Table 1. Targeted Toxins directed against CSC markers currently under investigation.

<table>
<thead>
<tr>
<th>Target</th>
<th>Name</th>
<th>Toxin</th>
<th>Cancer</th>
<th>Phase of Development</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL3</td>
<td>DT_{388}IL3</td>
<td>Diphtheria Toxin</td>
<td>AML</td>
<td>Phase I</td>
<td>[9]</td>
</tr>
<tr>
<td>CD123</td>
<td>26292(Fv)-PE38-KDEL</td>
<td>Pseudomonas Exotoxin A</td>
<td>AML</td>
<td>Preclinical</td>
<td>[10]</td>
</tr>
<tr>
<td>CD44</td>
<td>Bivatusumab Mertansine</td>
<td>Maytansine Derivative</td>
<td>HNSCC</td>
<td>Phase I</td>
<td>[16,17]</td>
</tr>
<tr>
<td>EpCAM</td>
<td>chiHEA125-Ama</td>
<td>α-Amanitin</td>
<td>Pancreas</td>
<td>Preclinical</td>
<td>[24]</td>
</tr>
<tr>
<td>EpCAM</td>
<td>Ec4-ETA</td>
<td>Pseudomonas Exotoxin A</td>
<td>Colon</td>
<td>Preclinical</td>
<td>[26]</td>
</tr>
<tr>
<td>EpCAM</td>
<td>Opportuzumab Monatox</td>
<td>Pseudomonas Exotoxin A</td>
<td>Bladder</td>
<td>Phase II</td>
<td>[27,28]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HNSCC</td>
<td>Phase I</td>
<td>[29]</td>
</tr>
<tr>
<td>EpCAM</td>
<td>VB6-845</td>
<td>deBouganin</td>
<td>Breast</td>
<td>Preclinical</td>
<td>[30]</td>
</tr>
<tr>
<td>EpCAM/Her2</td>
<td>DTEpCAM23</td>
<td>Diphtheria Toxin</td>
<td>Colon</td>
<td>Preclinical</td>
<td>[23]</td>
</tr>
<tr>
<td>CD133</td>
<td>CdtA^{CT149A,CT178A}BC-CD133MAb</td>
<td>Cytolethal Distending Toxin</td>
<td>HNSCC</td>
<td>Preclinical</td>
<td>[35]</td>
</tr>
<tr>
<td>CD133</td>
<td>dCD133KDEL</td>
<td>Deimmunized Pseudomonas Exotoxin A</td>
<td>HNSCC</td>
<td>Preclinical</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Breast</td>
<td>Preclinical</td>
<td>[38]</td>
</tr>
</tbody>
</table>

Notes: Several laboratories are now investigating a range of different approaches and toxins targeting cancer stem cell associated markers. In several of the preclinical studies, more than one cancer type was investigated.

Table 2. A summary of the cancer and model types used to date by our group in evaluating the efficacy of dCD133KDEL.

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Cancer Type</th>
<th>Model Type</th>
<th>Response Obtained</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMSCC-11B</td>
<td>HNSCC</td>
<td>Flank</td>
<td>Regression</td>
<td>[36]</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>Breast</td>
<td>Systemic</td>
<td>Partial Regression</td>
<td>[38]</td>
</tr>
<tr>
<td>OVCAR-5</td>
<td>Ovarian</td>
<td>Interperitoneal</td>
<td>Regression</td>
<td>Unpublished Data</td>
</tr>
</tbody>
</table>

Notes: Our group has published independent reports using 3 different xenograft models to assess the efficacy of dCD133KDEL in immunodeficient mice.