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Abstract: The present work reports the global sensitivity analysis of the Aquacrop Open Source (AOS)
model, which is the open-source version of the original Aquacrop model developed by the Food and
Agriculture Organization (FAO). Analysis for identifying the most influential parameters was based on
different strategies of global SA, density-based and variance-based, for the wheat crop in two different
geographical locations and climates. The main objectives were to distinguish the model’s influential
and non-influential parameters and to examine the yield output sensitivity. We compared two different
methods of global sensitivity analysis: the most commonly used variance-based method, EFAST,
and the moment independent density-based PAWN method developed in recent years. We have also
identified non-influential parameters using Morris screening method, so to provide an idea of the use
of non-influential parameters with a dummy parameter approach. For both the study areas (located
in Italy and in China) and climates, a similar set of influential parameters was found, although with
varying sensitivity. When compared with different probability distribution functions, the probability
distribution function of yield was found to be best approximated by a Generalized Extreme Values
distribution with Kolmogorov–Smirnov statistic of 0.030 and lowest Anderson–Darling statistic of
0.164, as compared to normal distribution function with Kolmogorov–Smirnov statistic of 0.122 and
Anderson–Darling statistic of 4.099. This indicates that yield output is not normally distributed but
has a rather skewed distribution function. In this case, a variance-based approach was not the best
choice, and the density-based method performed better. The dummy parameter approach avoids
to use a threshold as it is a subjective question; it advances the approach to setting up a threshold
and gives an optimal way to set up a threshold and use it to distinguish between influential and
non-influential parameters. The highly sensitive parameters to crop yield were specifically canopy
and phenological development parameters, parameters that govern biomass/yield production and
temperature stress parameters rather than root development and water stress parameters.
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1. Introduction

Crop growth simulation models are important tools for ecology, agriculture and environmental
research and management. Such models are used to simulate the behavior of soil-crop systems in
response to climate and agriculture management [1–3]. Agricultural processes, the interaction of the
crop with the environment and soil over time, are represented by mathematical equations based on
theory and empirical research. These equations and parameterizations inevitably entail simplifications
of reality, which leads to uncertainty and inaccuracy of output variables [4]. Regardless of the model
used, the identification of the parameters and input variables that most affect its output is a fundamental
problem for most environmental applications whenever large uncertainty on their values is expected,
such as in regional-scale applications [5–7].

In general, crop models contain many parameters and input variables, of which some cannot
be measured directly, but can only be inferred by a calibration of the responses observed from the
model [8,9]. Manual, one-at-a-time calibration is a very tedious and time-consuming task, which is not
feasible for complex models [10]. Numerical optimization or Monte Carlo methods of calibration are
widely used [11], but they are prone to errors, e.g., when local minima are present and their efficiency is
reduced as the number of parameters increases [12]. Therefore, it is often not possible to include all the
parameters in the model calibration [13,14]. In this view, Sensitivity Analysis (SA) is the set of methods
that serve the purpose of selecting a limited subset of parameters or input variables, excluding those
that are non-influential and have a low impact on the model output. The aim of the SA is to determine
how sensitive the outputs of a crop model are with respect to the elements of the model, which are
subject to uncertainty or variability [15]. The main purposes of SA are Factor Prioritization (FP) or
ranking, Factor Fixing (FF) or screening and Factor Mapping (FM) [16]. This work focuses on ranking
and screening.

There are two different strategies for SA: local and global. Local SA focuses on the sensitivity
of the factors at particular points in the feature space [17], whereas global SA methods assess the
sensitivity in the entire feature space and include higher-order, variance-based methods, e.g., Sobol or
Fourier methods [18,19]. An extensive analysis of SA methods on crop models has been performed by
different authors [16,20], which shows the inadequacy of local SA methods for crop models due to the
complex nature of such models and to the inability to determine the combined effects of the parameters.
For these reasons, global SA methods are currently preferred for the SA of the crop models.

Many different global SA methods have been developed [21–25]. Among all these methods,
variance-based methods, e.g., Sobol or Fourier, are probably the most widely used for global SA.
In general, these methods measure sensitivity to an uncertain parameter or input variable by assessing
the contribution of that input to the total variance of the model output variable. The advantage of
the variance-based methods is their ability to quantify the contribution of the individual parameters
and also quantify the contribution due to interacting effects of the parameters, independently from
assumptions on the form of the input–output relation (e.g., linearity and additivity). Variance-based
sensitivity indices are also easy to interpret, as they represent the fraction of the output variance caused
by the variation of input [26].

Variance-based methods are moment-dependent methods and consider the second-order moment,
i.e., variance as a measure of the output uncertainty. It is assumed that this moment is sufficient
to describe the output variability [26]. However, it has been recognized that the variance does not
adequately represent output uncertainty when the model output is not represented by variance, e.g.,
output that is highly skewed or multi-modal [25,27,28]. To overcome this limitation (moment-dependent
methods), moment-independent global SA measures have been developed [24,25,27]. These methods
are also known as density-based methods. They use the entire output distribution to fully characterize
the output uncertainty and to quantify the relative influence of the uncertain parameters. The main
advantage of these methods, as compared to the variance-based methods, is that they do not use
any specific moment of the output distribution to measure the output variability and, therefore,
are applicable regardless of its shape (e.g., multi-modal or highly skewed).
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The moment-independent density-based Global Sensitivity Analysis (GSA) method, PAWN,
was introduced by [25]. It measures sensitivity based on the difference between unconditional output
distribution and conditional output distribution, which are obtained simultaneously when all the
parameters are free to vary and when one of the parameters is fixed. The difference between PAWN and
other density-based methods, e.g., the entropy-based method [27] and the δ-sensitivity measure [24],
is that the output distribution in PAWN is characterized by the cumulative distribution function
(CDF), whereas in other methods the output distribution is characterized by the probability density
function (PDF). The approximation of CDFs by using empirical distributions of the data sample is
much easier than the approximation of their PDFs. This facilitates the analysis of the robustness and
the convergence of the estimated sensitivity indices [25].

The PAWN method was initially tested with a simple conceptual hydrological model with only
five parameters. To further investigate its efficiency, it was applied to the complex environmental model
- Soil and Water Assessment Tool (SWAT) [29] with 26 parameters and compared with variance-based
method Sobol.

The Aquacrop model [30] is a crop water productivity model developed by the Food and
Agriculture Organization (FAO) of the United Nations specifically for the purpose of assessing crop
response to water and increasingly used by scientists and agronomists [31–35]. The Aquacrop Open
Source (AOS) version was developed by [31] and made available as an open-source Matlab version.
In principle, this open-source version is the same as the original developed FAO version of the Aquacrop
model. Recently, a version of AOS, v6.0a, has been released. It implements all calculation procedures
performed by the original FAO Aquacrop v6.0a, with the exception of soil fertility stress and soil
salinity stress, as these are yet to be tested extensively for different crop types and environments
worldwide [36]. The soil water balance, stress effects, runoff and plant growth are controlled by a
large number of parameters (around 100). Even when some of the parameters can be fixed a priori,
calibration of the AOS remains quite challenging, given the relatively large number of parameters
(54 in our case) that are typically left to be varied simultaneously. Therefore, SA is often applied
prior to the calibration process to identify the most influential parameters and the non-influential
ones [7,37]. To avoid any confusion with the model, we will hereafter refer to the FAO developed
model as Aquacrop and its open-source Matlab version (The MathWorks Inc., Natick, MA, USA) as
AOS that is used in this study.

There have been studies of sensitivity analyses with the FAO developed Aquacrop model [7,37,38],
but none yet on the open-source version AOS, which nevertheless lends itself more easily to the
integration into regional-scale data assimilation schemes than the standard version. The studies of
Aquacrop model SA was based on the arbitrarily chosen thresholds for yield output. According to the
authors’ best knowledge this is the first time the dummy parameter approach [29] is being used to
identify the most influential parameters with the recently released AOS model (v6.0).

The main objectives of this study are to (i) assess and compare the application of the Aquacrop
model approach with the Extensive Fourier Amplitude Sensitivity Test (EFAST) method and the
density-based PAWN method with a high number of parameters (soil and crop) in terms of parameter
ranking results; (ii) perform a sensitivity analysis of the AOS model, provided as an open-source Matlab
version, that in principle is similar to the original FAO developed Aquacrop model, but differs in some
parameters; (iii) compare the sensitivity indices (SI) of the EFAST and density-based PAWN methods
for two different geographical locations and climates. As both methods have different backgrounds
and rationale, the comparison cannot be made on the basis of the Sensitivity Index (SI); therefore,
the comparison is made in terms of parameter ranking as a measure of the effectiveness with multiple
years as a measure of robustness. To assess the parameter ranking, we have used the dummy parameter
approach proposed by [29], while the SI of the dummy parameter has used as a threshold to identify
non-influential parameters.
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2. Materials and Methods

2.1. Sensitivity Analysis

First, the Morris method was used to distinguish between influential and non-influential
parameters of the AOS model. The Morris method is designed for an initial screening or the elementary
effects that the variation of input factors (parameters and input variables) produces on model outputs.
Secondly, the variance-based EFAST method and finally the density-based PAWN method were applied
to all the chosen parameters considered for sensitivity analysis (see Table 1), including a dummy
parameter to find the higher-order effects and the combined effect of different parameters.

2.1.1. Morris-Based Elementary Effects

The Morris method is designed for the screening of the most influential parameters [39]. It is
considered more a qualitative rather than a quantitative method as it does not quantify the sensitivity of
a parameter individually, rather it represents the parameter sensitivity in terms of mean (m*) and sigma
(s). High m* indicates higher sensitivity and higher s indicates interacting effects with other parameters.
The method determines whether the effects are negligible, additive, non-linear or the factors are having
interacting effects with other parameters [40]. To sample input space, the experimental design is
structured in a group of points, called trajectories. In this work, the number of trajectories has been set
to 20, which is a value between the minimum suggested by [40] (i.e., 10) and the value used by [37] (i.e.,
25) in order to avoid an excessively high computational cost. It computes two indices for each input:
the mean of the effects, which measures the total effect of input over the output, and the standard
deviation of the effects, which measures the degree of interactions with the other inputs. The input
factor with a mean below a threshold value can be considered as having negligible effects on the model
output, thus it can be eliminated from further processing by keeping its value as fixed. Whereas,
other authors have defined an arbitrary threshold [7,21]. In this work, we chose to identify influential
parameters by comparing them with a dummy parameter used as a threshold [29]. All the parameters
having a mean value greater than that of the dummy parameter are considered as influential.

2.1.2. EFAST Method

The EFAST method [4] combines the FAST [41] and the Sobol methods [42]. It calculates sensitivity
indices using the total variance of the output of the model and the conditional variances depending on
the parameters. The interaction among the factors can be quantified by calculating the main SI (Si)
and the index of total sensitivity (Sti), i.e., the sum of the main effect plus the interaction between the
variation of the terms of the parameters to all orders. Si and Sti range between 0 and 1, with higher
values indicating more important effects [7].

In this study, the input parameters plus the dummy parameter were implemented using the
EFAST method to identify influential parameters and to rank them. The number of sample points
considered for the chosen 55 parameters, including a dummy variable, is 10,000. The required number
of runs are thus 55 × 10,000. The number of higher harmonics Ms is 4, and the number of search curves
Ncs was set to 1.

2.1.3. Density-Based PAWN Method

The PAWN method is a moment-independent global sensitivity analysis method that takes
into account the entire model output distribution for the quantification of the sensitivity of the
parameters [25], in comparison to the other variance-based methods that consider only the moments,
e.g., the variance of the model output. In general, density-based sensitivity indices measure the
sensitivity to parameter xi by the distance between unconditional PDF and conditional PDF of the
model output [24,27]. Practically, PDFs are usually unknown and must be approximated using a data
sample. Authors in [25] pointed out the difficulties and limitations of deriving empirical PDFs and
suggested to use CDFs instead of PDFs, as it is much easier than using the approximation of PDFs.
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In the PAWN method, sensitivity is measured by estimating the variations that are induced in the
output distribution when removing the uncertainty about one or more inputs. The sensitivity
to the input parameter is measured using the distance between the unconditional probability
distribution and the conditional distributions that are obtained by keeping the parameter fixed
using the Kolmogorov–Smirnov (KS) statistics [43,44].

The unconditional cumulative distribution function of the model output y is denoted by
Fy(y), and the conditional cumulative distribution is denoted by Fy|xi (y), where xi is a parameter
under consideration.

If Fy(y) and Fy|xi (y) coincide, it can be concluded that the parameter is non-influential. If the
distance between Fy(y) and Fy|xi (y) is increased, the influence of the parameter increases as well. As a
measure between unconditional and conditional CDFs, the KS statistics were used (Equation (1) [25])

KS (xi) = max
∣∣∣Fy(y) − Fy|xi(y)

∣∣∣ (1)

As KS depends on the value at which we fix xi, the PAWN index Ti considers a statistic (e.g.,
the maximum or the median) over all possible values of xi, i.e.,

Ti = stat
∣∣∣KS (xi)

∣∣∣ (2)

By definition, Ti varies between 0 and 1; the lower the value of Ti, the less influential xi, and if Ti
= 0, then xi has no influence on y.

The total number of model evaluations to compute the sensitivity indices are Nu + n × Nc ×M.
M is the number of parameters, Nu and Nc are the numbers of unconditional random samples and
conditional samples and n is the number of sampling points. In this work, we used Nu = 300, Nc = 200,
n = 10 and M = 55.

The density-based PAWN method estimates sensitivity by implementing unconditional and
conditional cumulative distribution functions. In the case of unconditional distribution functions,
all the parameters are free to vary within their defined range, and in the case of the conditional
distribution function, the parameter into consideration is fixed to the nominal value. The parameter
with the low sensitivity or called PAWN index has the same overlapping unconditional and conditional
distribution functions.

In the present study, the Morris and PAWN methods were implemented with the Matlab
(The MathWorks Inc., Natick, MA, USA)—based SAFE toolbox [45] and EFAST based on the SA toolbox
Eikos [46]. To figure out the best PDF fit for the yield output and different statistical distributions,
tests including KS statistics and Anderson–Darling statistics were carried out with EasyFit Evaluation
(Ver. 5.6, http://www.mathwave.com/).

2.1.4. Identifying Non-Influential Parameters by Using a Dummy Parameter

Theoretically, the SI of a non-influential parameter is zero. In the case of the PAWN method,
SI of zero means that the conditional and unconditional CDF coincides, i.e., fixing the parameter into
consideration will have no influence on the model output distribution. The value of zero in the Morris
screening test indicates that the parameter has no influence on the model output. However, numerical
algorithms and computations are utilized to implement SI, and small but non-zero values can be
obtained for non-influential parameters. To set a threshold to identify non-influential parameters,
a dummy parameter approach was proposed by [29]. The SI of this dummy parameter provides an
indication of the approximation error of the sensitivity analysis. The parameters having SI greater than
the SI of the dummy parameter are considered as the influential parameters. It should be noted that
the dummy parameter is not added to the model; its SI is calculated by using the sampled data.

http://www.mathwave.com/
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2.2. Crop Model: Aquacrop Open Source

Crop growth simulation model Aquacrop was originally developed by the Food and Agriculture
Organization (FAO) of the United Nations. As the code of the original model is not accessible, it does
not allow, for example, the implementation of data assimilation techniques such as the ensemble
Kalman filter, which are increasingly employed for ingesting remote sensing observations into crop
models [30]. In this work we have used the open-source Matlab version of the model called Aquacrop
Open Source (AOS) developed by [31].

Aquacrop model evolved from the most commonly used empirical approach to assess crop yield
response to water [47,48], shown as Equation (3)

Yx −Ya

Yx
= ky

(ETx − ETa

ETx

)
(3)

where Yx and Ya are the maximum and actual yield, ETx and ETa are the maximum and actual
evapotranspiration, and ky is the proportionality factor between relative yield loss and relative
reduction in evapotranspiration. The separation of ET into Tr and E avoids the confounding effects of
the nonproductive consumption use of water (E), which is important especially during incomplete
ground cover, and leads to the conceptual equation at the core of the model [48] (Equation (4), derived
by [49]). Yield (Y) as a function of biomass (B) and harvest index (HI) is described as Equation (5):

B = WP×
∑

Tr (4)

Y = B×HI (5)

where Tr is the crop transpiration (in mm), and WP is the water productivity (kg of biomass per m2

and per mm of cumulated water transpired over the time period in which the biomass is produced),
which is a constant for the given climatic condition. By normalizing it for different climatic conditions,
WP becomes a conservative parameter [50].

Reference evapotranspiration (ET0) is provided as a model input: it can easily be estimated
using an external calculator [51] that uses the Penman–Monteith equation, following the procedures
outlined in FAO Irrigation and Drainage paper no. 56 [52]. The model progressed by separating by
evapotranspiration (ET) into crop transpiration (Tr) and soil evaporation (E) using canopy cover (CC).
Tr is proportional to the fraction of land surface covered by the canopy, while E is proportional to the
surface not covered by the canopy, with some minor adjustments. Tr in the absence of water stress is
calculated using the adjusted green canopy cover (CC*) and the crop coefficient of the full-grown crop,
prior to senescence (Kcb), as in Equation (6):

Tr = CC∗ ×Kcb× ETo (6)

A distinctive feature of Aquacrop is the use of green canopy cover instead of Leaf Area Index
(LAI) to simulate canopy expansion. This allows Aquacrop to be easily used with remote sensing
data [48]. Soil evaporation is based on the two-stage Ritchie’s approach [53], adopted also in other
crop models (e.g., DSSAT crop model).
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While the yield–transpiration relationship accounts for the biomass accumulation, canopy
expansion and crop phenology are simulated following the thermal time concept, which uses growing
degree days (GDDs) as an internal clock of crop development as described in [54], with minor
modifications. CC development is simulated through a two-stages curve. An exponential equation is
used up to half the maximum canopy cover (Equation (7)):

CC = CC0 × eCGC×t (7)

where CC is the fractional canopy cover of soil at time t, CC0 is the initial CC (at time 0) and CGC is
the canopy growth coefficient in the percentage of existing CC at time t. The second half of canopy
development follows an exponential decay equation (Equation (8)):

CC = CCx − (CCx −CC0) × e−CGC×t (8)

where CCx is the maximum canopy cover for optimal conditions. An empirical canopy decline
coefficient (CDC) is used to characterize the CC fractional reduction overtime after maturity has been
reached (Equation (9)):

CC = CCx

[
1− 0.05

(
exp

CDC
CCx − 1

)]
(9)

The soil–water balance is simulated first by using the runoff curve number (CN) approach of the
United States Department of Agriculture (USDA) Soil Conservation Service to separate runoff and
infiltration, and then an exponential drainage function is used to simulate downward flow when the
soil water content is above field capacity (Equation (10)):

∆θi
∆t

= τ(θSAT − θFC)
eθi−θFC − 1

eθSAT−θFC − 1
(10)

where θi is the actual soil water content, θSAT is the soil water content at saturation θFC is the soil
water content at field capacity, ∆t is the time step (daily) and τ is a coefficient to account for drainage
characteristics, derived from the saturated hydraulic conductivity (Ksat).

The effect of water-limiting conditions on crop growth is calculated with the ratio of actual
available water to total available water TAW (θSAT – θFC) with an approach evolved from the FAO
Irrigation and Drainage paper no. 56 [52]. Water stress coefficients (Ks) act as modifiers (with values
ranging from 0 to 1) of target processes and are used to modulate transpiration, canopy expansion,
canopy senescence and pollination when the readily available water (RAW) is depleted. RAW is
defined as a fraction of TAW by the p_up parameters. Each of the Ks coefficients is defined on the basis
of the fraction of actual to total available water, using three parameters: the upper threshold (p_up,
when water stress begins: Ks = 1), the lower threshold (e, when water stress is complete: Ks = 0) and
the shape factor of the curve (fshape_w).

Extensive descriptions of Aquacrop processes are presented in [30,55]. AOS does not differ in
the calculation procedures but is provided as an open-source Matlab version of Aquacrop [31,56].
Test simulations were conducted to verify the suitability of AOS 5.0a to reproduce accurately the
calculations and outputs from the original FAO Aquacrop model, considering a range of crop types
and environments: wheat production in Tunisia, rice and wheat production in Hyderabad, India,
and potato production in Brussels, Belgium. The maximum RMSE and minimum r2 for crop yields
across all simulations were 0.045 t ha−1 and 0.993, respectively, which confirms the ability of AOS to
reproduce successfully Aquacrop calculations and outputs [56].
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Recently, a version of AOS, AOS v6.0a, has been released. AOS v6.0a implements all calculation
procedures performed by the original FAO Aquacrop v6.0a model, with the exception of soil fertility
stress and soil salinity stress, as these are yet to be tested extensively for different crop types and
environments worldwide [36].

There is a total of 89 parameters in the AOS model, as mentioned in the reference manual [57].
Both Aquacrop v6.0a and AOS software include crop files with default parameter values of biomass
and canopy growth, thermal time-based phenological stages, transpiration coefficients and temperature
and water stresses. In AOS each of these parameters is assigned a specific abbreviation and description
in a clearer way with respect to Aquacrop v6.0a. The abbreviations and descriptions of the 54 AOS
parameters considered in this work for the SA are listed in Table 1, along with their Aquacrop v6.0a
counterparts, as presented in two of the most recent and extensive global SA [58,59]. For clarity,
when referring to the previous study, all the parameter abbreviations used in this paper will be written
using the AOS notation.

2.3. Setting up the Parameters for AOS Model

In this study, the EFAST and PAWN methods of SA have been applied to the AOS model and
compared in terms of parameter ranking. We used all the parameters that were not fixed as mentioned
in the AOS manual [57] to be analyzed for SA. The winter wheat grain yield was considered as the
output. AOS parameters are reported in Table 1. The range of variation of the selected 54 parameters
(reported in Table 1) was determined based on the AOS manual [57] and default values provided
with the open-source AOS model database for the wheat crop and also on the previous studies of
sensitivity analysis, carried out with the original FAO Aquacrop model [7,37,38]. Since there was
no prior information on parameter frequency distributions, they were assumed to have an a priori
uniform distribution. It should be noted that [37], in their study, confirms the parameter ranges are
more important than their distributions in SA studies.

2.4. Sites Description

In the scenarios applied for the SA test, we used the climate and soil data from two experimental
sites. The first site was located in Maccarese (41.833◦ N, 12.217◦ E; 8 m a.s.l), western coast of Central
Italy, near the Fiumicino Airport, Rome. This area has a typical Mediterranean climate with wet
autumn and dry hot summer falling into the Koppen–Geiger class Csa (temperate, dry summer,
hot summer) [60]. The average yearly maximum temperature is 27.4◦C and the average minimum
temperature is 5 ◦C. The average annual precipitation is 812 mm [61]. The soil in Maccarese is Cutanic
Luvisol, with a prevailing sandy clay loam texture, becoming more clayey toward the north-east of
the site.

The other site was located in Xiaotangshan (40.167◦ N, 116.4◦ E; 36 m a.s.l), Chanping district,
Beijing, China. It is characterized by a continental climate, with a cold, dry winter and a hot,
wet summer, belonging to the Koppen–Geiger [60] class Dwa (cold, dry winter, hot summer), i.e.,
monsoon-influenced, hot-summer humid continental climate. The soil in the experimental area
was loam. The mean annual precipitation is approximately 602 mm. The mean temperature is
approximately −4.5 ◦C in winter and 26.2 ◦C in summer. There are on average 180 frost-free days
per year. The main crop is winter wheat. Table 2 shows sowing and harvest dates used for model
simulations at the different test sites [38], which were set on the basis of local agronomic practice.
Soil information for both the test sites is presented in Table 3.
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Table 1. AOS parameters considered for sensitivity analysis with the range of values adopted in the present work.

Parameters
Aquacrop v6.0 a AOS Description Unit Range

Management
den PlantPop Plant population n ha−1 (2,000,000, 6,000,000)
- PlantingDate Planting date # Date (736,965, 737,035)
- HarvestDate Harvest date # Date (737,181, 737,250)
Canopy development
ccs SeedSize Soil surface area covered by an individual seedling at 90% emergence cm2 (1.05, 1.95)

- CCmin Minimum fractional canopy cover size below which yield formation does not occur % (0.04725, 0.08775)
mcc CCx Maximum fractional canopy cover size % (0.75, 1)
cdc CDC Canopy decline coefficient fraction GDD (0.0028, 0.0052)
cgc CGC Canopy growth coefficient fraction GDD (0.0042, 0.0078)
Phenology

eme Emergence Thermal time from sowing to emergence GDD b (90, 230)
root MaxRooting Thermal time from sowing to maximum root development GDD (1200, 2011)
sen Senescence Thermal time from sowing to start of canopy senescence GDD (1090, 2250)
mat Maturity Thermal time from sowing to physiological maturity GDD (1590, 3150)
flo HIstart Thermal time from sowing to start of yield formation GDD (1090, 1395)
flolen Flowering Duration of flowering (thermal time) GDD (100, 300)
- YldForm Duration of yield formation (thermal time) GDD (770, 1430)
Transpiration, biomass and yield
kcb Kcb Maximum crop coefficient when canopy is fully developed - (0.77,1.43)
kcdcl fage Decline of crop coefficient due to ageing of the canopy %d−1 (0.21, 0.39)
wp WP Water productivity normalized for reference evapotranspiration and atmosphere carbon dioxide g m−2 (11, 22)
- Wpy Adjustment of water productivity parameter in yield formation stage g m−2 (75, 125)
- fsink Crop sink strength coefficient - (0.35,0.65)
hi HI0 Reference harvest index % (0.32, 0.59)
- Hiini Initial harvest index % (0.007, 0.013)
hinc dHI0 Maximum possible increase in harvest index above reference value % (0.1, 0.19)
exc exc Excess of potential fruits that is produced by the crop % (0.7, 1.3)
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Table 1. Cont.

Parameters
Aquacrop v6.0 a AOS Description Unit Range

Management
Water and temperature stress
- Tbase Base temperature below which crop growth does not occur ◦C (−1, −0.5)
- Tupp Upper temperature above which crop growth does not occur ◦C (18, 34)
polmx Tmax_up Maximum temperature above which pollination begins to fail ◦C (24, 45)
- Tmax_lo Maximum temperature above which pollination fails completely ◦C (28, 52)
polmn Tmin_up Minimum temperature below which pollination begins to fail ◦C (3, 6)
- Tmin_lo Minimum temperature below which pollination fails completely ◦C (−0.2, −0.1)
stbio GDD_up Minimum number of GDD’s required for full biomass production GDD (9, 18)
- GDD_lo Minimum number of GDD’s required for any biomass production to occur GDD (0, 5)
- fshape_b Shape factor describing the reduction in biomass production due to insufficient GDD’s - (9.6694, 17.9575)
hipsflo dHI_pre Possible increase of harvest index due to pre-anthesis water stress % (0.02, 0.05)
hipsveg a_HI Coefficient describing the positive impact on harvest index of restricted vegetative growth post-anthesis - (1, 3)
hinsveg b_HI Coefficient describing the negative impact on harvest index of stomatal closure post-anthesis - (3, 6)
puexp p_up1 Upper soil water depletion threshold for water stress effects on canopy expansion fraction TAW c (0.14, 0.26)
psto p_up2 Upper soil water depletion threshold for water stress effects on stomatal control fraction TAW (0.455, 0.845)
psen p_up3 Upper soil water depletion threshold for water stress effects on canopy senescence fraction TAW (0.49, 0.91)
ppol p_up4 Upper soil water depletion threshold for water stress effects on crop pollination fraction TAW (0.595,1)
plexp p_lo1 Lower soil water depletion threshold for water stress effects on canopy expansion fraction TAW (0.455, 0.845)
- p_lo2 Lower soil water depletion threshold for water stress effects on stomatal control fraction TAW (0.7, 1)
- p_lo3 Lower soil water depletion threshold for water stress effects on canopy senescence fraction TAW (0.7, 1)
- p_lo4 Lower soil water depletion threshold for water stress effects on crop pollination fraction TAW (0.7, 1)
pexshp fshape_w1 Shape factor describing water stress effects on canopy expansion - (2.1, 3.9)
pstoshp fshape_w2 Shape factor describing water stress effects on stomatal control - (1.75, 3.25)
psenshp fshape_w3 Shape factor describing water stress effects on canopy senescence - (2.1, 3.9)
- fshape_w4 Shape factor describing water stress effects on crop pollination - (0.7, 1.3)
Soil and roots
- REW User-defined readily evaporable water depth m (6.3, 11.7)
- CN Curve Number - (65, 85)
rtnx Zmin Minimum effective rooting depth m (0.15, 0.30)
rtx Zmax Maximum effective rooting depth m (1, 2.4)
rtexup SxTopQ Maximum water extraction at the top of the root zone m3 m−3 soil d−1 (0.02, 0.03)
rtexlw SxBotQ Maximum water extraction at the bottom of the root zone m3 m−3 soil d−1 (0.005, 0.01)

a as reported in [38,59]; b GDD: growing degree days; c TAW: total available soil water.
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Table 2. Sowing and harvest dates for test sites.

Maccarese, Italy Xiaotangshan, China

Period Sowing Date Harvest Date Sowing Date Harvest Date

2014–2015 1-Nov-14 1-Jul-15 - -
2015–2016 8-Nov-15 30-Jun-16 7-Oct-15 19-Jun-16
2016–2017 10-Nov-16 15-Jul-17 1-Oct-16 10-Jun-17
2017–2018 30-Oct-17 28-Jun-18 15-Oct-17 30-Jun-18

Table 3. Soil conditions at study sites.

Maccarese, Italy

Soil
Depth
(cm)

Moisture Content (%) Organic
C (%)

Clay
(%)

Silt (%) pH Sand (%)
PWP FC Sat

Sandy loam 0–10 8 18 45 2.4 33.3 19 6.6 47.8
Sandy loam 10–20 8 18 45 1.8 34.1 18.6 6.7 47.3
Sandy loam 20–30 8 18 45 1.8 33.6 20.4 6.7 46
Clay loam 30–40 18 23 43 1.8 34.6 19 6.7 46.4
Clay loam 40–50 18 23 43 1.5 32.4 17.8 6.8 49.8

Xiaotangshan, China

Soil
Depth
(cm)

Moisture Content (%) Organic
C (%)

Clay
(%)

Silt (%) pH Total N
(%)PWP FC Sat

Clay loam 0–20 8.8 27.3 51.1 1.04 23.5 53.9 8.00 0.11
Clay loam 20–40 8.7 27.3 51.3 1.01 23.4 54.1 8.08 0.10
Clay loam 40–60 12.3 34.8 54.7 0.68 37.3 47.8 7.94 0.08
Clay loam 60–80 12.3 34.8 54.7 0.66 37.3 47.8 7.98 0.08
Clay loam 80–100 12.3 34.8 54.7 0.59 40.3 43 8.03 0.07

PWP: permanent wilting point; FC: field capacity; Sat: saturation.

2.5. Weather Data

Sensitivity analysis was carried out for four different wheat growth seasons (2014–2018) for the
Maccarese site and for three seasons (2015–2018) for the Xiaotangshan site. The meteorological data
used in this study to drive the model simulations for the SA were obtained from the Regione Lazio
Agrometeorological Service, Italy (http://www.arsial.it/portalearsial/agrometeo/index.asp) and the
National Meteorological Information Center of the China Meteorological Administration (http://cdc.
cma.gov.cn/). The daily minimum and maximum temperatures, relative humidities, wind speed, rainfall
data and daily solar radiation for the period were provided. The daily reference evapotranspiration was
calculated based on the FAO Penman–Monteith method as described in [51] and the ET0 calculator [62].
The minimum and maximum temperature, rainfall and reference evapotranspiration for both test sites
are shown in Figure 1. For both sites, the years considered in this study allowed to include wet and
dry conditions, which were assessed by examining the Standardised Precipitation-Evapotranspiration
Index SPEI (https://spei.csic.es/index.html). In particular, the spring of 2017 was severely dry in
Maccarese and also in Xiaotangshan, although for the latter the drought was limited to the month of
May as shown in the Supplementary Materials (Figure S1).

http://www.arsial.it/portalearsial/agrometeo/index.asp
http://cdc.cma.gov.cn/
http://cdc.cma.gov.cn/
https://spei.csic.es/index.html
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Figure 1. (a) Maximum and minimum temperature, (b) daily precipitation and reference
evapotranspiration (ETo) for Maccarese, Central Italy. (c) Maximum and minimum temperature,
(d) daily precipitation and reference evapotranspiration (ETo) for Xiaotangshan, China.

3. Results

3.1. Morris Method

Figure 2 shows the sensitivity of the AOS model parameters obtained by applying the Morris
method for the two different locations, climates and years. In Figure 2, the average value for all the
years is plotted, and the error bars indicate the variation (standard deviation) of the average value.

A large magnitude of µ* indicates the importance of the model parameter. A high standard
deviation of σ implies either a non-linear relationship or interaction with other parameters.
The parameters CGC and HIstart were found to be of high importance for both the study sites
regardless of the climate. The number of relevant parameters differs slightly for each year and study
site. For the Maccarese site, 31 sensitive model parameters were identified for the years 2014–2015,
25 for 2015–2016, 23 for both the years 2016–2017 and 2017–2018. Similarly, for the Xiaotangshan site,
29 parameters were identified as most sensitive for 2014–2015, 29 for 2015–2016 and 23 for 2016–2017.
When considering all years of data and study sites, 29 out of 55 (including dummy) were found
important for yield output. These 29 parameters are plotted in Figure 2. For clarity purposes, only the
parameters with the mean value of or greater than 1 t ha−1 are labeled.
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Mean values of the Morris sensitivity indices µ* and s are indicated by markers, and the errors bars
indicate the standard deviation of index values across all the years. Only parameters with a µ* value
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3.2. Variance-Based Extended Fourier Amplitude Sensitivity Test (EFAST)

Figure 3 shows the EFAST indices plots for all the parameters and all the years for the Maccarese
test site. Both the first-order (Si) and the total-order (Sti) indices are calculated, as proposed in [19],
to distinguish between the main effect and the interaction effect.

For both study sites and all the years of weather data, the most relevant parameter was CGC,
with the exception of 2016–2017 for both test sites; thus, this parameter is responsible for most of the
variance of the output (Figures 3 and 4). The 2016–2017 season was particularly dry in Maccarese,
with a three-month accumulated standardized precipitation-evapotranspiration index (SPEI) below −1
from February to July, indicating drought conditions (Figure S1). During that season, the parameter that
resulted to have the highest sensitivity was HIstart. For Xiaotangshan test site (Figure S2), Kcb, WP and
HI0 were among the highest sensitive parameters after CGC for the years 2015–2016 and 2017–2018.
During 2016–2017, HIstart had the highest sensitivity followed by CGC, CDC, Kcb, WP and HI0.

Agronomy 2020, 10, x FOR PEER REVIEW 15 of 29 

 

  
Figure 2. Morris method parameter screening results for (a) Maccarese and (b) Xiaotangshan test sites. 
Mean values of the Morris sensitivity indices μ* and s are indicated by markers, and the errors bars 
indicate the standard deviation of index values across all the years. Only parameters with a μ* value 
higher than 1 t ha−1 are labeled. The meanings of parameter labels are reported in Table 1. 

A large magnitude of μ* indicates the importance of the model parameter. A high standard 
deviation of σ implies either a non-linear relationship or interaction with other parameters. The 
parameters CGC and HIstart were found to be of high importance for both the study sites regardless 
of the climate. The number of relevant parameters differs slightly for each year and study site. For 
the Maccarese site, 31 sensitive model parameters were identified for the years 2014–2015, 25 for 
2015–2016, 23 for both the years 2016–2017 and 2017–2018. Similarly, for the Xiaotangshan site, 29 
parameters were identified as most sensitive for 2014–2015, 29 for 2015–2016 and 23 for 2016–2017. 
When considering all years of data and study sites, 29 out of 55 (including dummy) were found 
important for yield output. These 29 parameters are plotted in Figure 2. For clarity purposes, only 
the parameters with the mean value of or greater than 1 t ha−1 are labeled. 

3.2. Variance-Based Extended Fourier Amplitude Sensitivity Test (EFAST) 

Figure 3 shows the EFAST indices plots for all the parameters and all the years for the Maccarese 
test site. Both the first-order (Si) and the total-order (Sti) indices are calculated, as proposed in [19], to 
distinguish between the main effect and the interaction effect. 

 

Figure 3. Cont.



Agronomy 2020, 10, 607 14 of 26

Agronomy 2020, 10, x FOR PEER REVIEW 16 of 29 

 

 

 

 
Figure 3. First-order and total-order SI for different years for Maccarese. Only the parameters with a 
total sensitivity index higher than the sensitivity index of the dummy parameter are shown. The 
details on the parameters can be found in Table 1. 

For both study sites and all the years of weather data, the most relevant parameter was CGC, 
with the exception of 2016–2017 for both test sites; thus, this parameter is responsible for most of the 
variance of the output ( Figure 3;  Figure 4). The 2016–2017 season was particularly dry in Maccarese, 
with a three-month accumulated standardized precipitation-evapotranspiration index (SPEI) below 
−1 from February to July, indicating drought conditions (Figure S1). During that season, the 
parameter that resulted to have the highest sensitivity was HIstart. For Xiaotangshan test site (Figure 
S2), Kcb, WP and HI0 were among the highest sensitive parameters after CGC for the years 2015–2016 
and 2017–2018. During 2016–2017, HIstart had the highest sensitivity followed by CGC, CDC, Kcb, WP 
and HI0. 

Figure 3. First-order and total-order SI for different years for Maccarese. Only the parameters with a
total sensitivity index higher than the sensitivity index of the dummy parameter are shown. The details
on the parameters can be found in Table 1.



Agronomy 2020, 10, 607 15 of 26

Agronomy 2020, 10, x FOR PEER REVIEW 17 of 29 

 

The results of EFAST for winter wheat were quite similar for both study sites. Although, there 
were minor differences in the specific value of the Sti, and the general importance of the analyzed 
parameters was identical for both study sites. In the end, we used the average of the total sensitivity 
indices across all the years and study sites to find a similar set of sensitive parameters that could be 
adapted when calibrating AOS for regional studies (Figure 4). 

The average indices for all the years are plotted in Figure 4, error bars indicating the extreme 
values for the total-order sensitivity indices. As expected, a small, but non-zero, value was estimated 
for the dummy parameter SI. For easy visualization and interpretation, the sensitivity indices are 
sorted in descending order. The parameters with SI values less than the SI of the dummy parameter 
were, thus, considered as non-influential parameters. The average SI for the Xiaotangshan location is 
shown in Figure 4. 

 
Figure 4. Average sensitivity indices using the EFAST method Maccarese (left) and Xiaotangshan 
(right) test sites. The error bars in red represent the extreme values of total-order sensitivity indices. 
The dummy parameter is highlighted with the red arrow. 

3.3. Density-Based PAWN Method 

Figure 5 and Figure 6 show an example of two different obtained parameters with different and 
similar CDFs, illustrating the behavior of non-influential and influential parameters using the PAWN 
method. In Figure 5 it can be seen that for the parameter CGC the unconditional CDF and conditional 
CDF are different, and the value of the KS statistics is above the critical value at 95% confidence 
interval. Therefore, the model output has a high sensitivity to the parameter, which can be thus 
considered highly influential. On the contrary, Figure 6 shows an example of another parameter, 
CDC, with similar unconditional and conditional CDFs; the value of the KS statistic is below the 
critical value, and thus the parameter is non-influential and has a low SI. 

Figure 4. Average sensitivity indices using the EFAST method Maccarese (left) and Xiaotangshan
(right) test sites. The error bars in red represent the extreme values of total-order sensitivity indices.
The dummy parameter is highlighted with the red arrow.

The results of EFAST for winter wheat were quite similar for both study sites. Although, there
were minor differences in the specific value of the Sti, and the general importance of the analyzed
parameters was identical for both study sites. In the end, we used the average of the total sensitivity
indices across all the years and study sites to find a similar set of sensitive parameters that could be
adapted when calibrating AOS for regional studies (Figure 4).

The average indices for all the years are plotted in Figure 4, error bars indicating the extreme
values for the total-order sensitivity indices. As expected, a small, but non-zero, value was estimated
for the dummy parameter SI. For easy visualization and interpretation, the sensitivity indices are
sorted in descending order. The parameters with SI values less than the SI of the dummy parameter
were, thus, considered as non-influential parameters. The average SI for the Xiaotangshan location is
shown in Figure 4.

3.3. Density-Based PAWN Method

Figures 5 and 6 show an example of two different obtained parameters with different and similar
CDFs, illustrating the behavior of non-influential and influential parameters using the PAWN method.
In Figure 5 it can be seen that for the parameter CGC the unconditional CDF and conditional CDF
are different, and the value of the KS statistics is above the critical value at 95% confidence interval.
Therefore, the model output has a high sensitivity to the parameter, which can be thus considered
highly influential. On the contrary, Figure 6 shows an example of another parameter, CDC, with similar
unconditional and conditional CDFs; the value of the KS statistic is below the critical value, and thus
the parameter is non-influential and has a low SI.
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Figure 5. Cumulative Distribution Function (CDF) for the Canopy Growth Coefficient (CGC) parameter
(left), red line on the left plot indicates the unconditional CDF and the grey colors represent the
conditional CDF for ten different sampling points and Kolmogorov–Smirnov statistics (right), the red
dashed line indicates the critical value of Kolmogorov-Smirnov (KS) statistics at 95% confidence interval.
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plot indicates the unconditional CDF and the grey colors represent the conditional CDF for ten different
sampling points and Kolmogorov–Smirnov statistics (right), red dashed line indicates the critical value
of Kolmogorov-Smirnov (KS) statistics at 95% confidence interval.

The PAWN index (Ti) for the different years is presented in Figure 7 for Maccarese and in Figure S3
(Supplementary Material) for Xiaotangshan. The average values of the indices for all the years
are plotted in Figure 8, in which error bars represent the range of values for the PAWN sensitivity
indices across the years. In comparison to EFAST, the sensitivity index appeared to be more stable.
For both study sites, considering all the years of weather data, the most relevant parameter was CGC,
also identified by EFAST method, and is also responsible for most of the variance of the model output.
The second most influential parameter was HIstart. However, differently from EFAST, this parameter
did not have a sensitivity index higher than CGC even in the water-stressed conditions of 2017.
Again, as expected, a small but non-zero value was estimated for the SI of the dummy parameter.
The parameters with the SI less than the SI of the dummy parameter are thus non-influential parameters.
The average SI for the Xiaotangshan location is shown in Figure 8.
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The details on the parameters can be found in Table 1.



Agronomy 2020, 10, 607 18 of 26

Agronomy 2020, 10, x FOR PEER REVIEW 20 of 29 

 

 
Figure 8. Average Ti using the PAWN method Maccarese test site (left) and Xiaotangshan test site 
(right). The error bars in red represent the extreme values of Ti. The dummy parameter is highlighted 
with the red arrow. 

Identifying sensitive parameters using the PAWN method is suitable in the cases where the 
output distribution is not normal, and it follows skewed or multi-modal distribution [25]. An example 
of the output distribution is compared with 54 different statistical distributions. The top six best-fitted 
PDFs are mentioned in Table 4. The comparison is made on the basis of KS statistics and Anderson–
Darling Statistics, with low values representing the best distribution. As can be seen, the Generalized 
Extreme Distribution has the lowest statistic value, with an Anderson–Darling statistic of 0.16401 and 
is second lowest in KS statistics. It is the best-suited PDF for the data, the reason for the choice of the 
PAWN method and is feasible to implement for identifying the most influential set of parameters for 
the local calibration. The Generalized Extreme Distribution is plotted in Figure 9, and statistics 
including the p-value and critical values at alpha (α) are presented in Table 5. The sample was from 
conditional CDF of the PAWN method, consisting of 200 samples, Nc = 200 (Section 2.1.3). It shows 
the statistics value and rank, indicating the raking of the distribution when compared with 54 PDFs 
(Table 4). 

Table 4. Best probability distribution with Kolmogorov–Smirnov (KS) and Anderson–Darling 
statistics, ranking the best from top to bottom. Superscript in red indicates the rank of the KS and 
Anderson–Darling statistics. 

Distribution KS Statistics Anderson–Darling Statistics 
Gen. Extreme Values 0.03253 (2) 0.16401 (1) 

Johnson SB 0.03047 (1) 0.19169 (2) 
Gumbel Max 0.05197 (3) 0.4357 (3) 

Logistic 0.12206 (4) 3.7302 (4) 
Hypersecant 0.1276 (5) 4.0165 (5) 

Normal 0.12242 (6) 4.0999 (6) 
  

Figure 8. Average Ti using the PAWN method Maccarese test site (left) and Xiaotangshan test site
(right). The error bars in red represent the extreme values of Ti. The dummy parameter is highlighted
with the red arrow.

Identifying sensitive parameters using the PAWN method is suitable in the cases where the output
distribution is not normal, and it follows skewed or multi-modal distribution [25]. An example of the
output distribution is compared with 54 different statistical distributions. The top six best-fitted PDFs
are mentioned in Table 4. The comparison is made on the basis of KS statistics and Anderson–Darling
Statistics, with low values representing the best distribution. As can be seen, the Generalized Extreme
Distribution has the lowest statistic value, with an Anderson–Darling statistic of 0.16401 and is second
lowest in KS statistics. It is the best-suited PDF for the data, the reason for the choice of the PAWN
method and is feasible to implement for identifying the most influential set of parameters for the local
calibration. The Generalized Extreme Distribution is plotted in Figure 9, and statistics including the
p-value and critical values at alpha (α) are presented in Table 5. The sample was from conditional CDF
of the PAWN method, consisting of 200 samples, Nc = 200 (Section 2.1.3). It shows the statistics value
and rank, indicating the raking of the distribution when compared with 54 PDFs (Table 4).

Table 4. Best probability distribution with Kolmogorov–Smirnov (KS) and Anderson–Darling
statistics, ranking the best from top to bottom. Superscript in red indicates the rank of the KS
and Anderson–Darling statistics.

Distribution KS Statistics Anderson–Darling Statistics

Gen. Extreme Values 0.03253 (2) 0.16401 (1)

Johnson SB 0.03047 (1) 0.19169 (2)

Gumbel Max 0.05197 (3) 0.4357 (3)

Logistic 0.12206 (4) 3.7302 (4)

Hypersecant 0.1276 (5) 4.0165 (5)

Normal 0.12242 (6) 4.0999 (6)

Similarly, for the Xiaotangshan test site, the most influential parameters are presented in Table 6,
the descriptions of the parameters are mentioned in the list of AOS parameters (Table 1). The highly
influential parameters for both the locations were CGC, HIstart, WP, HI0, Kcb, Emergence, Senescence,
WPy, GDD_up, Maturity, fshape_b, Tmin_up, GDD_lo, and CDC (Figure 8 and Table 4).
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Table 5. Best-fitted PDF (Generalized Extreme Values distribution) statistical summary.

Anderson–Darling Statistics

Sample Size 200
Statistics 0.16399

Rank 1
α 0.2 0.1 0.05 0.02 0.01

Critical Value 1.3749 1.9286 2.5018 3.2892 3.9074

Kolmogorov–Smirnov Statistics

Sample Size 200
Statistics 0.03251
P-Value 0.97963

Rank 2
α 0.2 0.1 0.05 0.02 0.01

Critical Value 0.07587 0.08648 0.09603 0.10734 0.11519

Table 6. List of sensitive parameters (based on the average SI values for all years) identified by different
methods. Sorted in the decreasing order of the SI in the case of EFAST (Sti) and PAWN (Ti) method.
The most influential parameters are in bold and underlined.

Study Site Algorithm Sensitive Parameters

Maccarese

Morris
Emergence, Senescence, Maturity, HIstart, Tbase, Tupp, Tmax_up, Tmax_lo, Tmin_up, Tmin_lo,

GDD_up, GDD_lo, fshape_b, Zmax, CCmin, CCx, CDC, CGC, Kcb, fage, WP, WPy, HI0, HIini, exc

EFAST

CGC, HIstart, WP, HI0, Kcb, Emergence, Senescence, WPy, GDD_up, Maturity,

fshape_b, Tmin_up, GDD_lo, CDC, PlantingDate, p_lo1, CN, MaxRooting, HIini,

T_base, p_up2, Tupp, Tmax_up, b_HI, p_lo4, Flowering, CCmin, exc, HarvestDate, p_lo3, CCx, p_up4,
REW, dHI_pre, fage, fsink, a_HI, fshape_w2, YldForm, SeedSize, Zmax, SxTopQ

PAWN
CGC, HIstart, WP, Kcb, HI0, Senescence, WPy, Emergence, GDD_up, Maturity,

Tmin_up, fshape_b, GDD_lo, CDC, b_HI

Xiaotangshan

Morris
REW, Emergence, Senescence, Maturity, Histart, Tbase, Tupp, Tmin_up, Tmin_lo, GDD_up, GDD_lo,

fshape_b, Zmax, CCmin, CCx, CDC, CGC, Kcb, fage, WP, WPy, HI0, exc

EFAST

CGC, Kcb, HIstart, WP, HI0, WPy, GDD_up, Maturity, Senescence, Emergence, Tmin_up, CDC,

fshape_b,GDD_lo, HIini, CCmin, CN, Tbase, fshape_w4, Tmin_lo, MaxRooting, Zmax, CCx, fage, HI0,

dHI_pre, Zmin, fshape_w2, REW, p_up4, HarvestDate, a_HI, p_lo3

PAWN

CGC, HIstart, WP, HI0, Kcb, Emergence, Maturity, Senescence, WPy, GDD_up, fshape_b,

Tmin_up, GDD_lo, CCx, CCmin, fshape_w4, p_up4, p_up3, PlantingDate, HarvestDate, Tupp, p_up2,

REW, Flowering, SeedSize, PlantPop, b_HI, dHI_pre, exc, Tmax_up, Tmin_lo, CDC, CN, dHI0, Tmax_lo,
fshape_w2, YldForm, SxTopQ, fsink, HIini, Zmin, p_lo1, p_up1, Tbase, fshape_w1, p_lo4
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4. Discussion

4.1. Elementary Effects Using the Morris Method

The results obtained in this study, performed using a contrasting range of climatic scenarios
of winter wheat growing areas in Maccarese, Italy (Mediterranean climate) and Xiaotangshan,
China (continental climate), allowed to obtain essential information on the sensitivity of the AOS
model, especially required for their application within regional-scale studies [63–65]. It is well known
that the results of the sensitivity analysis studies depend on the boundary conditions chosen [66].
In this work, these conditions are climate datasets, actual data from both sites and the range of variation
of the parameters [7,37,38]. The Morris method was used for initial screening of the parameters and
to identify the influential and non-influential parameters. The influential parameters were found
to be 29 for the Maccarese test site and 28 for the Xiaotangshan test site out of the total 54 model
parameters considered in this study. These parameters are mentioned in Table 6, and the description
of the parameters is reported in Table 1. A study [37] on the SA of the Aquacrop model used the
mean value of 0.25 as a threshold, and parameters below 0.25 t ha−1 were classified as non-influential
parameters. It was found that the parameters (translated in AOS notation) exc, dHI0, p_up1, Tmin_up,
Tmax_up, p_up4, SxTopQ and SxBotQ were non-influential (<0.25 t ha−1), and the other parameters
PlantPop, Flowering, HI0, dHI_pre, a_HI, Kcb, p_up2 and fshape_w2 had low but non-negligible impacts
(0.25–1.0 t ha−1) for all the climatic scenarios implemented. In this study, the CGC parameter was
found to be highly influential in all the conditions for both test sites. Another study carried out by [7]
found almost the same parameter set of the non-influential parameters as by [37] in all the climatic
conditions, with the exception of the soil curve number (CN) and the shape factor for water stress
coefficient inducing early senescence (fshape_w3). It should be noted that the threshold considered
in the study was 0.1 t ha−1 i.e., less than that used by [7]. The tabular comparison of the sensitive
parameters is presented in Table 6.

4.2. Variance-Based Extended Fourier Amplitude Sensitivity Test (EFAST)

The Morris method is only used for initial screening, and it does not quantify the higher-order
interaction between the parameters. This can be assessed by using the variance-based EFAST method
and the density-based PAWN method for GSA. The comparison between these algorithms is not
meaningful if compared on the basis of sensitivity indices as they have different rationales and
backgrounds. This work applies a comparison based on the ranking of the parameters in both methods.
So, to achieve this goal, all the input parameters, i.e., 55 including a dummy parameter, are used to
carry out SA in both the methods.

Figure 3 shows both the first-order and the total-order sensitivity indices for the EFAST methods
for all the years considered in this study. The sensitive parameters are, in general, common in all
the climate years considered, but with different values of the SI. These common parameters are
Emergence, Senescence, Maturity, HIstart, CGC, Kcb, WP, WPy and HI0, Tmin_up, GDD_up and fshape_b.
The average sensitivity indices plots for all the years identify the non-influential parameters having
a sensitivity less than the sensitivity of the dummy parameter. As can be seen from Figure 4, dHI0,
p_up3, p_lo2, Tmax_lo, p_up1, PlantPop, Tmin_lo, Zmin, fshape_w2, fshape_w3, fshape_w4 and SxBotQ had
low sensitivities in comparison to the dummy parameter. These parameters are clearly identified as
non-influential parameters.

Similarly, for the Xiaotangshan test site, the most influential parameters are reported in Table 6.
The highly influential parameters for both the locations were CGC, HIstart, WP, HI0, Kcb, Emergence,
Senescence, WPy, GDD_up, Maturity, fshape_b, Tmin_up, GDD_lo and CDC (Figure 4). These parameters
are in common for both the test sites, although the ranking is not the same. Authors in [37] identified
that for winter wheat in a temperate maritime climate, many parameters had an equivalent effect on
the output variance, among which parameters describing canopy development were SeedSize, CCx,
CGC, Senescence, WP, GDD_up and Zmax. In a previous study [7], it was found that the parameters
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describing the phenological cycle of the crop and the water stress were among the most highly
influential. The ranking of the parameters was different from that of [37], due to the climatic conditions
employed. Also, the total-order effects were different than those of the first-order effects, indicating
more complex higher-order interacting effects rather than individual effects. It should be noted that
both these studies applied EFAST on the results of the Morris method, that is not the case of our study.
The EFAST method for SA was directly applied to all the parameters in [38] under different irrigation
treatments. In the presence of rainfall, CGC, CCx, Emergence, PlantPop, SeedSize, Kcb, Maturity, Zmax,
p_up3, MaxRooting, GDD_up and WP were the most sensitive to yield. In normal irrigation, CGC, CCx,
Emergence, PlantPop, SeedSize, Kcb, Maturity, Zmax and p_up3 were among the highly influential, and in
over-irrigation, CGC, CCx, Emergence, PlantPop, SeedSize, Kcb, Maturity, Zmax, p_up3 and CDC were
the most sensitive parameters. The translations of these parameters of Aquacrop and AOS model are
mentioned in Table 1.

4.3. Density-Based PAWN Method

In the PAWN method, the sensitivity of the model output (yield) to the parameter xi is measured
by the distance between the conditional CDF of output obtained by fixing xi, to a specific value and
the unconditional CDF. Since all the variability related to xi, both due to direct and interaction effects,
is removed in the conditional CDF, the comparison illustrates the total effect of xi. As a distance
measure, the maximum absolute difference between two CDFs, i.e., the Kolmogorov–Smirnov statistic,
is considered. The PAWN SI for the different years for Maccarese location is presented in Figure 7.
The sensitive parameters are similar for all different years, but with a varying degree of the PAWN
index. The average index for all the years is plotted in Figure 8. Table 6 summarizes the set of sensitive
parameters based on the PAWN index.

The PAWN method is simpler and less computationally demanding in comparison to the EFAST
method. Out of all the methods tested in this study, the Morris method was the simplest and required
the lowest computational time, but the disadvantage with the method is that it does not quantify
higher-order effects. The PAWN method, despite being simple, has two problems: first is the reliability
of the CDF produced, which may become unstable as can be observed for both study sites. Fifteen
parameters were identified as most influential for Maccarese study site, whereas 46 parameters appeared
to have sensitivity higher than the sensitivity of the dummy parameter for the Xiaotangshan study
site. However, the parameters with the highest sensitivity were in common for both the study sites.
The other drawback of PAWN is the use of KS statistics to compute SI that leads to slow convergence.

4.4. Sensitive Parameters in Relation to Model Processes and Agronomic Conditions

AOS requires calibration of parameters to properly simulate crop growth, especially in new
locations: SA can be used to identify the parameters that have the highest impact on crop yield,
before proceeding to calibration. The interpretation of the SA results, in light of previously published
literature and of the knowledge of model calculations and simulated processes, can provide useful
insights for advanced as well as basic use of the model by researchers. Aquacrop parameters are
divided into two main groups: conservative and non-conservative parameters. Conservative crop
parameters do not change with time, cultivar, location nor water regime and in principle should require
no adjustment to local conditions. If simulations do not match observed values, the first thing to look
at is the fertility regime before changing the parameters. Non-conservative parameters, on the other
hand, are dependent on the cultivar (e.g., phenology parameters) and conditions.

In our case, both in Maccarese and in Xiaotangshan, both methods (EFAST and PAWN) found CGC,
HIstart, WP, HI0 and Kcb to be the first five most sensitive parameters (Table 6), even though the order
changed slightly between locations and methods. CGC, WP, HI0 and Kcb are conservative parameters
that showed a high impact on crop yield, while HIstart is a phenological non-conservative parameter.
These parameters are mainly related to crop transpiration, which is directly used by AOS to calculate
biomass accumulation (AOS is a water-driven model). CGC describes how fast the canopy cover (CC)
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increases (Equation (7)). CC and Kcb are directly involved in the estimation of crop transpiration,
which in turns determines biomass production through water productivity (WP). Grain yield is also
highly influenced by the harvest index (HI0) and by the thermal time to start yield formation (HIstart).
High fluctuations of yield estimations can therefore be expected when adjusting these parameters,
and model users should be careful in this regard. Moreover, these parameters are also used to mimic
the effects of fertility stress on crop growth in a semiquantitative way, since nutrient cycling is not
directly incorporated into the model [59]. Testing parameter sensitivity under stress conditions is
important for calibration purposes [67].

Other phenological parameters (e.g., Emergence, Senescence and Maturity) followed up in the SA
with both locations and methods. Authors in [68] also included Emergence and Maturity as sensitive
parameters for winter wheat cultivation in China, using the EFAST method. Authors in [7] found among
the most influential parameters Senescence, HIstart and Maturity in winter wheat cultivated in a location
in Central Italy (in the same region of Maccarese) and two locations in China (with Xiaotangshan being
one of them). Similarly, authors in found Emergency, Senescence and Maturity to be among the highest
influential parameters for winter wheat in Belgium. Authors in [38] also reported HIstart and Maturity
among influential parameters for wheat cultivated near Beijing (using the EFAST method).

Water stress parameters (p_up, p_lo and fshape_p) are often the target of SA and calibration of
Aquacrop. However, datasets for water-deficient conditions are usually needed to properly estimate
the impact of these parameters on crop yield [69]. In this study, winter wheat was rainfed and not
irrigated. Indeed, in the two locations considered, rainfall is frequent and evapotranspiration is low
during the growing period (Figure 1), so it is not surprising that water stress parameters had lower
sensitivity with respect to the canopy and phenological parameters for both locations and methods
(Table 4). There are several examples that support this argument. Authors in [37] found water stress
parameters to have a higher sensitivity order for winter wheat under drier conditions and more
sandy soils. Authors in [33] simulated satisfactorily barley growth in southern Italy under rainfed
conditions without the need to adjust water stress parameters for each year, while other crop growth
and phenological parameters were specifically changed over the years. Authors in [70] obtained good
simulations of winter wheat yield in Iran under moderate water stress without including water stress
parameters in their SA and calibration. The SA carried out by [38] highlighted that the parameters with
higher-order sensitivity to winter wheat yield in Beijing were mainly related to phenology, biomass
accumulation and canopy growth, with p_up3 (the threshold for water stress-related senescence) being
the only water stress-related parameter included. In another recent global SA [59], maize water stress
parameters were less sensitive than crop growth and phenology parameters, under all the irrigation
treatments (designed to obtain a range of water stress intensities, from no to moderate stress). These
experiences confirmed our results and highlighted that water stress parameters do not have high
impact on winter wheat yield when water-limiting conditions are moderate.

5. Conclusions

In this paper, we compared the application of two global SA techniques, the variance-based
EFAST and the moment-independent density-based PAWN method, to the analysis of 54 parameters
of the AOS model, a crop growth simulation model widely used for canopy cover, biomass and yield
simulations. With respect to the widely used variance-based sensitivity indices, the main advantage
of PAWN is that it can be applied whatever the output distribution may be. The comparison was
performed in terms of parameter ranking for different climates and geographical locations. In all the
methods, highly influential parameters were common, and the ranking of these parameters was similar
in EFAST and PAWN.

The PAWN method could be considered more adequate in our study, since the frequency
distribution of the output variable was right-skewed. The use of a dummy parameter approach as a
viable option to set a threshold value for parameter screening was demonstrated for all the methods
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considered. The results reported in this study provide insight into identifying the most influential
parameters of the AOS model for two different geographic locations with two different climates.

This set of most influential parameters can be used for model simplification and calibration of
the most sensitive parameters. Simplification of the model is necessary for regional-scale studies and
particularly for remote sensing data assimilation. Both EFAST and PAWN methods identified the
most influential parameters for all different years for both the test sites, but with a varied sensitivity
and ranking. According to the PAWN method, the highly influential parameters belonged to crop
parameters specifically, to the canopy and phenological development (CGC, HIstart, Senescence, maturity),
biomass/yield production (WP, WPy) and temperature stress (Tmin_up, Tmin_lo, GDD_up) rather than
root development and water stress.

This study thus concludes that variance-based and density-based global SA methods are both
useful, with the condition that the variance-based method should be preferable where a variance is an
adequate proxy of the model output, i.e., where the model output distribution is normal. Although
this work is limited to compare these two (EFAST and PAWN) methods on parameter ranking, for two
different climates with seven years data overall, to verify the robustness of the comparison, it can be
extended on the basis of efficiency, convergence or computational cost with other geographic locations,
climates and crops.
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PAWN sensitivity index Ti for different years for Xiaotansghan.
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