1.2.4. Summary

As several existing studies on the recognition of diseases and pests focused on three to ten
diseases and pests per crop, the use of these models in actual growing fields is limited. Additionally,
although they recorded a high recognition accuracy using the classification technique, they used
single recognition to display the result to the user, thus providing an incorrect recognition result.
This can be solved by using a multi-recognition or SBIS technique. However, because of descriptor
limitations in feature extraction, the search accuracy of existing SBIS studies using CBIR is relatively
low. Therefore, using features extracted from deep learning models is necessary. Studies using transfer
learning for the recognition of crop diseases and pests recorded a high recognition accuracy of up to
97.49%, indicating that this technique can be effectively used in multiple domains when the number of
disease and pest images is insufficient [36]. So far, there are no studies that recognize diseases or pests
by using search methods with deep features of transfer learning. Therefore, in this study, we propose a
method of applying the deep features extracted from pre-trained models to the search of disease and
pests of hot peppers and examine the possibility of recognizing them with the proposed search method.

2. Materials and Methods

The proposed method mainly involves three stages: training, search, and exploration. The architecture
of the method is illustrated in Figure 2.
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During the training process, the deep features of disease and pest images are extracted by
pre-trained models trained on the ImageNet data. Next, the extracted features are applied to the KNN
model. KNN is a supervised learning algorithm, which typically makes the final decision by majority
voting using the information of the nearest k neighbors among the existing data.

Here, the KNN algorithm does not use the original disease and pest image but rather the cropped
image containing the disease area. During the searching stage, cropping is performed on the original
image, and the deep features of the cropped image are extracted using the pre-trained models.
The extracted deep features are inputted into the trained KNN model and the most similar k vectors in
the vector space are selected. Each vector refers to the cropped image.

Finally, during the exploration process, the original images are outputted to the user. The user
confirms the information of the relevant disease or pest and selects the disease/pest image most similar
to the query image.

2.1. Image Cropping

The original images were cropped to size of 128 × 128 (see Figure 3), and the cropped image
with the diseased part was used. Image cropping has an advantage of speeding up image search and
improving recognition accuracy [37,38]. Disease and pest images also underwent the cropping process
because the diseased section occupies only part of the image. The user crops the images manually in
the proposed model to ensure disease selection is as accurate as possible. The cropping process was
conducted by the plant experts.
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2.2. Deep Feature Extraction Using Pre-Trained Models

Strategies using the transfer learning technique are mainly divided into deep feature extraction
and fine-tuning. This way, deep features are extracted using pre-trained models, such as Resnet 50 [39]
and VGG 16 [40], which have been trained on a huge number of datasets (e.g., ImageNet). In this study,
we extracted deep features from eight pre-trained models: Resnet50, VGG16, VGG19, Xception [41],
Inception V3 [42], MobileNet [43], Inception V4 [44], and DenseNet [45]. The deep features extracted
from each pre-trained model were applied to the search of hot pepper diseases and pests to measure
the model performance.

The ImageNet data-based pre-trained models used were classified into 1000 classes. Therefore,
we modified the structure of the pre-trained models because we could not directly use them for
disease and pest search. Figure 4 shows the structure of the deep feature extractor used in this
study. We removed the classification layer, including the fully connected and softmax layers from the
pre-trained models. We extracted the deep features of the disease and pest images by transferring
parameters from the convolution layers of the pre-trained models. The dimensions of the extracted deep
features differ depending on the pre-trained model. For example, 512 deep features were outputted
by MobileNet, and 2048 deep features were outputted by Resnet 50. The extracted deep features are
represented in the vector space using the KNN model.
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2.3. Similar Image Search Using KNN

In this study, we used the KNN algorithm to search the images with the highest similarity to the
disease image inputted by the user.

The important components of the KNN algorithm are the k-value and distance function. Here, k is
the number of nearest neighbors for reference. For example, when k = 3, the information of three
instances nearest to the input data is considered. The performance of the KNN model varies depending
on the k value; therefore, appropriately selecting the k-value is essential. The same applies to the
distance function that calculates the distance between instances. There are many distance functions,
such as Euclidean distance and cosine similarity. Some distance functions can handle high-dimensional
data or reduce the calculation speed; therefore, the use of a suitable distance function can improve the
performance of the model. In this study, we used the Bray–Curtis dissimilarity [46], commonly used in
the fields of ecology and environmental science, as a metric to measure the distance between instances.
The Bray–Curtis dissimilarity between two vectors A and B of length N is calculated in Equation (1).
Its value range is (0, 1); the closer it is to 0, the more similar the vectors are.

Bray−Curtis dissimilarity (A, B) =

∑N
i=1|Ai − Bi|∑N

i=1 Ai +
∑N

i=1 Bi
. (1)

In this study, we used a tree-based algorithm to effectively handle high-level deep features. We built
a KNN model by using the ball-tree algorithm that can be adjusted to the structure of the expressed data
and can effectively handle high-dimensional data [47,48]. During classification, the KNN algorithm
selects one class through majority voting by referring to k close instances. However, because this study
performs a search not a classification, the algorithm returns the k instances and distances nearest to the
input data through the k-value without using majority voting.

2.4. Algorithm

The design process of the proposed model and the searching process using the pseudocode
are shown in Algorithms 1 and 2. The model receives the cropped image as input and outputs the
disease/pest images most similar to the query image. This process consists of modeling and searching.

As seen in Algorithm 1, modeling extracts deep features of all disease datasets and applies them
to the KNN model. Here, deep features are extracted from the pre-trained models trained on the
ImageNet dataset. Pre-trained models’ input size should be considered, “target_size”, i.e., the size of
the input image, was set to (224, 224) or (299, 299). Next, the loaded image is converted into an array
format, which is inputted to the pre-trained models to output the deep features. The deep features are
extracted from the entire disease and pest images. Then, the KNN algorithm is modeled using the
deep features, and the trained KNN model is saved.
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During searching, the trained KNN model is loaded, and the disease and pest images most similar
to the deep feature of the query image are outputted (see Algorithm 2). As with the modeling step, the
query image is loaded as “target_size” (224, 224) or (299, 299) and converted to an array format, which
is inputted to the pre-trained model to extract the deep feature. Thus, the extracted feature is inputted
into the pre-trained KNN model, and the distances of the N data most similar to the deep feature and
the index of the data are returned. This explains why the data become more similar as the distance
between them gets shorter. Therefore, the distance values are sorted in ascending order.

Algorithm 1. Pseudocode of modeling.

1. Input: all cropped disease images of database
2. Output: trained KNN model
3. Algorithm: modeling
4. Begin
5. pre_trained models ∈ {Resnet 50, VGG16, VGG19, Xception, Inception, Inception v4, DenseNet,

MobileNet};

6. target size =
{

(224, 224),
∣∣∣ {Resnet 50, VGG16, VGG19, DenseNet, MobileNet}

(299, 299),
∣∣∣ {Xception, Inception, Inception v4

}
7. image_to_array() # convert image to array
8. pre_trained model.predict() # get deep feature from input image
9. all disease dataset # 34 types of hot pepper diseases and pests
10. X = []; # list of deep features
11. knn = KNN();
12. for pre_trained model in pre_trained models:
13. for img_file in all disease dataset:
14. file_name = name(img_file); # get file name
15. Img = load_img(file_name, target_size= target size);
16. Img = image_to_array(img);
17. feature = pre_trained model.predict(img).flatten();
18. X.append(feature);
19. knn.compile(neighbors, algorithm = “ball_tree”, metric = “braycurtis”);
20. knn.fit(X); # modeling the knn
21. save(knn); # save trained knn model to local
22. End
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Algorithm 2. Pseudocode of searching.

1. Input: cropped image
2. Output: disease and pest images most similar to the deep feature of the query image
3. Algorithm: searching
4. Begin
5. Load trained KNN as knn
6. Query image q
7. distance list = [] # The list of distance with query image
8. index_list = [] # The index list of searched images

9. target size =
{

(224, 224),
∣∣∣ {Resnet 50, VGG16, VGG19, DenseNet, MobileNet}

(299, 299),
∣∣∣ {Xception, Inception, Inception v4

}
10. q = load_img(q, target_size=target size)
11. q_Img = image_to_array(q) # convert image to array
12. feature = pre_trained model.predict(q_Img).flatten() # deep feature
13. distance list, index_list = knn.predict(feature) #
14. sorting results by distance ASC
15. End

2.5. Dataset Description

In this study, we used hot pepper (Capsicum annuum) disease and pest images provided by
the National Institute of Horticultural and Herbal Science. Sample images are shown in Figure 5.
The original images were cropped to a size of 128 × 128 (see Figure 3), and only the cropped image
with the diseased part was used. As summarized in Tables 1 and 2, there are a total of 15 classes in
the hot pepper disease, and 17,623 cropped images were generated from total of 1977 original images.
Additionally, in the hot pepper pest, 10,388 cropped images were generated from total 2621 original
images in 19 classes. The cropping process was conducted by plant experts.
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Table 1. Summary of hot pepper disease dataset.

Disease (15 Classes) # of Original Image # of Cropped Image

Anthracnose 283 1152
Bacterial spot 161 2015
Bacterial wilt 58 467
Black mold 14 432

CMV 49 421
Damping-off 14 34

White leaf spot 221 2314
Gray mold 171 2304

Canker 144 660
Leaf spot 291 1526
Pepmov 42 1281

Phytophthora blight 102 463
Powdery mildew 278 3146
Southern blight 43 372

TSWV 106 1036

Sum 1977 17,623

Table 2. Summary of hot pepper pest dataset.

Pest (19 Classes) # of Original Image # of Cropped Image

Aculops 139 1140
Baccarum 90 684

Frankliniella intonsa 17 76
Halyomorpha halys 65 87
Helicoverpa assulta 54 76

Latus 46 720
Metcalfa pruinosa 167 250
Nezara antennata 26 26

Speculum 623 1152
Slug 138 1212

Spodoptera exigua 167 266
Spodoptera litura 167 633

Stali 58 696
Tabaci 78 540

Tetranychus urticae 452 476
Thrips 60 1008

Clavatus 90 648
Whitefly 133 338

Thunberg 51 360

Sum 2621 10,388

2.6. Experimental Process

In this study, we used the deep features extracted from pre-trained models and outputted the N
disease/pest images most similar to the query image via the KNN method. To extract deep features,
we used 8 pre-trained models: Resnet50, VGG16, VGG19, Xception, Inception V3, MobileNet, Inception
V4, and DenseNet, and measured the performance of the deep features extracted from each model.
In the first experiment, in the top-10 (k = 10) results, we measured the search accuracy when applying
the deep features extracted from all pre-trained models to the search system. In the second experiment,
in the top-1 to top-5 (k = 1,2,3,4,5) results, we evaluated the performance when using the deep features
extracted from the three pre-trained models that recorded the highest search accuracy in the first
experiment. In the third experiment, a performance comparison between the proposed model and the
CNN classification model was conducted.
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2.7. Performance Evaluation of Pre-Trained Models

In this study, we evaluate the performance of the proposed disease and pest search model
when applied to hot peppers. The accuracy is the ratio between the number of images related to
the query image and the total number of searched images, and it is calculated from Equation (2).
Here, “relevant images” refers to the number of disease and pest images that belong to the same class
as the query image and “retrieved images” refers to the number of images outputted by the KNN
algorithm. i corresponds to the index number of the input image, and N refers to the total number of
images included in each disease and pest class.

accuracy =
1
N

N∑
i

∣∣∣{relevant images
}
∩

{
retrived images

}∣∣∣∣∣∣{retrieved images
}∣∣∣ (2)

The accuracy of the search model was measured using the deep features extracted from the
abovementioned pre-trained models. For each pre-trained model, we extracted deep features from
34 types of hot pepper disease and pest images. We applied the extracted deep features to the KNN
model and measured the performance of the search model based on the results of top-1~5 and top-10.
The experiment aimed to identify the pre-trained model with the highest search performance for hot
pepper diseases and pests. The experimental procedure designed for the top-10 (set k value as 10)
results is as follows.

(1) All cropped images were used as test data after the KNN model was created.
(2) In the entire test image, each query image (cropped image) was inputted into the KNN model,

and a total of 10 similar cropped disease and images were searched.
(3) Of the 10 cropped images, the first was excluded because it was the same as the inputted

query image.
(4) From the remaining nine similar images, the accuracy was obtained by calculating the number of

images that belonged to the same class as the query image.

In the second experiment, the top-1 to top-5 results were used to measure the accuracy using
the 3 pre-trained models that achieved the highest accuracy in the first experiment. In this search
method, the results associated with the query are placed in the front, leading to an increase in the
model performance. Therefore, the proposed search model measured the performance in the top-1 to
top-5 results.

In the third experiment, a performance comparison between the proposed model and the CNN
classification model was conducted. In consideration of the need for sufficient data set when training a
deep learning model, diseases and pests with fewer than five-hundred cropped images were excluded
from this experiment.

3. Results and Discussion

Using the abovementioned research design, we applied the deep features extracted from
eight pre-trained models to the image search of hot pepper diseases and pests to measure the
recognition accuracy.

Tables 3 and 4 summarize the performance measurements of the top-10 results when the pre-trained
models were applied to hot pepper diseases and pests, respectively. The experimental results indicate
that the Resnet 50, VGG16, and VGG19 models recorded the highest search accuracy for the disease
and pest images used in the study. The Resnet 50 model recorded the highest search accuracy for both
diseases (85.6%) and pests (93.62%). It is followed by the VGG16 and VGG19 models, which recorded
a search accuracy of 79.45 and 79.07% for diseases, respectively. For pests, they achieved a search
accuracy of 88.72 and 88.25%, respectively.
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Table 3. Accuracy comparison of each pre-trained model in pepper disease.

Disease
Accuracy

ResNet50 Xception Inception VGG16 VGG19 Inceptionv4 DenseNet MobileNet

Anthracnose 75.39% 28.9% 24.08% 70.56% 69.22% 19.75% 47.22% 32.28%
Bacterial spot 84.81% 41.04% 43.2% 77.53% 79.49% 16.92% 54.58% 44.30%
Bacterial wilt 86.30% 34.57% 21.12% 75.54% 75.75% 8.92% 65.83% 42.14%
Black mold 98.76% 58.46% 37.73% 99.74% 99.56% 11.86% 95.04% 79.53%

CMV 84.9% 32.93% 15.22% 81.26% 79.65% 7.07% 62.23% 35.21%
Damping-off 93.14% 43.46% 33.98% 88.88% 90.84% 9.48% 66.01% 77.78%

White leaf spot 95.78% 61.17% 59.75% 93.07% 92.51% 35.53% 76.45% 76.01%
Gray mold 66.11% 28.96% 59.75% 62.42% 60.01% 15.59% 49.04% 34.23%

Canker 88.18% 59.64% 46.83% 85.21% 87.05% 29.48% 79.78% 62.21%
Leaf spot 95.39% 60.28% 52.60% 93.91% 94.17% 25.95% 74.01% 68.30%
Pepmov 95.94% 53.18% 34.46% 88.29% 88.53% 15.55% 62.56% 40.50%

Phytophthora blight 81% 22.15% 21.35% 70.96% 70.21% 9.96% 56.83% 39.48%
Powdery mildew 88.46% 63.98% 53.37% 85.74% 84.92% 23.70% 75.82% 67.42%
Southern blight 75.26% 19.73% 9.07% 53.06% 50.37% 5.99% 57.38% 25.46%

TSWV 74.65% 39.76% 37.77% 65.64% 63.78% 13.70% 60.99% 33.22%

Average 85.6% 43.21% 36.69% 79.45% 79.07% 16.63% 65.58% 50.54%

Table 4. Accuracy comparison of each pre-trained model in pepper pest.

Pest
Accuracy

ResNet50 Xception Inception VGG16 VGG19 Inceptionv4 DenseNet MobileNet

Aculops 99.89% 45.52% 40.12% 99.53% 99.32% 20.56% 90.91% 70.45%
Baccarum 100% 50.21% 42.96% 99.95% 100% 21.07% 93.06% 82.42%

Frankliniella intonsa 88.3% 23.83% 16.81% 64.91% 62.28% 7.46% 30.56% 40.79%
Halyomorpha halys 89.91% 24.01% 13.4% 88.12% 86.97% 5.87% 51.34% 41.51%
Helicoverpa assulta 66.66% 21.92% 8.04% 50% 46.49% 2.78% 46.78% 19.30%

Latus 99.89% 70.16% 43.54% 98.93% 98.97% 17.76% 93.40% 68.77%
Metcalfa pruinosa 92.97% 19.06% 19.28% 89.95% 87.69% 4.67% 46.76% 56%
Nezara antennata 99.14% 42.3% 37.6% 100% 100% 3.42% 92.31% 76.07%

Speculum 95.89% 41.38% 37.97% 89.94% 88.05% 16.25% 69.01% 67.53%
Slug 100% 47.04% 43.18% 99.96% 99.97% 29.02% 93.67% 81.86%

Spodoptera exigua 81.57% 23.35% 18.42% 65.7% 67.42% 8.65% 42.27% 41.69%
Spodoptera litura 80.34% 27.59% 28.96% 66.71% 65.91% 23.13% 49.06% 37.20%

Stali 100% 44.52% 40.58% 99.69% 99.90% 14.37% 91.89% 79.93%
Tabaci 99.36% 60.04% 58.95% 97.59% 98.40% 22.12% 85.53% 70.84%

Tetranychus urticae 96.91% 55.18% 48.99% 89.51% 88.35% 16.88% 80.72% 74.81%
Thrips 99.83% 49.58% 42.04% 99.39% 99.39% 25.88% 86.33% 72.76%

Clavatus 100% 80.33% 82.63% 100% 100% 31.29% 97.51% 99.04%
Whitefly 89% 61.01% 60.05% 85.89% 87.64% 24.62% 83% 71.27%

Thunberg 100% 41.69% 48.73% 100% 100% 11.17% 95.46% 92.56%

Average 93.62% 43.62% 38.54% 88.72% 88.25% 16.16% 74.71% 65.52%

In the second experiment, we used the three best performing models (Resnet 50, VGG16, and VGG19)
to measure the search accuracy for the top-1 to top-5 results. Figure 6 shows the performance
measurement when the Resnet 50, VGG16, and VGG19 models were applied to hot pepper diseases.
The Resnet 50 model has the highest search accuracy of 88.38–93.88% for the top-1 and top-5, respectively.
As shown in Figure 7, the Resnet 50 model recorded the highest search accuracy of 95.38–98.42% for
the top-1 and top-5 in pest. As with diseases, the search accuracy is highest for the top-1 results and
performance decreases from the top-1 to top-5.
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Figures 6 and 7 indicates that the search accuracy for pests is approximately 5–7% higher than
that for diseases. The reason is that pest images are more distinct than disease images because of the
more easily distinguishable pests. As seen in Table 4, some items can be searched with an accuracy
of 100%. However, the search accuracy for “helicoverpa assulta” was relatively lower (66.66%) than
that for other pests, because most of the corresponding images did not contain pests but the damage
caused by pests.

Although the highest accuracy was recorded at top-1, there were still incorrect recognition results.
Therefore, by showing multiple candidates we allow the user to make a final decision to avoid such
an issue.

Table 5 is a performance comparison table between the proposed method and CNN classification
model. The result shows that average accuracy of the proposed method is higher than the CNN model
(for diseases: 8.62%, for pest: 14.86%).
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Table 5. Accuracy comparison between convolutional neural network (CNN) model and proposed method.

Disease
Accuracy

Pest
Accuracy

CNN Proposed Method CNN Proposed Method

Anthracnose 73.80% 75.39% Aculops 73.33% 99.89%
Bacterial spot 83.33% 84.81% Baccarum 80.00% 100%

White leaf spot 83.33% 95.78% Latus 80.00% 99.89%
Canker 86.67% 88.18% Speculum 83.33% 95.89%

Leaf spot 66.67% 95.39% Slug 83.33% 100%
Pepmov 83.33% 95.94% Spodoptera litura 93.33% 80.34%

Phytophthora blight 66.67% 81% Stali 86.67% 100%
Powdery mildew 86.67% 88.46% Tabaci 86.67% 99.36%

TSWV 73.33% 74.65% Thrips 66.67% 99.83%
Clavatus 93.30% 100%

Average 78.20% 86.62% 82.66% 97.52%

Because the deep features were extracted from the pre-trained models trained on big data,
such as ImageNet, there was no need for a model training process. Consequently, we were able to
save a lot of time and resources. Furthermore, we were able to prevent overfitting that could be
caused by insufficient data. Based on the experimental results, we proved that the deep features
extracted from the pre-trained models could be used to recognize hot pepper disease and pests.
However, further experiments should be conducted on other crops in the future.

4. Conclusions

In this study, we proposed a disease and pest search model using the transfer learning technique
and KNN algorithm. In the proposed model, we extracted deep features using pre-trained models
trained on the ImageNet dataset. We used eight models, including VGG16, VGG19, and Resnet 50,
to extract the deep features. Next, we calculated the similarity between the extracted deep features
using the KNN algorithm, and finally outputted several highly similar disease/pest images to the user.
In the top-1~top-5 results, the deep features based on the Resnet 50 model showed a performance of
88.38–93.88% for diseases and 95.38–98.42% for pests. When using the deep features extracted from
the VGG16 and VGG19 models, we recorded the second and third highest performance, respectively.
In the top-10 results, when using the deep features extracted from the Resnet 50 model, we recorded a
performance of up to 85.6 and 93.62% for diseases and pests, respectively. As a result of performance
comparison between the proposed method and the simple CNN model, the proposed method recorded
an 8.62% higher accuracy in diseases and 14.86% higher in pests than the CNN classification model.
Since the proposed method is simple, inexpensive, and easy to implement, it could allow farmers to
easily detect diseases and pests in hot peppers and potentially other crops.

In this study, we use deep features from pre-trained model on ImageNet dataset. In future work,
we will fine-tune the pre-trained model to extract deep features and check the effectiveness.
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