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Abstract: The plant-back intervals (PBIs) of imicyafos were investigated for rotational cultivation
of lettuce and spinach in greenhouses. Imicyafos dissipation in soil and its plant uptake were
evaluated by liquid chromatography-tandem mass spectrometry. Bioconcentration ratios (BCRs)
were calculated by comparing the residues in plants to the initial residue in soil. The BCRs were
used to calculate the soil acceptable residues (SARs) transferable to plants at the Positive List System
(PLS) level. The number of days, PBIs for reaching SARs were obtained from the dissipation equation
for imicyafos in soil. In soil, imicyafos followed first order dissipation kinetics (R2 = 0.975) with a
half-life of 40.8 days. The BCRs ranged from 0.041 to 0.469 in the edible leaf parts of lettuce and
0.006 to 0.134 in those of spinach. The SARs ranged from 0.021 to 0.244 for lettuce and 0.075 to
1.667 mg kg−1 for spinach. The PBIs of imicyafos were estimated to be 213.9 to 357.3 days for lettuce
and 100.8 to 283.6 days for spinach. This study suggests at least a minimum 1-year interval after the
final application of imicyafos as a management method that complies with the PLS for the rotational
cultivation of lettuce and spinach.

Keywords: imicyafos; pesticide; plant-back interval; positive list system; rotational crop

1. Introduction

Rotational crop cultivation is widely performed in greenhouses in Korea because it
provides farmers with a high income quickly. Vegetables are typical income crops that can
be cultivated rotationally after the primary crop. The cultivation of rotational vegetable
crops have increased annually in greenhouses [1]. However, this increases the use of
pesticides to control pest insects and pathogens in rotational crops.

Pesticide residues in greenhouse soil are a growing concern with rotational crops
because soil-bound pesticides may enter a secondary crop after being used for the primary
crop [2–4]. This concern has become more important under the Positive List System (PLS),
a pesticide regulation law that bans the sale or distribution of agricultural products that
might contain an unregistered pesticide at a concentration higher than 0.01 mg kg−1. One of
the major issues with the PLS is accidental violation due to pesticide residues in greenhouse
soil with rotational cultivation. If the pesticide residues taken up by the secondary crop
exceed 0.01 mg kg−1, the secondary crop is in violation of PLS, which would result in
a financial penalty, even if farmers did not spray pesticides directly on the secondary
crop. Thus, much effort is required to establish management guidelines for pesticides for
rotational crop cultivation in greenhouses.
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The Ministries of Agriculture, Food, and Rural Affairs and of Food and Drug Safety of
Korea have developed programs to show farmers how to avoid accidentally violating the
PLS. These programs include the registration of more pesticides available for rotational
crops, which unfortunately may lead to environmental contamination and harmful ex-
posure of consumers [5–7]. Thus, alternative methods are required to enable farmers to
comply with PLS in rotational crop cultivation.

The Organization for Economic Cooperation and Development (OECD) has recom-
mended guidelines of the plant-back interval (PBI) to determine when a secondary crop
may be planted in greenhouse soil after the primary crop has been cultivated [8]. The PBI
is the interval between the final pesticide application to the primary crop and planting of
the secondary crop. To determine the PBI, pesticides should be applied to bare soil, rather
than to crops, and then a rotational crop is planted to assess the PBI. The OECD guidelines
suggest conducting test PBIs at 7 to 30 days for crops rotated closely, at 270 to 365 days
for crops rotated the following year, and at 60 to 270 days for crops with a typical harvest
interval. Rotational crops should then be planted at a PBI that contains pesticide residues
below the PLS level or maximum residue limit (MRL). Another method for determining
the PBI is to estimate the interval for planting rotational crops by comparing the residues
dissipated in soil with the residues accumulated in the plant after pesticide treatment [9].

Imicyafos [(E)-(RS)-(2-cyanoimino-3-ethyl-imidazolidin-1-yl) O-ethyl S-propyl phos-
phonothioate] is a non-fumigant organophosphorus nematicide that is used to control the
plant parasite Pratylenchus penetrans [10,11]. A granular type was introduced for green-
house crops in Korea in 2012 [12]. According to the National Agricultural Products Quality
Management Service of Korea, imicyafos is among the top 10 pesticides detected commonly
in the crop products for which imicyafos is not registered for use. The imicyafos in the
crop products is thought to come from the soil in which the primary crop was cultivated
in greenhouses. In Korea, lettuce and spinach are typical leaf vegetables cultivated after
the primary watermelon and tomato crops in greenhouses. Imicyafos is registered for
watermelon and tomato with the MRL set at 0.05 mg kg−1, but it is not registered for lettuce
and spinach. Thus, guidelines are required to manage imicyafos residues in greenhouse
rotational crops. To date, there is no academic study on the soil dissipation and the plant
uptake of imicyafos although this pesticide has been widely used as a soil nematicide in
greenhouse. In this study, we investigated the PBIs of imicyafos as a management guideline
for the rotational cultivation of lettuce and spinach in greenhouse soil containing imicyafos.
We attempted for the first time to estimate the PBIs of imicyafos based on plant uptake
ratio to soil dissipation kinetics.

2. Materials and Methods
2.1. Chemicals and Reagents

Imicyafos standard (98.8%) was obtained from Dr. Ehrenstorfer GmbH (Augsburg,
Germany). HPLC grade solvents purchased from J.T.Baker (Phillipsburg, NJ, USA) were
used, and other chemicals were of analytical reagent grade purchased from Sigma-Aldrich
Corp. (St. Louis, MO, USA). Agilent QuEChERS kits (San Francisco, CA, USA) were used
for extraction and purification of the soil and plant samples. A granular formulation (5%)
of imicyafos was kindly provided by Kyungnong Corp. (Kyungju, Korea).

2.2. Greenhouse Experiment

Greenhouse experiments were conducted at an agricultural greenhouse located in
Damyang (35◦15′12.0′′ N 126◦53′18.3′′ E), Jeonnam province, Republic of Korea. The soil
was loam texture composed of 50.4% sand, 37.6% silt and 12.0% clay classified by the
method of the United States Department of Agriculture (USDA). The organic matter was
95.08 g kg−1 and the pH value was 6.8. The cation exchange capacity was 31.63 cmolc kg−1,
measured as described previously [13]. The experimental plots were prepared as shown in
Figure 1. Each plot was 30 m2 with three replicates of 10 m2. Lettuce and spinach were
sowed with the seeding density of 20 × 20 cm 7 days after imicyafos treatment in the
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greenhouse soil. The control samples were taken from the plots A and E for plants and
the plots C and G for soil, respectively. The treated samples were taken from the plots B
and F for plants and the plots D and H for soil, respectively. The temperature and relative
humidity were checked daily using an automatic digital thermos-hydrometer during the
experiment. The average temperature was 21.4 ◦C with the maximum 28.0 ◦C and the
minimum 12.5 ◦C. The relative humidity ranged from approximately 50 to 85% during the
experiments. The additional light was not used in this study to maintain natural conditions.
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Figure 1. Experimental plots for greenhouse studies. (A,E): Plots for crop plants cultivated on the soil without imicyafos
treatment; (B,F): Plots for crop plants cultivated on the soil treated with imicyafos; (C,G): Plots for bare soil without
imicyafos treatment; (D,H): Plots for bare soil treated with imicyafos. The plots (C,D,G,H) had no crop planting during
the experiments.

2.3. Pesticide Application

Imicyafos granule (5%) was mixed with the greenhouse soil at a ratio of 1:6 (g g−1) in
polyethylene bag and applied evenly to each plot at a rate of 16 kg 1000 m−2. The treated
level was determined by considering imicyafos consecutively applied in greenhouse soil
for two years, referring to the OECD guidelines for rotational crop study. The plot soils
were mixed thoroughly by using an agricultural farm management machine (Dongyang
Techtool, Daegu, Korea), as described previously [14].

2.4. Soil and Plant Sampling

The soil samples were obtained by using a stainless soil auger (Shinill Science INC.,
Paju, Korea) at a depth of 0–20 cm from eight points in each plot at each sampling time for
180 days after treatment with imicyafos. The soil samples were dried with a gentle stream
of air under shadow and passed through a 2-mm sieve. The plant samples were collected
from the plots 32, 35, 38, 41, 44, 47 and 50 days after imicyafos treatment (DAT) and then
immediately transported to the laboratory in polyethylene bags with ice. The harvested
days for plants were decided based on the general recommendation for harvesting the
particular plants with 3–4 days interval 20 to 50 days after seed sowing; at 32 DAT, the
plant weight was average 6.16 g± 2.53 for lettuce and average 7.62 g± 2.33 for spinach; the
plant sizes were average 13 cm ± 1.41 for lettuce and average 16.4 cm ± 3.21 for spinach.
The plant samples were randomly harvested to the average weight of 1 kg per plot. The
root and leave samples were separately chopped into small pieces after being washed
briefly with running water and then ground using a high-speed homogenizer. All samples
were stored at −20 ◦C until examined.

2.5. Sample Preparation

The methods for sample preparation were modified from QuEChERS [15,16] and
validated by optimizing several factors such as solvents, clean-up and extraction kit. The
soil sample (10 g) was mixed with 10 mL of distilled water in a centrifuge tube (50 mL)
and stayed for 10 min. The sample was then added 10 mL of acetonitrile and subjected to
mixing vigorously for 2 min. The sample was added anhydrous MgSO4 (4 g) and MgCl2
(1 g) and vortexed vigorously for 2 min, followed by centrifugation at 3000 rpm for 5 min.
The supernatant (1 mL) was mixed with 150 mg MgSO4 and 25 mg PSA for 2 min in a
centrifuge tube (2 mL) and centrifuged at 8000 rpm for 3 min. The supernatant was filtered
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through a syringe membrane filter (0.2 µm, PTFE-H) and used for liquid chromatography–
tandem mass spectrometry analysis (LC/MS/MS). Meanwhile, the sample preparation
for plants was conducted, as described above, using additional Graphitized Carbon Black
(GCB, 7.5 mg) for the sample clean-up.

2.6. Instrumental Validation

The method for instrumental analysis was validated as guided by European Com-
mission document SANTE/11813/2017. The absolute tolerances of the ion ratio relative
to the average ratio of standard calibration was permitted within ±30% during the entire
analysis. A qualitative ion ratio was obtained by comparing the peak area of the quantifier
ion to the peak area of qualifier ion in the calibration solutions. The ion MSs targeted for
quantitative detection were m/z 305.0 and m/z 201.0, while the MSs for qualitative detection
were m/z 305.0 and m/z 156.3. The matrix-matched calibration linearity of imicyafos stan-
dards was obtained ranged from 2 to 100 µg L−1 in their working solutions diluted with
the extracts of control samples from their stock solutions (100 mg L−1). The sensitivity was
determined by the limit of quantification (LOQ) at the signal to noise (S/N) ratio of 10:1.
The LOQ was calculated as: LOQ (mg kg−1) = [minimum detectable amount (ng)/injection
volume (µL)] × [final sample volume (mL)/sample amount (g)]. The recovery tests of the
imicyafos standards were performed in triplicate at levels of 2×, 10×, and 50 × LOQ by
comparing the concentration ratios between the detected and the fortified in the samples.

2.7. Instruments

The LC/MS/MS was a Waters model Xevo TQD-MS triple quadrupole spectrometer
equipped with a Waters model ACQUITYTM UPLC system. The analytical separation was
achieved by using an Osaka Soda CAPCELL CORE C18 stainless column (150 × 2.1 mm,
2.7 µm thickness). The mobile phase was a mixture of acetonitrile and water containing
0.1% (v/v) formic acid. The mobile phase flows were as follows: 20% acetonitrile at isocratic
for 0.5 min, flow rate 0.4 mL min−1, 50% acetonitrile with linear gradient for 5 min, 50%
solvent acetonitrile at isocratic for 1 min. The positive ion mode in the electron spray
ionization (ESI) method was used for LC/MS/MS spectra acquiring. The LC/MS/MS
conditions were optimized routinely as follows: de-solvation N2 flow 650 L h−1, cone
gas flow 50 L h−1, capillary voltage 3 KV, ion source temperature 150 ◦C, de-solvation
temperature 350 ◦C and declustering potential value 35 eV. The collision energy values for
quantitative and qualitative ions were 23 eV and 38 eV, respectively.

2.8. Estimation of Plant-Back Intervals

The plant-back intervals of imicyafos were estimated based on its dissipation patterns
in soil and uptake ratios by plants. The imicyafos dissipation in soil was investigated by
the Equation (1),

CT = Ci × e−kT (1)

where CT is the residue level at time T, Ci is the initial residue level (mg kg−1), k is the rate
constant of imicyafos dissipation, and T is the days after imicyafos treatment. From the
equation, the half-life of imicyafos was calculated as follows:

DT50 = 1n2 × k−1 (2)

where DT50 is the time at which the initial residue level of imicyafos in soil decreased to
50%. The bioconcentration ratio (BCR) was calculated by comparing the residues in soil
with the residues in the plant as the Equation (3),

BCR = a × b−1 (3)
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where a is the residues in the leafy parts of lettuce and spinach, and b is the residues in soil
at 0 day before plant sowing. The highest BCR among the calculated was compared to the
PLS level (0.01 mg kg−1) to calculate SAR as Equation (4),

SAR = 0.01 mg kg−1 × BCR−1 (4)

where SAR is the soil acceptable residue of imicyafos transferable to plants at a concen-
tration lower than 0.01 mg kg−1. The PLS level was used to calculate SAR because the
maximum residue limit (MRL) of imicyafos has not been determined in lettuce and spinach
in Korea. The SAR was applied to Equation (1) in order to calculate the time of day (t),
expressed as PBI. All statistical analyses were performed using SPSS Statistics 20 (IBM
Corporation, Armonk, NY, USA).

3. Results and Discussion

The method validation data for sample preparation and LC/MS/MS parameters were
presented in Table 1. The imicyafos standard calibration exhibited good linearity ranged
from 0.005 to 0.1 mg L−1 for soil samples and 0.002 to 0.1 mg L−1 for plant samples. The
coefficients of determination (R2) exceeded 0.997 for all sample solutions, almost same the
value as for the neat solvent. If the matrix effect is <±10%, the sample matrix is regarded
as an insignificant factor in the quantitative determination of a pesticide [17]. The matrix ef-
fects of imicyafos ranged from −8.109 to 24.002. Therefore, for both soil and plant samples,
the matrix-matched standard calibration was used here to improve the method accuracy.
The ion ratio tolerances ranged from −1.440 to 4.746 in all samples, acceptable to ±30%
according to European Commission document SANTE/11813/2017. These results demon-
strated that the methods tested here confirmed the presence of imicyafos in the samples.
The LOQ of imicyafos in the soil and the plant samples were 0.005 and 0.002 mg kg−1,
respectively (Table 1). The method reliability was investigated by the recovery tests of
imicyafos from samples fortified at rates of 2×, 10×, and 50× LOQ. The recovery from
the imicyafos-fortified soil samples ranged from 91.7% to 118.9% with a relative standard
deviation (RSD) less than 2.9%, while the recovery from the fortified plant samples aver-
aged 101.7% to 110.1% with RSD <5.5% (Table 2). All imicyafos concentrations examined
in the samples had acceptable recovery values according to the European Commission
guidance. Overall, these results indicated that the methods were sufficiently validated for
determination of imicyafos in the samples.

Table 1. Linear equations, coefficient values of determinations (r2), matrix effects, ion ratios and LOQ values of imicyafos.

Matrix Linear Slope Equation R2 Matrix Effect (%) (1) Ion Ratio Tolerance (%) (2) LOQ (mg kg−1) (3)

Solvent y = 869.0x + 1578.80 1 - - -
Soil y = 798.6x + 5.73 1 −8.109 −0.073 0.005

Lettuce leaf y = 276.8x + 73.70 0.997 24.002 −1.44 0.002
root y = 214.1x − 7.05 0.999 11.02 −2.217 0.002

Spinach leaf y = 240.8x + 38.17 1 5.13 4.746 0.002
root y = 252.1x + 60.48 0.999 8.376 −0.23 0.002

(1) [(Slope in matrix-matched standard solution—slope in in solvent only)/(Slope in solvent only)] × 100%; (2) (Ion ratio in sample—ion
ratio in solvent only)/(Ion ratio in solvent only) × 100; (3) Limit of quantification.

For the dissipation of imicyafos in greenhouse soil, the soil samples were collected at
each sampling day after treatment (DAT). Imicyafos decreased gradually from the initial
concentration (9.354 ± 0.071 mg kg−1) to approximately 40% at 60 DAT, 15% at 120 DAT,
and 5% (0.521 ± 0.009 mg kg−1) at 180 DAT (Figure 2). The regression equation for
imicyafos dissipation was C = 9.2564e−0.017t with R2 = 0.9751. Imicyafos dissipation in soil
showed 1st order kinetics and its DT50 was 40.8 days. To date, there are no published data
on the degradation of imicyafos in soil. Thus, we could not compare the DT50 to others.
Under the Korean system of pesticide registration, the half-life of a pesticide in soil should
not exceed 180 days. However, little is known about the half-life of imicyafos in greenhouse
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soil. In this study, imicyafos appeared to degrade quickly after soil treatment although the
imicyafos concentration we examined was higher than the level recommended in Korea.
Imicyafos was suggested to degrade in soil by hydrolysis, as described previously with
other organophosphorus pesticides [18,19]. Microbial hydrolysis is one of the major factors
involved in the degradation of organophosphorus pesticide [20]. Further study would be
interesting to investigate biotic or abiotic hydrolysis of imicyafos in greenhouse soil.

Table 2. Recovery values of imicyafos fortified in the soil and plant samples.

Samples Recovery Values (%) (1)

2 × LOQ (2) 10 × LOQ 50 × LOQ

Soil 91.7 ± 2.6 117.2 ± 0.6 118.9 ± 0.7
Lettuce leaf 109.9 ± 0.4 101.7 ± 0.6 110.1 ± 1.3

root 1003. ± 6.9 108.6 ± 4.1 101.7 ± 4.3
Spinach leaf 102.3 ± 4.6 106.4 ± 5.8 109.1 ± 3.1

root 102.4 ± 2.6 110.9 ± 4.6 104.3 ± 0.6
(1) Data are means ± SD of triplicate; (2) Limit of quantification.
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Figure 2. Dissipation of imicyafos in soil under greenhouse conditions. Data are means ± standard
deviation (SD) of triplicate.

To investigate imicyafos residues in plants, the plant samples were collected at harvest
time. The edible leaf parts of lettuce and spinach contained approximately 3.45 and
1.00 mg kg−1 imicyafos at 32 days after treatment (DAT) (Table 3), respectively, which
accounts for approximately 46% and 13% of the initial concentration in the soil on the day
before planting. The residues peaked in the lettuce samples at 35 DAT versus 32 DAT in the
spinach samples and decreased to 0.306 mg kg−1 and 0.045 mg kg−1, respectively, counting
for approximately 8.87% and 4.49% of the residues at the DATs. These results suggested
that the uptake of imicyafos to edible leaf parts predominates at the initial harvest time.
These decreasing patterns were not observed in the root samples. The residues in the
root samples of both plants fluctuated during the harvest, suggesting that imicyafos was
absorbed continuously from soil to roots throughout harvest.
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Table 3. Imicyafos residues in the plant leaf and root samples during the harvest time.

Harvest Numbers
(Days after
Treatment)

Residues (mg kg−1) *

Lettuce Spinach

Leaf Root Leaf Root

1 (32) 3.447 ± 0.075a 0.793 ± 0.017e 1.003 ± 0.027a 0.351 ± 0.014c
2 (35) 3.510 ± 0.166a 0.648 ± 0.028f 0.828 ± 0.113b 0.520 ± 0.027a
3 (38) 2.028 ± 0.041b 1.178 ± 0.052c 0.623 ± 0.134c 0.451 ± 0.016b
4 (41) 1.444 ± 0.039c 1.021 ± 0.047d 0.292 ± 0.007d 0.352 ± 0.007c
5 (44) 0.899 ± 0.036d 2.069 ± 0.057a 0.256 ± 0.004de 0.440 ± 0.010b
6 (47) 0.598 ± 0.019e 1.562 ± 0.092b 0.136 ± 0.006ef 0.243 ± 0.004d
7 (50) 0.306 ± 0.009f 0.610 ± 0.049f 0.045 ± 0.001f 0.242 ± 0.005d

* Data are means ± SD of triplicate. Columns with the same letter are not significantly different by Duncan’s
multiple range test (p < 0.05).

The decreased residues in the lettuce leaf samples and the fluctuated residues in
the lettuce root samples suggested that imicyafos accumulated in the roots would not
considerably contribute to the residues in the leaf samples during the harvest. It would
rather be supposed that the residues in lettuce leaves decreased gradually with harvest
time. The decreasing residual levels during the harvest time in the lettuce leaf samples
may have resulted from the effect of dilution by plant growth, as described previously for
other pesticides [21,22]. The residual amounts of imicyafos in lettuce showed the increased
patterns with harvest time after 35 DAT (Table 4), suggesting that the imicyafos taken by
lettuce was distributed to the whole plant as the plant grows. Imicyafos in lettuce at 50 DAT
decreased to 65.477 µg from 180.014 µg at 47 DAT. It was probably due to the degradation
of imicyafos in the lettuce plant at 50 DAT. These results supported the hypothesis that
plant growth is involved as a factor responsible for diluting the residues taken by lettuce.

Table 4. Residual patterns of imicyafos amounts in plant during the harvest time.

Harvest Numbers
(Days after Treatment)

Imicyafos Amounts (µg Plant−1) *

Lettuce Spinach

1 (32) 28.323 ±0.547e 10.786 ± 0.243d
2 (35) 27.185 ± 1.126e 8.829 ± 0.754d
3 (38) 80.359 ± 2.894c 22.802 ± 3.716a
4 (41) 66.995 ± 1.591d 21.331 ± 0.577ab
5 (44) 126.350 ± 1.229b 16.682 ± 0.139c
6 (47) 180.014 ± 10.139a 19.741 ± 0.303b
7 (50) 65.477 ± 3.679d 22.318 ± 0.770ab

* Data are means ± SD of triplicate. Columns with the same letter are not significantly different by Duncan’s
multiple range test (p < 0.05).

Meanwhile, the residual amounts of imicyafos in spinach fluctuated during the harvest
time and showed different patterns as compared to those in lettuce. The fluctuated patterns
were similar to those on imicyafos concentrations in spinach as shown in Table 3. It was
suggested that the dilution effects derived from the plant growth on the residues were
not considerable in spinach as much as those in lettuce. It is likely that imicyafos was
continuously taken by spinach with harvest time. Although the mechanism of plant uptake
for imicyafos is hardly illuminated in this study, our results demonstrate the physical
movement of the imicyafos treated in the soil to the roots and leaves and the dilution effect
of the residues on the leaf parts due to the plant growth.

The imicyafos concentrations were much higher in the lettuce samples than in the
spinach samples during the entire harvest, implying that lettuce takes up more imicyafos
than spinach. Thus, it is more important to manage imicyafos residues in lettuce when
cultivated as a rotational crop in greenhouses. It is not clear why the concentrations were
higher in the lettuce samples than in the spinach samples. It was probably because lettuce
has much more root hairs than spinach to absorb imicyafos, or lettuce took much more
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water than spinach from the soil. The pesticides that accumulate in a plant are the results
of uptake and translocation from soil, which differ significantly depending on the plant
species and physicochemical properties of chemicals [23–25]. The concentrations in the
edible leaf samples decreased gradually with harvest time, giving R2 = 0.9686 for the
lettuce samples and R2 = 0.9372 for the spinach. The similar R2 values indicate that the
dissipation rate of imicyafos in plants is not a significant factor in the difference between
two plant species; rather the uptake rate is important. This hypothesis was supported by
the bioconcentration ratio (BCR) of imicyafos, which was much higher in lettuce than in
spinach (Table 5). Although the highest BCRs were observed on the 32nd day for lettuce
and 35th day for spinach, those were not significantly different between the days for
lettuce base on the Duncan’s multiple range test. This suggested that imicyafos uptake
by lettuce was predominant at the initial harvest time. The uptake rate of a pesticide by a
plant is given by the crop bioconcentration ratio (CBR), bioconcentration factor (BCF), and
bioaccumulation factor (BAF) [26,27], which all represent the ratio of a pesticide taken up
by a plant compared to that in soil. A positive correlation between Kow (partition coefficient
between octanol and water) and the BCR have been well documented [28]. In this study, the
Kow (4.37× 101) of imicyafos is not a significant factor in the difference between lettuce and
spinach because the same imicyafos was applied to both plants. In general, leaf vegetables
take up pesticides more easily than root vegetables, such as radish and carrot [29]. Thus,
the management of pesticide residues is more important for rotational cultivation of leaf
vegetables. Our study reports for the first time the uptake of imicyafos by lettuce and
spinach cultivated in greenhouses.

Table 5. Bioconcentration ratios (BCRs) of imicyafos in the lettuce and spinach samples.

Harvest Numbers
(Days after Treatment)

Bioconcentration Ratios (BCRs) *

Lettuce Spinach

1 (32) 0.461a 0.134a
2 (35) 0.469a 0.111b
3 (38) 0.271b 0.083c
4 (41) 0.193c 0.039d
5 (44) 0.120d 0.034de
6 (47) 0.080e 0.018ef
7 (50) 0.041f 0.006f

* BCRs were obtained by dividing average residues in the edible plant parts by average residues in soil before
plant sowing. Columns with the same letter are not significantly different by Duncan’s multiple range test
(p < 0.05).

The plant-back intervals of imicyafos for rotational cultivation of lettuce and spinach
were estimated using SAR and the highest BCR at which imicyafos accumulated at a
maximum level in plants. The highest BCR of imicyafos was 0.469 in lettuce and 0.134
in spinach (Table 6). Comparing the BCRs to the PLS level (0.01 mg kg−1), the SARs of
imicyafos were calculated as 0.021 mg kg−1 for lettuce and 0.075 mg kg−1 for spinach. The
residues that accumulate in plants would be <0.01 mg kg−1 if imicyafos were found in
soil at levels lower than the SAR. Finally, the PBI of imicyafos was 357.3 DAT for lettuce
and 283.6 DAT for spinach, suggesting that a 1-year interval after the final application
of imicyafos to the primary crop is needed before cultivating lettuce or spinach without
violating the PLS. The OECD guidelines suggest conducting PBI studies at 7 to 30 days for
crops rotated closely [8]. In Korea, lettuce and spinach are typically rotated after primary
tomato and watermelon crops. If the PBIs of imicyafos were investigated at 7 DAT as
following the OECD guidelines, it would be not clear how long an interval would be
needed for the rotational cultivation of lettuce and spinach in soil treated with imicyafos.
We suggest 1-year interval at a minimum as a management guideline for the rotational
cultivation of lettuce and spinach in greenhouse soil treated with imicyafos, which helps
farmers not to violate PLS.
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Table 6. Plant-back intervals (PBIs) of imicyafos for lettuce and spinach in greenhouse.

Plant
Factors

PBIs (days) (4)
BCRs (1) PLS (mg kg−1) (2) SARs (mg kg−1) (3)

Lettuce 0.469 0.01 0.021 357.3

Spinach 0.134 0.01 0.075 283.6
(1) BCRs are the highest values taken from Table 5; (2) Positive List System level; (3) SARs represent Soil acceptable
residues transferable to the plants at a concentration lower than 0.01 mg kg−1, and they were calculated by
dividing the PLS level by BARs; (4) PBIs were Plant-back intervals calculated from the residue dissipation
equations in soil.

4. Conclusions

The management of imicyafos is needed for rotational vegetables in order to prevent
violation of a pesticide law, the Positive List System (PLS), whereby this pesticide has been
reported as detected in the crops where imicyafos is not registered for use. In this study,
the plant-back intervals (PBIs) of imicyafos were investigated as a management method
for the rotational cultivation of lettuce and spinach in greenhouses. The PBIs of imicyafos
were determined based on the residue dissipation of imicyafos in soil and its plant uptake.

The residues of imicyafos in soil decreased with first-order kinetics and exhibited the
half-life of 40.8 days. The uptake of imicyafos by plants appeared to be higher in lettuce
than in spinach, giving the biconcentration ratios (BCRs) of 0.469 for lettuce and 0.134 for
spinach. The BCRs were compared to the PLS level (0.01 mg kg−1) to calculate the soil
acceptable residue (SARs) transferable to plants at a residue lower than 0.01 mg kg−1. The
SARs of imicyafos were determined as 0.021 mg kg−1 for lettuce and 0.075 mg kg−1 for
spinach. When the SARs were applied to the dissipation equation of imicyafos in soil, the
PBIs were calculated as 357.3 days and 283.6 days for lettuce and spinach, respectively.
Although imicyafos decreased shortly in soil, its uptake residues by the vegetable crops
should be considered carefully not to violate PLS. Our study could suggest at least a
one-year interval as a management guideline for the rotational cultivation of lettuce and
spinach in greenhouse soil treated with imicyafos. The PBIs are expected as management
methods for farmers to comply with PLS in the rotational crop cultivation. In this study,
we could determine theoretically the PBIs of imicyafos based on the soil dissipation and
plant uptake residues. Further study would be interesting if the PBIs investigated in this
work are compared to those that can be determined by the OECD guideline method.
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