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Abstract: Using phase change materials (PCMs) for thermal energy storage has always been a hot
topic within the research community due to their excellent performance on energy conservation
such as energy efficiency in buildings, solar domestic hot water systems, textile industry, biomedical
and food agroindustry. Several literatures have reported phase change materials concerning various
aspects. Among these materials, salt hydrates are worthy of exploring due to their high-energy
storage density, rational price, multiple sources and relatively good thermal conductivity. This paper
reviews the present state of salt hydrates PCMs targeting classification, properties, defects, possible
solutions as well as their idiographic features which are suitable for applications. In addition, new
trends of future research are also indicated.
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1. Introduction

With the growing consumption of fossil fuels and increasing emission of carbon dioxide, thermal
energy storage (TES) has received a great deal of attention. Latent heat storage and sensible heat
storage are two main forms of TES. Using phase change materials (PCMs) for latent heat storage,
which can storage and release energy by melting and solidification, is becoming an effective way to
solve the contradiction of supply and demand of energy, such as peak difference of power load and
gap of solar energy [1,2]. High storage density, stable performance, wide phase change temperature
range and reasonable price make PCMs play a significant role in energy conserving areas.

In the field of phase change energy storage technology, it is a fundamental step to develop high
latent heat, stable, and cost-effective materials. Different types of PCMs have been studied after
petroleum crisis in 1970s, including solid-solid PCMs (polyalcohols and other polymers), solid-gas
PCMs and solid-liquid PCMs (salt and salt hydrates, clathrate hydrates, paraffins, fatty acids and their
mixtures, alloys and ect) [3,4]. Among these, salt hydrates, which account for a large proportion in
inorganic PCMs, have always been attracted attention owing to their reasonable price, wide sources,
good thermal conductivity and high volumetric energy storage density. However, some defects,
such as leakage, causticity, supercooling and phase separation impose restrictions on their practical
applications [5–7]. In order to reduce such adverse effects, form-stable PCMs are studied recent years
by incorporating PCMs into porous materials or through the method of microencapsulation to prevent
leakage and phase separation [8–10]. Moreover, different kinds of nucleating agents have also been
developed to reduce supercooling degree.

It is a promising direction to apply low-cost inorganic PCMs to energy conservation areas such as
electric peak-shaving, industrial waste heat utilization, aerospace field, air conditioning cold storage
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and so on. This paper reviews the research progress of salt hydrates for TES including properties,
improvements as well as their specific characteristics, which are suitable for practical application in
different fields in recent years. Research trends and potentials of these PCMs are also prospected.

2. Properties of Inorganic Salt Hydrated PCMs

Salt hydrates can be generally described as formula of AB·nH2O, where n represents number of
water molecules and represents salt composition. During phase transformation dehydration of the salt
happens, the process can be expressed as (1) and (2).

AB·nH2O→AB + nH2O-Q (1)

AB·nH2O→AB·mH2O + (n −m) H2O-Q (2)

According to the phase transition performance, the salt hydrates can be divided into three categories:
salt hydrates with congruent melting behavior, incongruent behavior and semi-congruent behavior.
There is a good deal of salt hydrates that can be regarded as available candidates for PCMs. However,
a large proportion of salt hydrates which process large transition latent heat and moderate phase
change temperature cannot melt congruently. The most meritorious ones are salt hydrates with
congruent melting behavior, low supercooling degree and competitive profitability. Thermophysical,
kinetic and chemical properties of such salt hydrates, which can possibly meet the requirements,
are presented in Table 1. The most representative salt hydrates are sodium sulfate decahydrate, calcium
chloride hexahydrate, sodium phosphate, dodecahydrate and magnesium chloride hexahydrate [5,11].
However, the phase transition temperature range of single salt hydrate cannot always meet the
requirements of practical application. Therefore, two or more salt hydrates can be mixed to adjust
the melting point. Salt hydrate mixtures can be classified as eutectics with congruent behavior
and non-eutectics with incongruent melting points. The eutectics do not tend to segregate during
melting and freezing process because they freeze to a friendly blend of crystals [12–15]. Binary or
multicomponent eutectics with a common melting point and large latent heat can reduce the melting
point of single constituent salt hydrate and then they can be utilized in wider fields [16]. Besides,
the eutectics can also make up for the deficiencies of single salt hydrates such as supercooling and phase
separation. Liu [17,18] respectively added Na2HPO4·10H2O to Na2SO4·10H2O and Na2CO3·10H2O
to prepare two novel eutectics. It demonstrated that Na2HPO4·12H2O can effectively inhibit phase
separation of Na2SO4·10H2O and Na2CO3·10H2O. The melting point and supercooling degree of the
prepared eutectics also decreased. Some of salt hydrate eutectics with potential use as PCMs are listed
in Table 2.
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Table 1. Thermo-physical properties of salt hydrates.

Salt Hydrates Melting Temperature (◦C) Heat of Fusion (J/g) Density (Solid) (103 kg/m3) Thermal Conductivity (Solid) (W/mK) Specific Heat (Solid) (J/g·◦C) Reference

LiClO3·3H2O 8 253 [13]
KF·4H2O 19 231 1.45 1.84 [5,11]

Mn(NO3)2·6H2O 25.8 125.9 1.60 [13]
CaCl2·6H2O 28 174 1.80 1.088 1.42 [1,13]
LiNO3·3H2O 30 256 [13]

Na2SO4·10H2O 32.4 248 1.49 [14]
Na2CO3·10H2O 33 247 1.88 [14]

CaBr2·4H2O 34 115.5 1.52 [19]
LiBr2·2H2O 34 124 [19]

Na2HPO4·12H2O 35–44 280 0.514 1.7 [5,11]
Zn(NO3)2·6H2O 36 149.6 1.94 1.34 [19]

KF·2H2O 42 162 [14,19]
MgI2·2H2O 42 133 [5,11]

Ca(NO3)2·4H2O 42.4 1.46 [14]
Fe(NO3)2·9H2O 47 155 [14]
Na2SiO3·4H2O 48 168 [14]
K2HPO4·7H2O 48 99 [14]
MgSO4·7H2O 48.5 202 [1]

Na2S2O3·5H2O 49 220 1.75 1.46 [1]
Ca(NO3)2·3H2O 51 104 1.46 [14]

FeCl3·2H2O 56 90 [1]
Ni(NO3)2·6H2O 57 169 [1]

CH3COONa·3H2O 58 226–264 1.45 1.97 [1,14]
MgCl2·4H2O 58 178 [14]

Na3PO4·12H2O 65–69 190 [14]
LiCH3COO·2H2O 70 150 [14]
Na2P2O7·12H2O 70 184 [14]
Ba(OH)2·8H2O 78 266 [14]
Al(NO3)2·8H2O 89 1.17 [1]
Al(NO3)2·8H2O 89.3 150 [1]
Mg(NO3)·6H2O 89.9 163 1.636 1.81 0.669 [1]

NH4Al(SO4)2·12H2O 95 269 1.65 1.71 [1]
Al2(SO3)2·12H2O 112 [1]

MgCl2·6H2O 117 167 1.56 1.59 [14]
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Table 2. Melting temperatures and heat of fusion of some eutectic mixtures.

Eutectic Mixtures Melting Temperature
(◦C)

Heat of Fusion
(J/g) Reference

55% CaCl2·6H2O + 45% CaBr2·6H2O 14.7 140 [1]
75% CaCl2·6H2O + 25% MgCl2·6H2O 21.4 102.3 [16]
66.6% CaCl2·6H2O + 33.3% MgCl2·6H2O 25 127 [1]
40% Na2CO3·10H2O + 60% Na2HPO4·12H2O 27.3 220.2 [17]
47% Ca(NO3)2·10H2O + 33% Mg(NO3)2·10H2O 30 136 [1]
25% Na2SO4·10H2O + 75% Na2HPO4·12H2O 31.2 262.3 [18]
58.7% Mg(NO3)2·6H2O + 41.3% MgCl2·6H2O 59 132.2 [1,13]
50% Mg(NO3)26H2O + 50% MgCl2·6H2O 58–59 132 [1]
80% Mg(NO3)2·6H2O + 20% MgCl2·9H2O 60 150 [1]
53% Mg(NO3)2·6H2O + 47% AL(NO3)2·9H2O 66 168 [13]
14% LiNO3·3H2O + 86% Mg(NO3)2·6H2O 72 180 [1]

Generally speaking, it is difficult to determine the thermo-physical properties of PCMs due to
the limitation of the conventional devices such as differential scanning calorimetry (DSC), modulated
differential scanning calorimetry (MDSC) and differential thermal analysis (DTA). DSC method is
common for measuring enthalpy, specific heat and phase change temperature for PCMs. However,
only a small amount of samples can be measured once, which lead to possible errors of results.
In addition to this, the measuring results are largely influenced by environmental factors. Consequently,
the investigations on thermo-physical properties of salt hydrates are inadequate in literature. However,
they are vital for heat flow transformation process, which is a decisive factor for effective heat storage
system. In recent years, Temperature-history (T-history) method has been mentioned by Yin et al. [20].
As a simple, accurate, and economic way for determining the main thermophysical properties such as
enthalpy, specific heat, supercooling degree as well as process of phase transition, T-history method
represents an advance to obtain average properties of PCMs especially for sensitive salt hydrate PCMs
which suffer supercooling.

3. Supercooling of Salt Hydrates

Supercooling is a common phenomenon among salt hydrates due to their poor nucleating
ability [20]. Some salt hydrates without a nucleating agent do not crystalize even when supercooling
temperature is decreased under tens of degrees. This always brings undesirable effects to practical
application [21]. For instance, when we impregnated salt hydrates into building materials using as
wall boards, the phenomenon of supercooling impedes the solidification process of PCMs and then the
storing heat in PCMs cannot release even when the surrounding temperature has reached their freezing
point. Consequently, the PCM with high supercooling degree will not have functions to regulate the
indoor temperature fluctuation and this lead to the lost of the meaning of latent thermal energy storage.
Supercooling degree depends on several kinds of parameters, such as nucleating agents, cooling rate,
stirring rate, stirring time, solution composition. To overcome the supercooling problems, a number of
methods have been suggested. One of the most effective and economical ways is adding nucleating
agents. Theoretically, the choice of nucleating agents should be close to the lattice parameter of the
target materials. For instance, Borax is always regarded as the most suitable nucleating agents for
Na2SO4·10H2O, which can reduce supercooling of Na2SO4·10H2O from 15 ◦C to about 2~3 ◦C [22].
Wu et al. [23] investigated the surface effects of interaction between salt hydrates and nano-particles.
Three nano-particles of aerosol SiO2, RNS-A SiO2 and liquid phase SiO2 were compared by adding
them to Na2SO4·10H2O. Results showed that aerosol SiO2 can easily suppress the supercooling.
CaCl2·6H2O is also mentioned frequently as a kind of fine PCMs. However, its supercooling degree
is up to 20 ◦C. Sutjahja [24] used SrCl2·6H2O (1.0 wt %), Ba2CO3 (0.5 wt %), and K2CO3 (0.5 wt %)
as additives to CaCl2·6H2O. It was found that SrCl2·6H2O exerted the best effect on CaCl2·6H2O,
this result was consistence with paper [25]. Palittin [26] adopted sonocrystallization method which
used ultrasound radiation for promoting CaCl2·6H2O to crystallize and results indicated this technique
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made crystals have uniform distribution and dense arrangement. Analogously, Miyasaka et al. [27]
observed that ultrasound irradiation exceled in controlling primary nucleation of Na2HPO4·12H2O
and suggested that nucleation induced by ultrasound was probably the main cause of temperature rise.
Application of nanomaterials has recently put forward to give notable effect on reducing supercooling
degree. Li et al. [28] focused on nanocomposite PCMs and found that the degree of supercooling is
within the range of 0.3–1.1 ◦C when CaCl2·6H2O composite contained with 1 wt % nanomaterials
and the complete solidification times were reduced by 17.84%. Fine graphite powder less than
50 µm [29], borax [30], disodium phosphate dodecahydrate [31] and nano silver particles [32] can
reduce the supercooling degree of C2H3NaO2·3H2O under 2 ◦C. Calcium oxalate monohydrate [33],
SrCO3 [34], Sr(OH)2 [34,35] SrCO3 [35] and Na3AlF6 [36] are both good nucleating agents for bischofite
(MgC12·6H2O). For decreasing supercooling degree of Mg(NO3)6, both Mg(OH)2 and BaO are good
choice to promote its crystallization [37]. Ushak et al. [38] reports that supercooling of CaCl2·4H2O
was slightly reduced by adding 1 wt % NaCl. Another paper [39] demonstrated that black carbon
was good for crystallization of Ca(NO3)2·4H2O and CaF2 was beneficial for NH4Al(SO4)2·12H2O.
In conclusion, graphite nanoparticles, metal nanoparticles, nano-silica molecules, borax are relatively
effective nucleating agents, ultrasonic can also be regarded as good methods for reduce supercooling
degree. Further research may pay attention on this.

4. Phase Separation of Salt Hydrates

A number of salt hydrates with large latent heat which can be regarded as PCMs cannot melt
congruently [11]. As a result, the amount of water released by salt hydrates is no enough to dissolve
the crystalline salt formed during the process of dehydration. Residual salts will deposit on the bottom
due to a larger density and then lead to phase separation. With the continuous cold-thermal cycle,
the sediments will continue to increase, resulting in gradually declining of thermal storage capacity.
Thus, phase separation is another major problem of salt hydrate PCMs [40].

Adding thickener agents into salt hydrates is one of common methods to minimize or avoid
phase separation. Many researchers used hydroxyethyl cellulose, nanocellulose, cellulose [41–44],
super absorbent polymer [45], polyethylene glycol [46] and some silicone derivatives [47] as
thickeners. Porous materials such as expanded graphite [29,48], diatomite [49–51] and nano-titanium
dioxide [52,53] etc. were also reported as fine supporting materials for inorganic materials.
They increase the viscosity of solution so that the solid particles can be evenly distributed. In addition
to this, microencapsulation, macro encapsulation (hermetically packed in vessel) and impregnation
with porous materials to prepare composite PCMs are effective methods. This cannot only solve
problems of phase separation, but can also effectively prevent leakage problem attributing to the
melting process of PCMs.

Microencapsulation phase change materials (MEPCMs) usually consist of a polymeric material
as shell and a desired PCM as core [54]. Microencapsulated salt hydrates can reduce the reactivity
with the outside surroundings, which can be utilized in powder form or dispersed into a carrier fluid,
and then prevent PCMs from phase separation and leakage. Physical and chemical processes are
two major methods to prepare MEPCMs. Physical methods typically consist of spray drying, fluidized
bed and complex coacervation. Interfacial polymerization, in situ polymerization, suspension-like
polymerization, and sol-gel methods make up chemical method [55,56]. Hitherto, vast researches have
accomplished to formulate MEPCMs, whereas most of them focused on organic materials as cores
because it is more troublesome to formulate water-solubility salt hydrate MEPCMs. Consequently,
only a few literatures have reported hydrated salt microencapsulation. Streufert [57] outlined a
novel microencapsulated PCM which used sodium acetate trihydrate as core materials. Its ability
of dispersions into a matrix and variation of mechanical properties were investigated. The study
performed two different emulsions: emulsion by using microfluidic device with acrylate as shell
material and emulsions preparing by mechanically creating with polytrimethylene carbonate (PLA) as
shell. Figures 1 and 2 shows SEM image and optical microscope image of the PLA microcapsules and



Appl. Sci. 2017, 7, 1317 6 of 18

microfluidic device as microcapsules, respectively. From the results we can clearly see more stable
and less dispersive microcapsules by microfluidic device. The microcapsules showed outstanding
performance without leakage and phase separation. Fully loaded microencapsulated PCM with
Na2HPO4·7H2O as core and methyl methacrylate as shell was prepared by Huang et al. [58],
which was exploited suspension copolymerization-solvent volatile method. During the procedure
of polymerization reaction, the original salt hydrate Na2HPO4·12H2O lost 5 crystal waters through
heating process and the remainder was successfully scattered into organic solvent. It was worthy
noted that the thermal conductivity did not seem to change after microencapsulated Na2HPO4·7H2O
formed. This excellent PMMA/Na2HPO4·7H2O MEPCM can be deemed as a potential material for
solar space heating.
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Porous materials like carbon foam, diatomite, expanded graphite and expanded perlite used as
supporting materials can also effectively overcome leakage, phase separation and corrosion problems
of PCMs. Such composite materials are often synthesized by blending or impregnating PCMs with
porous matrix [59]. The supporting materials with large specific surface area make liquid materials be
adsorbed by their internal pores and then shortcomings of phase separation and leakage of PCMs can be
overcame. EG (expanded graphite) is a sort of carbon materials by heating graphite at high temperature
through microwave irradiation. EG/PCM composites have good performance with high thermal
conductivity, light weight, no phase separation leakage phenomenon and slight supercooling degree
owing to the capillary and surface tension of EG [60–63]. Duan et al. [48] prepared CaCl2·6H2O/EG
composites by adsorbing liquid salt hydrate into EG. The shape-stable composite was obtained by
putting EG into fused CaCl2·6H2O. Alkylphenols polyoxyethylene-10 (Op-10) as emulsifier was also
added to enhance binding force between EG and salt hydrate. Thermal conductivity also improved by
82% compared with neat CaCl2·6H2O. Another composite salt hydrate/EG composite was prepared
by Wu et al. [64]. Na2SO4·10H2O and Na2HPO4·12H2O mixture was impregnated into air voids by
vacuum impregnation methods and then coated by paraffin. In addition, the wax addictive did not
affect the thermal conductive at all. Phase segregation and supercooling of salt hydrates mixtures
were also almost inhibited. Li [28] investigated the influence of oxidation expandable graphite (OEG)
on thermal behaviors of CaCl2·6H2O, and results showed that OEG can be served as nucleation to
promote crystallization process thanks to their uniform distribution in salt hydrates. Similar research
was carried out by Mao [31]. Latent storage, supercooling degree and other properties of sodium
acetate trihydrate-disodium-dodecahydrate-carboxyl methyl cellulose/expanded graphite composite
PCMs were investigated. With the increasing mass proportion of EG, lower enthalpy and higher
transfer efficient emerged. The maximum heating temperature was determined not higher than 78 ◦C,
which is beneficial for refraining from undercooling. Ultimately, the system with 3 wt % EG was
known as the most suitable selection. Liu [65] combined graphene oxide-modified hydrate salt with
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poly copolymer hydrogel. The results indicated that the obtained composite was a promising material
for achieving further phase transition behavior targets, which can be used for thermal storage under a
wide scope of ambient temperatures. Except for EG, other composite salt hydrate PCMs were studied
as well. Cui [66] used vacuum impregnation method to prepare CaCl2·6H2O and sepiolite compound.
Sepiolite, as a fibrous clay mineral with superior capability, possesses a good flare retardance property,
can be widely applied to buildings. The obtained composite with 70 wt % CaCl2·6H2O resulted in
good phase change energy storage properties. However, sepiolite leads to a decrease in enthalpy and
thermal stability. Extensive studies have been developed with respect to porous silica, which owns
large surface area and porosity. Wu et al. [67] adopted sol-gel method by impregnating mixture of
Na2SO4·10H2O and Na2HPO4·12H2O into porous silica matrix. Polymethylene was furthermore
coated on the surface of silica for preventing the water vapor from evaporating through the pores
during phase transition. No leakage and phase separation was observed. Meanwhile, depressing
melting pointing was observed by DSC, which was attributed to the difference of wettability between
coated and uncoated composite.

In a word, in spite of some disadvantages, salt hydrates are generally considered as suitable
materials for thermal energy storage applications due to more and more effective methods are
developing to overcome the problems [68,69]. Except for nucleating agents and thickening agents,
preparing composite salt hydrate PCMs are also worthy noting due to their excellent abilities for
solving phase separation and eliminating supercooling degree. Future trends of salt hydrates materials
will most likely be related to the area of microencapsulated PCMs and shape-stabilized materials
prepared by PCMs and supporting materials. Nanomaterials which can improve thermal conductivity
of PCMs are also supposed to be paid attention.

5. Application

Application of salt hydrate PCMs emerged among various areas such as energy-effective
construction industry, smart electronics, concentrated solar domestic hot water systems, functional
textile industry and food industry in recent years [14,70]. Limited by temperature range for most
salt hydrates, using salt hydrates for thermal storage in buildings have always attracted interests of
researchers due to their abilities for changing the increasingly indifferent energy generation [71]. It can
be deduced the trends in decreasing the energy demand of buildings is necessary [72]. Salt hydrates
combining with active and passive systems can minimize variations between energy consumption and
demanding in extremely cold and hot areas. There are two main methods to combine salt hydrates
with building materials: integrating salt hydrates into light weight construction materials and using
packaging materials for encapsulating. However, corrosion with mild metal containers is also a
universal behavior of salt hydrates. This phenomenon causes severe effects related to safety and
economic in actual applications. As a result, the compatibility between PCMs and metal containers has
been widely studied and valuable suggestions have been proposed. Sole [68] focused on immersion
corrosion test of metal vessel (Cu, Al, stainless steel, carbon steel) with solid salt hydrates, aiming to
searching for optimized container. Metal specimens immersed in salt hydrates were weighted after
experiments. Results demonstrated that stainless steel can be considered as the most corrosion-resistant
for all experimental salt hydrates.

5.1. Salt Hydrates for Hot Water Tanks

Presently, the most widely used heat storage systems for solar thermal energy are hot water
tanks, which process an energy storage density of 69.4 kW·h·m−3 (∆T = 60 K) but a finite storage
time [73]. Salt hydrates with melting temperature of 50~60 ◦C can be incorporated into hot water tanks
of solar domestic to reinforce stratification. Salt hydrate PCMs put off the time of reaching thermal
equilibrium between top layer with higher temperature and bottom layer with low temperature.
An experimental solar stand was constructed by Cabeza [74] with two identical thermal solar
collectors. The picture of the installation is shown in Figure 3. One of them was inserted by
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sodium acetate trihydrate. It was found that the inclusion of a PCM module in water tanks for
domestic hot-water supply is a very promising technology. It would allow to have hot-water for
longer periods of time even without exterior energy supply, or to use smaller tanks for the same
purpose. Three types of encapsulated commercial salt hydrates (DC58, PT58 and HD60) are tested
inside tanks through continuous temperature measurements with four sensors installing at various
heights [75]. The percentage of liquid state of PCMs remaining after tests was obtained by energetic
analysis, from which the solidification processes could be clearly knew.
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5.2. Salt Hydrates for Wallboards

With the increasing emission of carbon dioxide, blending PCMs in building materials or
directly using PCMs as wall boards, is able to store considerable energy during the daytime at
high temperature and release energy at night when temperature is low by melting and solidifying
processing. The combination of PCMs with building materials has showed superior performance which
can contribute to energy saving, electricity shifting and human comfort [70,76–79]. Figure 4a showed a
schematic of a kind of full-scale room with PCM concrete wallboards. As seen in Figure 4b, the effects
of alleviating temperature fluctuation of a kind of PCM wall room compared with ordinary room
are apparent [80]. However, PCMs used in construction field has certain requirements in terms of
phase change temperature, stability, strength and price. Consequently, it is a significant step to choose
suitable materials and methods of building envelope enclosures, as it is a major parameter to decide
by what extent the thermal mass is activated. High fusion heat, odorless and nontoxic properties make
salt hydrates be good candidates for construction energy saving.
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In early years, Hadjieva [81] mixed Na2SO4·10H2O with porous concrete. Due to the formation
of strong hydrogen bond, composite PCMs concrete system showed high stability and it could be
further applied to floor construction. Large absorption area of autoclaved porous concrete was also
observed. Ye et al. [82] carried out a detailed study on thermal properties of artificial climatic chamber
with CaCl2·6H2O/expanded graphite composite panels at different position. Figure 5 showed the
PCM panel packed by polyvinyl chloride (PVC) panel followed by compacting. Four pieces of the
PCM panels were fabricated by the same process to use as wallboards. The thermal performance of
the test room equipped with the PCM panels at each position was evaluated by placing the room in an
artificial climatic chamber. It was revealed that both elements of position and quantity could influence
thermal performance of the testing rooms. Moreover, numerical modeling verified the experimental
investigations, and better performance of CaCl2·6H2O was found comparing with organic (RT27/EG
composite PCM) panel. This success model showed that radiative effects of salt hydrate wallboards
could evidently enhance thermal comfort of residents. Recently, Fu et al. [83] developed a novel
nonflammable CaCl2·6H2O/expanded perlite composite and then fabricated into a board for replacing
the foam board to be employed as the core in a foam insulating brick to obtain a PCM board. It is
found that when applied PCM brick as the roof of a test room, the indoor peak temperature decreased
more apparently compared with foam brick.
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5.3. Salt Hydrates for Refrigeration System

Table 3 presented a variety of salt solutions with large enthalpy values that can apply to low
temperature fields. NH4Cl, NaCl, KCl and NH4Br etc are mainly additional salt that can add to other
PCMs to decrease melting point according to their abilities to weaken the hydrogen bond among water
molecule [84,85]. An investigation of PCM panels with NH4Cl and water placing against internal wall
in a refrigeration during 24 h for 2 weeks was carried out by Gin [86]. Performance of this system was
evaluated by drip loss and ice crystal sizes of beef muscle and ice cream in the commercial freezer.
Results showed that PCM panels can assist to lessen the rate of temperature fluctuations within the
freezer. Little drip loss has been found in meat and minimal crystal sizes were observed on the surface
of ice cream by microscopy and image analysis tool. Analogously, another experiment of improving
thermal performance of freezer containing with sodium nitrate and water was conducted in [87].
The commercial salt hydrate PCM with melting point of minus 18 ◦C was placed in 10 mm thick
stainless panels at diverse position of refrigerated trucks. Test packages with chemical components
were used to simulate frozen food. The result of door opening tests demonstrated that the salt evidently
maintained interior temperature constantly for more than 3 h of power loss. This paper also stated
that it is significantly to choose appropriate phase change temperature which is supposed to be near
the storage temperature of freezer.

Table 3. Melting temperatures and heat of fusion of salt solutions for refrigeration systems.

Salt Solution Melting Temperature (◦C) Heat of Fusion (J/g) Reference

30.5% Al(NO3)3/H2O −30.6 131.5 [88,89]
32.3% NH4F/H2O −28.1 199.1 [88]

21.5% KF/H2O −21.6 225.2 [88]
22.4% NaCl/H2O −21.2 222 [89]

21.5% NH4Cl/H2O −16 289 [89]
39.7% (NH4)SO4/H2O −18.5 269 [88]
36.8% K2HPO4/H2O −13.5 189 [88]

22.1% BaCl2/H2O −7.7 102 [89]
27.2% ZnSO4/H2O −6.5 208 [89]

18.63% MgSO4/H2O −4.8 84.96 [89]
3.9% NaF/H2O −3.5 309.2 [89]

5.9% Na2CO3/H2O −2.1 281 [88]
6.49% K2SO4/H2O −1.55 268.8 [89]

5.4. Salt Hydrates for Air Conditioning System

Apart from applications in freezers, eutectic salt hydrates are also popularly applied to air
condition system due to their similar temperature with the evaporation of the mainly refrigeration
host and high density compared with water. There are following characteristics of air conditioning
cold energy storage technologies with eutectic salts.

(1) Transfer the electricity peak and time of power consumption
(2) Capacity and power of refrigeration equipment can be reduced by 30~50%
(3) Improve efficiency of operation and utilization

Figure 6 [90] showed several air conditioning system by various media with chilled water, ice and
PCMs. Nanoparticles like TiO2 and Al2O3 [88–91] are often added into PCMs to increase melting
rate and reduce problems of refrigerating mediums such as environmental pollution, low thermal
conductivity, large size and high installing and running cost. Hui et al. [92] found that LiCl/H2O and
NH3/H2O pairs have good performance among several absorbent/refrigerant pairs, which can be
used for air conditioning application and subzero applications, respectively.
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6. Conclusions 

The available information of salt hydrate PCMs has been concluded on the basic of thermal-
physical classification, properties, problems, possible solutions and applications in this paper. It is 
generally agreed that salt hydrates have significant merits among phase change materials for latent 
heat storage. In spite of some disadvantages may limit their application in certain aspects, 
corresponding solutions are developed continuously. It is worthy noting that the excellent 
performance of combination PCMs with porous materials to prepare shape-stabilized PCMs can 
successfully solve phase separation and leakage problems when phase transition happens. 
Nanoparticles are also predominant additions which can ameliorate thermal conductivity and reduce 
supercooling degree of most hydrates. Highly stable PCMs are being increasingly applied to different 
sectors. The low phase change temperature range and rational cost of salt hydrates makes them be 
paid high attention in constructions, air condition, and solar heating systems. However, careful 
designation should be taking into account of temperature and enthalpy decreasing caused by 
operational thermal cycling and technical performance of salt hydrates. 

For the prospect, surface properties of pore materials which can be regarded as inorganic 
supporting materials are needed to be regulated furthermore, low cost and anti-corrosion 
microencapsulation or encapsulation techniques should be studied as well. Any critical testing 
standards for PCMs should try to be confirmed at international level, this will contribute to directly 
measure properties of different kinds of PCMs.  
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6. Conclusions

The available information of salt hydrate PCMs has been concluded on the basic of
thermal-physical classification, properties, problems, possible solutions and applications in this paper.
It is generally agreed that salt hydrates have significant merits among phase change materials for
latent heat storage. In spite of some disadvantages may limit their application in certain aspects,
corresponding solutions are developed continuously. It is worthy noting that the excellent performance
of combination PCMs with porous materials to prepare shape-stabilized PCMs can successfully solve
phase separation and leakage problems when phase transition happens. Nanoparticles are also
predominant additions which can ameliorate thermal conductivity and reduce supercooling degree
of most hydrates. Highly stable PCMs are being increasingly applied to different sectors. The low
phase change temperature range and rational cost of salt hydrates makes them be paid high attention
in constructions, air condition, and solar heating systems. However, careful designation should be
taking into account of temperature and enthalpy decreasing caused by operational thermal cycling
and technical performance of salt hydrates.

For the prospect, surface properties of pore materials which can be regarded as inorganic
supporting materials are needed to be regulated furthermore, low cost and anti-corrosion
microencapsulation or encapsulation techniques should be studied as well. Any critical testing
standards for PCMs should try to be confirmed at international level, this will contribute to directly
measure properties of different kinds of PCMs.
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