Supplementary Figure S1 Effect of different concentrations of phosphorus (P) and silicon (Si) on lipid peroxidation measured as malondialdehyde (MDA) content in tomato leaves and roots. At three-leaf stage, the seedlings were treated with different levels of P and Si, and samples were harvested after 23 days of treatment. Data are shown as means ± standard deviation (SD) of three replicates. Bars with the same color but different letters indicate statistically significant differences at $P < 0.05$. CT = normal phosphorus supply (P 0.66 mM); CT+Si1.5 = normal phosphorus supply (P 0.66 mM)+ 1.5 mM Si; P0+Si0= culture solution contains no P and Si; P0+Si1.5 = no phosphorus supply (P 0 mM)+ 1.5 mM Si; P0.22+Si0= 0.22 mM P+ 0 mM Si; P0.44+Si0= 0.44 mM P+ 0 mM Si; and P.044+Si1.5 = combined treatment with low phosphorus (0.44 mM P) and exogenous silicon (1.5 mM Si).
Supplementary Figure S2 Shoot phenotype of tomato plants as influenced by low phosphorus (LP) and silicon (Si) supply. At three-leaf stage, the seedlings were treated with different levels of P along with exogenous Si. Photographs of respective tomato plants were taken after 23 days of treatment. CT = normal phosphorus supply (P 0.66 mM); LP= low phosphorus supply (P 0.44 mM+Si 0 mM); and LP+Si = combined treatment with low phosphorus and exogenous silicon (P 0.44 mM +Si 1.5 mM). Scale bar =10 cm.