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Abstract: In this study, we proposed a novel method for global navigation satellite system (GNSS)
ambiguity resolution (AR). The proposed method utilizes an improved particle swarm optimization
(IPSO) algorithm to obtain the GNSS integer ambiguity with the double differenced (DD) float
resolution and its corresponding covariance matrix. First, we introduced population maturity to
the standard PSO (SPSO) algorithm for the adaptive adjustment of inertia weight. Next, to improve
the global convergence and robustness of the SPSO algorithm, we adopted population classification
and constructed a Gauss mutation for the particle evolution process of the optimal population.
Then, we applied the IPSO algorithm in the field of GNSS AR, called IPSO–AR. Finally, we evaluated
the performance of the IPSO–AR algorithm under different DD ambiguity float resolutions with
various dimensions and precisions. Numerical results showed that compared with the SPSO–AR
algorithm, the IPSO–AR algorithm has a superior correct rate, but low efficiency. Under the
appropriate parameter settings, the efficiency of the IPSO–AR algorithm is mainly dependent on the
dimensions of DD ambiguity, whereas the correct rate of the IPSO–AR algorithm is mainly dependent
on the precision of DD ambiguity. The proposed IPSO–AR algorithm has potential applications under
the conditions of few visible satellites or constrained baseline length.

Keywords: global navigation satellite system (GNSS); ambiguity resolution (AR); particle swarm
optimization (PSO)

1. Introduction

The carrier phase observation of global navigation satellite systems (GNSS), such as the American
Global Positioning System (GPS), Russian Global Navigation Satellite System (GLONASS), European
Galileo, and Chinese BeiDou Navigation Satellite System (BDS), is characterized by limited noise
and high precision, and is usually applied in high-precision positioning. Ambiguity resolution
(AR) is crucial for processing GNSS data, given the initial integer ambiguity of GNSS observations.
The correct integer ambiguity must be obtained to transform GNSS observations into high-precision
receiver-satellite ranging signals [1–3]. Conventional AR methods first obtain the ambiguity float
resolution from GNSS observations. Subsequently, the rounding method, confidence region method,
or least-squares method is applied to obtain the correct integer ambiguity [4–7]. The least-squares
ambiguity decorrelation (LAMBDA) method has been widely applied in the GNSS AR [8–10].

Numerous intelligent optimization algorithms, such as the neural network algorithm, genetic
algorithm, and particle swarm optimization (PSO) algorithm, have attracted increasing attention with
the rapid development of computer technology over the past few years [11–13]. The PSO algorithm
is a novel evolutionary computation technique that is inspired by social behavior simulation [14–16].
Given its strong global search capability, limited adjustment parameters, and fast computational speed,
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the PSO algorithm has attracted considerable research interest. The development of novel applications
for the PSO algorithm is currently an important research hotspot.

The PSO algorithm is widely used in several fields, such as function optimization or fuzzy
control [17–21]. GNSS AR is essentially a procedure for mapping the relationship between the
float solution and integer solution. In the absence of a definite mathematical analytical formula
for constructing the relationship between the float solution and the integer solution, some integer
ambiguity candidates can be selected and considered in the objective function. The candidate that
can satisfy the set condition will be identified as the optimal integer solution. Thus, the integer
linear optimal programming problem in mathematics is the core principle of GNSS AR. The PSO
algorithm can solve this problem. Therefore, the application of the PSO algorithm in GNSS AR is
an interesting topic that nevertheless has received limited research attention. A method for GPS
attitude determination based on a discrete PSO algorithm was introduced by [22]. This method lacks
ambiguity decorrelation and ignores the defects of the PSO algorithm. An improved PSO algorithm
for GPS integer AR was introduced by [23]. However, the performance of this method has not been
analyzed in detail, and the relationship between its performance and the property of the ambiguity
float solution has been ignored.

In this study, we developed a novel method for GNSS AR by using an improved PSO
(IPSO) algorithm, namely, improved particle swarm optimization–ambiguity resolution (IPSO–AR).
The ambiguity float resolution and corresponding covariance matrix can be estimated from GNSS
observations. Then, we used the PSO algorithm to search for the optimal integer solution by applying
a decorrelating Z-transformation [24,25] that is based on the minimum criterion of the weighted
residual sum of squares in the corresponding search space. The standard PSO (SPSO) algorithm
exhibits some defects, such as proneness to prematurity and to falling into a local optimum. In fact,
these defects are common problems of all intelligent optimization algorithms. Thus, the PSO algorithm
must be optimized prior to its application. Many previous researchers, such as [26–28], have focused
on the improvement of the PSO algorithm.

We introduced population maturity for the adaptive adjustment of inertia weight. In addition,
in accordance with the fitness function value, we divided the population into three groups, namely,
optimal, suboptimal, and poor populations. Then, we constructed a Gauss mutation to identify the
optimal population in particle evolution. The IPSO algorithm can avoid the defects of the SPSO
algorithm and exhibits superior performance. We experimentally analyzed the efficiency and correct
rate of the IPSO–AR algorithm by using several ambiguity float resolutions with various dimensions
and precision under different parameter settings. We identified the factors that affect the performance of
the IPSO–AR algorithm, and recommended the optimal parameter settings for the IPSO–AR algorithm
on the basis of corresponding characteristics. Then, we used one known baseline to further validate
the feasibility of the IPSO–AR algorithm. Finally, we presented some related conclusions.

2. Materials and Methods

The mathematical model of GNSS observations for relative positioning was first presented to
obtain the GNSS ambiguity float resolution. Then, an IPSO algorithm was proposed and applied in
GNSS AR. This section will focus on IPSO–AR, and its specific application will be illustrated by using
a flow diagram.

2.1. Mathematical Model of GNSS Positioning

The positioning observations of GNSS mainly include the pseudorange and carrier phase, denoted
as Ps

r and φs
r , respectively, in the receiver-satellite pair r− s. The equations of GNSS observations [29,30]

can be formulated as
Ps

r = ρs
r + Ts

r + Is
r + c(dtr − dts) + es

r
φs

r = ρs
r + Ts

r − Is
r + c(dtr − dts) + λNs

r + εs
r

, (1)
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where ρs
r is the satellite–receiver range; Ts

r and Is
r are the troposphere delay and ionosphere delay,

respectively; dtr is the receiver clock error, dts is the satellite clock error; Ns
r is the carrier phase

ambiguity; c is the speed of light; es
r and εs

r are the remaining error terms; and λ is the wavelength of
the corresponding carrier phase.

Through Equation (1), we find that the pseudorange and carrier phase observation have
similar structures. Moreover, the latter contains an ambiguity term. This finding implies that as
long as ambiguity is resolved correctly, the carrier phase observation will be transformed into the
high-precision receiver–satellite pseudorange.

Equation (1) includes two clock bias terms. The classical double differenced (DD) model is usually
adopted to eliminate these biases. DD observations are based on simultaneous observations from two
receivers and two satellites. These observations can be described as follows:

Pls
qr = ρls

qr + Tls
qr + Ils

qr + els
qr

φls
qr = ρls

qr + Tls
qr − Ils

qr + λNls
qr + εls

qr
, (2)

where ρls
qr = ρs

r − ρl
r − (ρs

q − ρl
q), and other terms are similar with ρls

qr. Tls
qr and Ils

qr in Equation (2) can be
ignored if the baseline length is relatively short (usually less than 10 km) [31,32]. The satellite–receiver
range term (ρls

qr) includes the coordinate parameters of satellites and receivers. The former can be
obtained from known ephemeris. ρls

qr can be linearized with respect to unknown receiver coordinates,
represented as the baseline vector in the DD model. The estimated parameters in Equation (2)
include three baseline vectors and several ambiguity parameters. The parameter resolution model is
an example of a mixed integer-linearized model.

The GNSS DD model can be described as follows:

y = Aa + Bb + e, Qyy (3)

where y denotes the m-dimensional pseudorange and carrier phase observations; b denotes the
three-dimensional baseline vector; a denotes n-dimensional real-valued ambiguity parameters;
e denotes the m-dimensional residual errors of observations; A denotes the design matrix
that corresponds to a; B denotes the design matrix that corresponds to b; Qyy denotes the
variance–covariance (VC) matrix that corresponds to the DD pseudorange and carrier phase
observation vectors.

We can obtain the solutions of a and b through the least-squares (LS) estimation method,
which mainly consists of three steps. We ignore the integrate property of ambiguity parameters
in the first step, and use the standard LS method to obtain the real-valued baseline vector and
ambiguity parameters. [

â
b̂

]
=

[
Q̂ââ Q̂âb̂
Q̂b̂â Q̂b̂b̂

][
AT

BT

]
Q−1

yy y

Cov

[
â
b̂

]
=

[
Q̂ââ Q̂âb̂
Q̂b̂â Q̂b̂b̂

] , (4)

where â and b̂ denote the ambiguity and baseline vector parameters of the real-valued resolution,
respectively; and Q̂ââ and Q̂b̂b̂ are the corresponding VC matrix of â and b̂, respectively.

In the second step, we use the estimated float AR to compute the corresponding integer
resolution. Numerous methods, such as the popular LAMBDA algorithm, can be adopted in this step.
The Z-transformation is usually conducted for ambiguity decorrelation given the strong correlation
between ambiguity parameters [24,25].

Ẑ = Tâ
Qẑẑ = TQââTT , (5)
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where T denotes the nonsingular transformation matrix; Ẑ is the ambiguity parameter vectors after
decorrelation; and Qẑẑ is the corresponding VC matrix with Z-transformation for Qââ.

Then, we can search for the optimal integer ambiguity parameters (Z) by applying a certain
method, such as LS or PSO. The search criteria can be described as

f (Z) = (Ẑ− Z)TQ−1
ẑẑ (Ẑ− Z) = min. (6)

Through inverse transformation, we can obtain the fixed ambiguity parameter resolution.

a = T−1Z. (7)

In the third step, the remaining real-valued parameters solved in the first step are updated by using
the fixed integer parameters:

b = b̂−Qb̂âQââ(â− a). (8)

2.2. IPSO–AR Method

2.2.1. Standard PSO Algorithm

Particle swarm optimization is a computational method that optimizes a problem by
iteratively attempting to improve a candidate solution in reference to a given fitness function.
The SPSO algorithm was developed by introducing the concept of inertia weight into PSO
yields [33,34]. With an N-dimensional search space, the total population size is n, assumed as
xi = ( xi1 xi2 · · · xiN ), ui = ( vi1 vi2 · · · viN ), which can be denoted as the position
vector and velocity vector of the particle i. The current optimal position is denoted as pBesti, and the
current optimal position of the population is denoted as gBest. The SPSO algorithm can be described as

v(k+1)
in = ωv(k)in + c1r1(pBest(k)in − x(k)in ) + c2r2(gBest(k)in − x(k)in )

x(k+1)
in = x(k)in + v(k+1)

in

, (9)

where i = 1, 2, · · · n ; ω denotes the inertia weight; c1 and c2 are two positive constants,
called cognitive learning rate and social learning rate, respectively; and r1 and r2 are the random
function in the range [0,1].

In this study, different particle positions represent the corresponding integer ambiguity candidate.
Their fitness function can be described as

F = const− log[ f (Z)], (10)

where F denotes the fitness function value, and const denotes one constant. In this work, const is set as
100.

2.2.2. IPSO Algorithm

Inertia weight is important for the performance of the PSO algorithm and balances the global
exploration and local exploitation abilities of the swarm. In the early evolution stage, the value of the
particle velocity is expected to be large to enhance global exploration ability. Meanwhile, given that
the strong local exploration ability of the PSO algorithm is desired during the late evolution stage,
the velocity value is expected to be small [35].
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In this study, we introduce the concept of population maturity [36] for the adaptive adjustment of
inertia weight on the assumption that Xid = [ xid pid ]. Population maturity can be described as

mk =
2

n(n−1)

n−1
∑

i=1

n
∑

j=i+1
(1− 1

2N

2N
∑

d=1

∣∣∣xid − xjd

∣∣∣)
w = (1−m0)w1w2

w2(1−mk)+w1(mk−m0)

, (11)

where w1 and w2 denote the adjustment range of inertia weight, and m0 is the initial population
maturity. During the particle evolution stage, particle distribution becomes increasingly concentrated.
This behavior implies that population maturity continuously increases, whereas the corresponding
inertia weight continuously decreases to a certain value.

Although the SPSO algorithm has fast convergence speed, it can easily and rapidly decrease
population diversity. Thus, the SPSO algorithm is prone to prematurity and to falling into a local
optimum. To avoid these defects, we divide the population into three groups, namely, optimal,
suboptimal, and poor populations, in accordance with the fitness function value. These populations
are expressed as (S1, S2, S3), and their corresponding population size is s. We construct a Gauss
mutation [37] for the optimal population (S1) during particle evolution.

xk+1
id = xk

id + Gauss(0, 1) · xk
id, (12)

where d = 1, 2, · · · N ; and Gauss(0, 1) denotes the random number that follows Gauss
distribution.

We can calculate the average fitness value (Fave) of the optimal population (S1). The condition for
the termination of the IPSO algorithm can be described as

Fmax − Fave ≤ a f v_out, (13)

where Fmax denotes the individual fitness value of the optimal particle, and a f v_out denotes the
iterative convergence threshold.

2.2.3. Illustration of the IPSO–AR Algorithm

In accordance with the ambiguity float resolution (â) and the corresponding VC matrices (Q̂ââ),
we can determine the ambiguity search range by using the three times error of estimated â or by
directly entering one fixed constant into the restricted ambiguity search range.

|SearchRanged| < 3Q̂dd
ââ

or |SearchRange| < ar_range , (14)

where 1 ≤ d ≤ N; SearchRange denotes the ambiguity search range; Q̂dd
ââ

denotes the estimated error
of the d-th dimension ambiguity; and ar_range denotes one given constant.

On the basis of the algorithm described above, we illustrate the specific process of the IPSO–AR
algorithm showed in Figure 1.
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Figure 1. Flow diagram of IPSO–AR (improved particle swarm optimization–ambiguity resolution).
VC: variance–covariance matrix.

3. Experiments and Result Analysis

We conducted several experiments to verify the feasibility of the proposed IPSO–AR method.
We first demonstrated the search procedure of IPSO–AR. Then, we evaluated the performance of
IPSO–AR through three different experiment schemes. We analyzed the influences of the property of
the ambiguity float solution and parameter setting on the performance of IPSO–AR in detail. Finally,
we used a known baseline to further validate the feasibility of IPSO–AR.

3.1. Search Procedure of IPSO–AR

We select one BDS six-dimensional DD ambiguity float resolution and its corresponding VC
matrices as the input information to illustrate the search procedure of IPSO–AR as introduced in
Section 2.2.3. Here, we use the ambiguity dilution of precision (ADOP) to assess the precision of
ambiguity float resolution. The specific definition and calculation method of ADOP are provided
by [38]. In general, a small ADOP value corresponds to a high precision float resolution. In this test,
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the ADOP of the ambiguity float resolution is 0.28. The IPSO–AR parameter settings are (90, 30, 0.5,
0.5, 0.4, 0.8, 0.001, 10). Specifically, the total population size is 90. The sizes of the optimal, suboptimal,
and poor populations are all 30. The cognitive learning rate and social learning rate are both 0.5.
The inertia weight is adjusted over the range of 0.4 to 0.8. The iterative convergence threshold is 0.001.
The ambiguity search range is restricted to a finite interval from −10 to 10.

Figure 2 shows the change trend of the total population maturity and adaptive inertia weight with
respect to the number of generations. Notably, the initial value of population maturity is relatively
small and is approximately 0.63 because the initial particles are randomly generated with a scattered
distribution. Meanwhile, particle distribution becomes increasingly concentrated as the position of
individual and global optimum particles is continuously updated. The corresponding population
similarity gradually increases. Figure 2 shows that when the number of generations is approximately
10, the value of the total population maturity tends to stabilize (approximately 0.95). The adaptive
inertia weight calculated using population maturity also tends to stabilize (approximately 0.5).
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Figure 2. Trend of Population maturity and adaptive weight

Figure 3 shows the evolution of the global optimum. The global optimal fitness completely
stabilizes when the number of generations reaches 12. Theoretically, the PSO algorithm has already
found the estimated optimal ambiguity integer. However, we utilize several strategies, which are
introduced in Section 2.2.2, to avoid falling into a local optimum. The IPSO–AR algorithm satisfies the
convergence condition with the strict evolution convergence judgment until the number of generations
reaches 47. Thus, the ambiguity search is completed.
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For a straightforward illustration of the search procedure of IPSO–AR, we select the former second
dimension DD ambiguities (i.e., C02-C01 and C07-C01) as an example to represent the evolution of S1

particles. As shown in Figure 4, the planar distribution of the initial particles, which are shown as solid
blue dots (total of 30), is scattered and irregular. Meanwhile, as the number of generations increases,
particle evolution became increasingly homogeneous and finally converges to the point (0, −1).
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3.2. Performance Analysis of IPSO–AR

In this study, we use one static short baseline (approximately 1.2 km) to validate the performance
of IPSO–AR. The average GPS/BDS visible satellite number is 7–8. The truth values of the
estimated ambiguity-fixed resolution are obtained from multiepoch process results by using the
GNSS open source software RTKLIB [39,40], which users can download from http://www.rtklib.com.
The processing strategies and methods of RTKLIB software are shown in Table 1.

Table 1. Processing strategies and methods of RTKLIB software. GPS: Global Positioning System;
BDS: BeiDou Navigation Satellite System; EKF: extended Kalman filter; LAMBDA: least-squares
ambiguity decorrelation.

Main Options Setting

System GPS/BDS
Observation Frequencies L1/B1
Elevation Cut-Off Angle 15◦

Positioning Mode Static
Parameter Estimation EKF

Stochastic Model Elevation angle
Satellite Ephemeris Broadcast

Satellite Antenna Model IGS08.ATX
Receiver Antenna Model IGS08.ATX

Ambiguity Resolution LAMBDA
Ambiguity Validation Threshold 3

Integer Ambiguity Resolution Continuous
Troposphere Correction Saastamoinen
Ionosphere Correction Broadcast Ionosphere Model (Klobuchar Mode)
Earth Tides Correction OFF

Code/Carrier-Phase Error Ratio 100
Carrier-Phase Error 0.003 + 0.003/sin(el) m

http://www.rtklib.com
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We adopt two indices, namely, efficiency and correct rate, to evaluate the performance of IPSO–AR.
Dimension and ADOP can reflect the property of any ambiguity float resolution, which is expected to
be related to the performance of IPSO–AR. Meanwhile, similar to the performances of other intelligent
search algorithms and as shown by our experimental results, the performance of IPSO–AR depends
on parameter settings. Among the nine parameters introduced in Section 2.2.3, the performance of
IPSO–AR is the most sensitive to total population size (n) and optimal population size (s).

On the basis of the above analysis, we first consider the influence of ambiguity precision on the
performance of IPSO–AR. Thus, we investigate three different experimental schemes that correspond
to three different kinds of ambiguity precision (high, general, or low precision) under three different
parameter settings (P1, P2, and P3). Only parameters n and s are considered in our experiment.
Other parameters are set similarly to those introduced in Section 3.1. The specific details of the
experimental schemes are shown in Table 2.

Table 2. Experimental design with various precision double differenced float ambiguities and
parameter setting. DD: double differenced; ADOP: ambiguity dilution of precision.

Experiments
DD Float Ambiguity Parameter Setting

Epochs ADOP Precision n s

Scheme #1
P1

10 (0,0.1] High
30 10

P2 60 20
P3 90 30

Scheme #2
P1

5 (0.1,0.5] General
30 10

P2 60 20
P3 90 30

Scheme #3
P1

1 (0.5,2] Low
30 10

P2 60 20
P3 90 30

We use various dimensions (from 3 to 12) of GPS/BDS DD ambiguity float resolution
in independent experiments to analyze the relationship between ambiguity dimension and
the performance of IPSO–AR in different schemes with different parameter settings (Table 2).
The corresponding satellites and frequency information are provided in Table 3. All the data in
our experiment are obtained by the GPS/BDS receiver, and are not simulated.

Table 3. Frequency and satellite information with various DD ambiguity dimensions.

Dimension N = 3 N = 4 N = 5 N = 6 N = 7

Frequency L1 L1 L1 L1 L1 + B1
DD Sat 3G 4G 5G 6G 6G + 1B

Dimension N = 8 N = 9 N = 10 N = 11 N = 12
Frequency L1 + B1 L1 + B1 L1 + B1 L1 + B1 L1 + B1

DD Sat 6G + 2B 6G + 3B 6G + 4B 6G + 5B 6G + 6B

We simultaneously perform experiments on SPSO–AR to compare the performances of IPSO–AR
and SPSO–AR. In contrast to IPSO–AR, SPSO–AR uses fixed inertia weight (setting of 0.5).
The parameter setting for SPSO–AR is similar to that for IPSO–AR, but lacks the s term.

The computer processor used in our experiment is Intel(R) Pentium(R) CPU G620@2.60 GHz with
4.0 G RAM. All computer programs used standard C language.
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3.2.1. Scheme #1 Experiments

In Scheme #1, the selected DD ambiguity float resolutions are obtained from the smoothed
results of observation data with 10 epochs. The corresponding ADOP value is less than 0.1,
indicating relatively high precision. In IPSO–AR or SPSO–AR, initial particles are generated randomly.
We independently conduct the experiment 10,000 times to obtain statistical information (i.e., average
efficiency and correct rate).

Figure 5 shows the average number of iterations and search time with various DD ambiguity
dimensions for IPSO/SPSO–AR. Under low dimensions (3–5), IPSO–AR and SPSO–AR perform
efficiently (approximately 5 ms). However, as the number of dimensions increases, the efficiency of
IPSO–AR decreases sharply, but not that of SPSO–AR. When the number of dimensions is 12 under the
P3 parameter setting, the average search time of IPSO–AR reaches 1 s, because IPSO–AR constructs
a Gauss mutation in the particle evolution of the optimal population (S1). This condition indicates
that some particle evolution paths are disrupted. This disruption, in turn, causes particle evolution to
increase and to converge to one optimal position. In addition, the efficiency of IPSO–AR is related to
parameter setting. Thus, efficiency is low when total population size (n) is large.
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Figure 5. Average number of iterations and search time with various DD ambiguity dimensions
for IPSO/standard PSO algorithm (SPSO)–AR under Scheme #1. GPS: Global Positioning System;
BDS: BeiDou Navigation Satellite System.

Figure 6 shows the correct rate of IPSO/SPSO–AR under various DD ambiguity dimensions.
The correct rate of SPSO–AR decreases sharply under the same parameter setting and increasing
dimensions, especially under high dimensions. Meanwhile, the correct rate of IPSO–AR shows the
opposite behavior under the same conditions. The correct rate of IPSO–AR/SPSO–AR will increase
under a certain dimension of DD ambiguity (Figure 6) and as the parameter n increases. However,
the increment in the the correct rate of IPSO–AR is negligible. The correct rate of IPSO–AR is higher than
that of SPSO–AR under any condition but is particularly higher under high-dimensional conditions.
IPSO–AR can maintain a high correct rate (more than 99.9%) under the following conditions: when the
precision of the DD ambiguity float resolutions is relatively high under low-dimensional conditions
(3–5), when n is 30 under median-dimensional conditions (6–9), when n is 60 under high-dimensional
conditions (10–12), and when n is 90.
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Figure 6. Correct rates of IPSO/SPSO–AR under various DD ambiguity dimensions in Scheme #1.

3.2.2. Scheme #2 Experiments

In Scheme #2, the selected DD ambiguity float resolutions are obtained from the smoothed results
of observation data with five epochs. The corresponding ADOP value varies from 0.1 to 0.5. Compared
with that obtained under Scheme #1, the precision obtained under Scheme #2 is relatively low. Similar
to that in Scheme #1, we conducted the IPSO/SPSO–AR experiment and obtained the average efficiency
and correct rate of the algorithms. The results are presented in Figures 7 and 8.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 18 

 

Figure 6. Correct rates of IPSO/SPSO–AR under various DD ambiguity dimensions in Scheme #1. 

3.2.2. Scheme #2 Experiments 

In Scheme #2, the selected DD ambiguity float resolutions are obtained from the smoothed 

results of observation data with five epochs. The corresponding ADOP value varies from 0.1 to 0.5. 

Compared with that obtained under Scheme #1, the precision obtained under Scheme #2 is relatively 

low. Similar to that in Scheme #1, we conducted the IPSO/SPSO–AR experiment and obtained the 

average efficiency and correct rate of the algorithms. The results are presented in Figures 7 and 8. 

 

Figure 7. Average number of iterations and search time of IPSO/SPSO–AR under various DD 

ambiguity dimensions in Scheme #2. 

0

50

100

150

 

 

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
5
.0

0

9
9
.8

9
9
1
.0

0

9
9
.6

1
6
1
.0

0

9
8
.5

6
4
1
.0

0

9
7
.2

3
2
0
.0

0

9
6
.5

1
5
.0

0

9
5
.7

1
2
.0

0

9
4
.2

5
1
.0

0

9
2
.9

8
1
.0

0

IPSO (P1)

SPSO (P1)

0

50

100

150

 

 
1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
5
.0

0

9
9
.9

8
8
0
.0

0

9
9
.9

8
6
1
.0

0

9
8
.6

7
4
0
.0

0

9
8
.2

3
1
5
.0

0

9
7
.5

4
4
.0

0

9
7
.3

0
6
.0

0

C
o

rr
ec

t 
ra

te
 (

%
)

IPSO (P2)

SPSO (P2)

2 3 4 5 6 7 8 9 10 11 12 13
0

50

100

150

Dimensions of GPS/BDS DD ambiguity

 

 

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

1
0
0
.0

9
3
.0

0
1
0
0
.0

8
9
.0

0

1
0
0
.0

6
2
.0

0

1
0
0
.0

3
5
.0

0

1
0
0
.0

1
6
.0

0

1
0
0
.0

7
.0

0

IPSO (P3)

SPSO (P3)

2 4 6 8 10 12
0

50

100

150

 

 

IPSO (P1)

SPSO (P1)

2 4 6 8 10 12
0

0.05

0.1

 

 

IPSO (P1)

SPSO (P1)

2 4 6 8 10 12
0

50

100

150

A
v

er
ag

e 
n

u
m

b
er

 o
f 

It
er

at
io

n
s

 

 

IPSO (P2)

SPSO (P2)

2 4 6 8 10 12
0

0.2

0.4

A
v

er
ag

e 
T

im
e 

o
f 

am
b

ig
u

it
y

 s
ea

rc
h

 (
s)

 

 

IPSO (P2)

SPSO (P2)

2 4 6 8 10 12
0

100

200

300

Dimensions of GPS/BDS DD ambiguity

 

 

IPSO (P3)

SPSO (P3)

2 4 6 8 10 12
0

0.5

1

1.5

 

 

IPSO (P3)

SPSO (P3)

Figure 7. Average number of iterations and search time of IPSO/SPSO–AR under various DD ambiguity
dimensions in Scheme #2.
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Figure 8. Correct rates of IPSO/SPSO–AR under various DD ambiguity dimensions in Scheme #2.

From Figures 7 and 8, we infer conclusions that are similar to those inferred for Scheme #1.
The findings will not be described here to avoid repetition. Comparing Figure 7 with Figure 5, and
Figure 8 with Figure 6 shows that under the same parameter setting and ambiguity dimensions,
the average efficiency of IPSO/SPSO–AR slightly decreases in Scheme #2 relative to that in Scheme
#1. The decrement in efficiency under these conditions, however, is not as drastic as that caused by
the increase in dimensions. Under any parameter setting, the correct rate of SPSO–AR in Scheme #2
declines dramatically as the DD ambiguity dimension increases. When the number of dimensions is
10, SPSO–AR completely loses the ability to search for the correct integer ambiguity. Under the P1
parameter setting and high-dimensional conditions, the correct rate of IPSO–AR decreases in Scheme
#1 relative to that in Scheme #2. Fortunately, under the appropriate parameter setting, the correct rate
of IPSO–AR in Scheme #2 remains high and is similar to that in Scheme #1 (more than 99.9%).

3.2.3. Scheme #3 Experiments

The DD ambiguity float resolutions selected in Scheme #3 are obtained from observations with
one epoch. The corresponding ADOP value varies from 0.5 to 2 and indicates the poor precision of
the algorithms. The average efficiency and correct rate of IPSO/SPSO–AR in Scheme #3 are shown in
Figures 9 and 10.
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Figure 9. Average number of iterations and search time of IPSO/SPSO–AR under various DD ambiguity
dimensions in Scheme #3.
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Figure 10. Correct rates of IPSO/SPSO–AR under various DD ambiguity dimensions in Scheme #3.

Comparing Figures 5 and 9, Figures 7 and 10, and Figures 6 and 8, shows that under the same
parameter setting, the average efficiency of IPSO/SPSO–AR in Scheme #3 is lower than that in
Scheme #1/#2. Although the precision of the DD ambiguity float resolution is low, the correct rate
of IPSO–AR in Scheme #3 remains high under the appropriate parameter setting, such as n = 60
under low-dimensional conditions, and n = 90 under median-dimensional conditions. Meanwhile,
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as the number of dimensions continues to increase, the correct rate gradually decreases. Given the
IPSO–AR regularities explained in Scheme #1 and Scheme #2, the corresponding correct rate can still
be improved even if we increase the value of parameter n. We will not conduct the validation test
given the limitations of this study.

3.2.4. Recommended Parameter Settings for IPSO–AR

Through the above analysis, we can find that the performance of IPSO–AR is closely related to
the property of DD ambiguity float resolution (dimension and precision). When the dimension reaches
12, the efficiency of IPSO–AR will decrease (more than 1 s). Thus, we will not further discuss our
observations for the case of increased dimensions. Meanwhile, low precision (such as ADOP > 3) may
result from the inappropriate processing of error sources in the GNSS model or from the inappropriate
external observation environment. In this case, searching for the correct integer ambiguity will be
difficult, regardless of the AR method. Thus, this case will not be discussed further.

Parameter setting is crucial for the performance of IPSO–AR. We synthetically consider the
efficiency and correct rate of IPSO–AR on the basis of the above analysis of the three schemes. Table 4
provides the recommended parameter settings for IPSO–AR under various dimensions and precisions
of the DD ambiguity float resolution. Except for parameters n and s, which are presented in Table 4,
the other parameters are presented in Section 3.1. We refer to Table 4 to adjust the parameters of
IPSO–AR adaptively within the program through the procedure of parameter setting introduced
in Section 2.2.3.

Table 4. Recommended parameter setting for IPSO–AR.

ADOP
Dimensions

[1,5] (5,9] (9,12] -

(0,0.1] n = 30 s = 10 n = 60 s = 20 n = 90 s = 30 -
(0.1,0.5] n = 30 s = 10 n = 60 s = 20 n = 90 s = 30 -
[0.5,2) n = 60 s = 20 n = 90 s = 30 n = 120 s = 40 -

- - - - -

3.3. Validation of the IPSO–AR Algorithm with Known Baseline

To further validate the effectiveness of IPSO–AR, we select one baseline with known baseline
length and use two GPS receivers. We obtain observations for approximately 2 h at the sampling
interval of 1 s and approximately 7000 epochs. The truth value of the baseline length is exactly known
with 10.332 m. Then, we postprocess the baseline observation data epoch by epoch by using the
real-time kinematic (RTK) model. The proposed IPSO–AR method is used in data processing, and the
IPSO–AR parameter setting is illustrated in Table 4.

Figure 11 shows the visible DD satellite number and ADOP value with respect to epochs. Figure 12
shows the assumption time of IPSO–AR with respect to epochs. In most cases, the ADOP value
will decrease when the corresponding satellite number increases at some epochs. The redundant
observation equation will also increase with the increment in satellite number. Theoretically,
the precision of the corresponding DD ambiguity float resolution will improve. Figure 12 shows
that at epochs with an increase in satellite number, the corresponding efficiency of IPSO–AR is
relatively low. This result proves once again that the efficiency of IPSO–AR is mostly dependent on
dimension instead of the precision of DD ambiguity.
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Figure 12. Search time of IPSO–AR.

This experiment verifies the correct rate of IPSO–AR. The series of baseline length differences
between the fixed solution (by IPSO–AR method) and truth value is shown as the blue line in Figure 13.
An incorrect solution to integer ambiguity may cause large baseline length error. To verify whether
the fixed ambiguity calculated through the IPSO–AR method is correct, we randomly add an integer
value cycle on one DD satellite at every epoch. The integer value randomly varies from −1 to 1.
The corresponding series of baseline length differences is represented by a green line in Figure 13.
Given only one cycle error on the DD ambiguity at many epochs, the corresponding baseline length
will deviate from the true value by 10 cm. Meanwhile, all the baseline length errors calculated by
IPSO–AR are on the mm level, as represented by the blue line in Figure 13. This result indicates that
the estimated DD ambiguity float solutions are all correct. In other words, the correct rate of IPSO–AR
in this test is 100%.
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4. Conclusions

In this study, we firstly proposed an improved PSO algorithm, introduced the population maturity
to adjust the inertia weight adaptively, and adopted the strategy of population classification, for the
optimal population, we made a Gauss mutation in the process of particle evolution, which can
effectively avoid the defect of premature and falling into local optimum existing in SPSO algorithm.
Then the proposed IPSO algorithm was applied in the GNSS AR, abbreviated as IPSO-AR. Finally,
we conducted a series of experiments with measured data to analyze the performance of IPSO–AR.
We obtained the following valuable conclusions:

(1) The correct rate of IPSO–AR is superior to that of SPSO–AR. The superior correct rate of IPSO–AR,
however, is obtained at the expense of computational efficiency. The improvement in the correct
rate of IPSO–AR is particularly pronounced under high-dimensional ambiguity.

(2) The performance of IPSO–AR is closely related to the property of estimated ambiguity float
resolution. Under reasonable parameter settings, the efficiency of IPSO–AR mostly depends
on the dimension of the estimated ambiguity float resolution. Meanwhile, the correct rate of
IPSO–AR mainly depends on the precision of the estimated ambiguity float resolution. Given this
principle, we can adaptively adjust the parameters of IPSO–AR on the basis of the estimated
ambiguity float resolution, to achieve high efficiency and high correct rate, simultaneously.

(3) IPSO–AR exhibits high efficiency and high correct rate when the dimension of estimated
ambiguity float resolution is low (N < 6). The correct rate of IPSO–AR can be validated when
baseline length is known, such as in GNSS attitude determination. Thus, IPSO–AR may have
considerable engineering application value.

Author Contributions: X.L. devised the research. J.G. and J.H. designed the methods and experiments. X.L. wrote
the study. All authors have read and approved the final manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities, Chang’an
University, 2018 (Grant No. 300102268102), the China Postdoctoral Science Foundation, No. 2018M633441, and
the Programs of the National Natural Science Foundation of China (41790445, 41774025, and 41731066).

Conflicts of Interest: The authors declare no conflicts of interests.



Appl. Sci. 2018, 8, 990 17 of 18

References

1. Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System: Theory and Practice, 5th ed.;
Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001.

2. Counselman, C.C.; Gourevitch, S.A. Miniature Interferometer Terminals for Earth Surveying: Ambiguity
and multipath with Global Positioning System. IEEE Trans. Geosci. Remote Sens. 1981, 19, 244–252. [CrossRef]

3. Blewitt, G. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines
up to 2000 km. J. Geophys. Res. 1998, 94, 10187–10203. [CrossRef]

4. Frei, E.; Beutler, G. Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach “FARA”.
Theory and First Results. Manuscr. Geod. 1990, 15, 325–356.

5. Teunissen, P.J.G. A New Method for Fast Carrier Phase Ambiguity Estimation. In Proceedings of the IEEE
Position Location and Navigation Symposium, Las Vegas, NV, USA, 11–15 April 1994.

6. Teunissen, P.J.G. An Optimality Property of the Integer Least-Squares Estimator. J. Geod. 1999, 73, 587–593.
[CrossRef]

7. Verhagen, S.; Teunissen, P.J.G. New global navigation satellite system ambiguity resolution method compared
to existing approaches. J. Guid. Control Dyn. 2006, 29, 981–991. [CrossRef]

8. De Jonge, P.J.; Tiberius, C. The LAMBDA Method for Integer Ambiguity Estimation: Implementation Aspects;
No.12 of LGR-Series, 1996.

9. Verhagen, S.; Li, B.; Teunissen, P.J.G. PS-LAMBDA: Ambiguity correct rate evaluation software for
interferometric applications. Comput. Geosci. 2013, 54, 361–376. [CrossRef]

10. Chang, X.; Yang, X.; Zhou, T. MLAMBDA: A modified LAMBDA method for integer least-squares estimation.
J. Geod. 2005, 79, 552–565. [CrossRef]

11. Jiang, G.; Luo, M.; Bai, K.; Chen, S. A Precise Positioning Method for a Puncture Robot Based on
a PSO-Optimized BP Neural Network Algorithm. Appl. Sci. 2017, 7, 969. [CrossRef]

12. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

13. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995.

14. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional
complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

15. Bergh, F.V.D.; Engelbrecht, A.P. A study of particle swarm optimization particle trajectories. Inf. Sci. 2006,
176, 937–971.

16. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for
global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

17. Dong, N.; Wu, C.H.; Ip, W.H.; Chen, Z.Q.; Chan, C.Y.; Yung, K.L. An opposition-based chaotic GA/PSO
hybrid algorithm and its application in circle detection. Comput. Math. Appl. 2012, 64, 1886–1902. [CrossRef]

18. Turgut, O.E.; Turgut, M.S.; Coban, M.T. Chaotic quantum behaved particle swarm optimization algorithm
for solving nonlinear system of equations. Comput. Math. Appl. 2014, 68, 508–530. [CrossRef]

19. Li, Z.; Tian, Z.; Xie, Y.; Huang, R.; Tan, J. A knowledge-based heuristic particle swarm optimization approach
with the adjustment strategy for the weighted circle packing problem. Comput. Math. Appl. 2013, 66,
1758–1769. [CrossRef]

20. Zhao, J.; Li, T.; Qian, J. Application of particle swarm optimization algorithm on robust PID controller
tuning. In Proceedings of the Advances in Natural Computation, First International Conference, ICNC,
Changsha, China, 27–29 August 2005.

21. Mu, B.; Wen, S.; Yuan, S.; Li, H. PPSO: PCA based particle swarm optimization for solving conditional
nonlinear optimal perturbation. Comput. Geosci. 2015, 83, 65–71. [CrossRef]

22. Xia, N.; Han, D.; Zhang, G.; Jiang, J.; Vu, K. Study on attitude determination based on discrete particle swarm
optimization. Sci. China Technol. Sci. 2010, 53, 3397–3403. [CrossRef]

23. Li, X.; Zhang, P.; Guo, J.; Wang, J.; Qiu, W. A New Method for Single-Epoch Ambiguity Resolution with
Indoor Pseudolite Positioning. Sensors 2017, 17, 921. [CrossRef] [PubMed]

24. Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer
ambiguity estimation. J. Geod. 1995, 70, 65–82. [CrossRef]

http://dx.doi.org/10.1109/TGRS.1981.350379
http://dx.doi.org/10.1029/JB094iB08p10187
http://dx.doi.org/10.1007/s001900050269
http://dx.doi.org/10.2514/1.15905
http://dx.doi.org/10.1016/j.cageo.2013.01.014
http://dx.doi.org/10.1007/s00190-005-0004-x
http://dx.doi.org/10.3390/app7100969
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.985692
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1016/j.camwa.2012.03.040
http://dx.doi.org/10.1016/j.camwa.2014.06.013
http://dx.doi.org/10.1016/j.camwa.2013.08.011
http://dx.doi.org/10.1016/j.cageo.2015.06.016
http://dx.doi.org/10.1007/s11431-010-4148-4
http://dx.doi.org/10.3390/s17040921
http://www.ncbi.nlm.nih.gov/pubmed/28430146
http://dx.doi.org/10.1007/BF00863419


Appl. Sci. 2018, 8, 990 18 of 18

25. Jazaeri, S.; Amiri-Simkooei, A.R.; Sharifi, M.A. Erratum to: Fast integer least-squares estimation for GNSS
high-dimensional ambiguity resolution using lattice theory. J. Geod. 2012, 86, 123–136. [CrossRef]

26. Tsai, P.W.; Pan, J.S.; Chen, S.M.; Liao, B.Y.; Hao, S.P. Parallel cat swarm optimization. In Proceedings of the
2008 International Conference on Machine Learning and Cybernetics, Kunming, China, 12–15 July 2008.

27. Tsai, P.W.; Pan, J.S.; Chen, S.M.; Liao, B.Y. Enhanced parallel cat swarm optimization based on the Taguchi
method. Expert Syst. Appl. 2012, 39, 6309–6319. [CrossRef]

28. Chen, S.M.; Chien, C.Y. Parallelized genetic ant colony systems for solving the traveling salesman problem.
Expert Syst. Appl. 2011, 38, 3873–3883. [CrossRef]

29. Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; Wiley: New York, NY, USA, 2015.
30. Li, X.; Guo, J.; Zhou, L. Performance analysis of BDS/GPS kinematic vehicle positioning in various

observation conditions. Sens. Rev. 2016, 36, 249–256. [CrossRef]
31. Verhagen, S.; Teunissen, P.J.G. Ambiguity resolution performance with GPS and BeiDou for LEO formation

flying. Adv. Space Res. 2014, 54, 830–839. [CrossRef]
32. Barneveld, P.W.L.V.; Montenbruck, O.; Visser, P.N.A.M. Epochwise prediction of GPS single differenced

ionospheric delays of formation flying spacecraft. Adv. Space Res. 2009, 44, 987–1001. [CrossRef]
33. Lin, C.; Feng, Q. The Standard Particle Swarm Optimization Algorithm Convergence Analysis and Parameter

Selection. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007),
Haikou, China, 24–27 August 2007.

34. Bratton, D.; Kennedy, J. Defining a Standard for Particle Swarm Optimization. In Proceedings of the 2007
IEEE Swarm Intelligence Symposium (SIS 2007), Honolulu, HI, USA, 1–5 April 2007.

35. Pluhacek, M.; Senkerik, R.; Davendra, D.; Oplatkova, Z.K.; Zelinka, I. On the behavior and performance of
chaos driven PSO algorithm with inertia weight. Comput. Math. Appl. 2013, 66, 122–134. [CrossRef]

36. Zhang, D.X.; Guan, Z.H.; Liu, X.Z. Adaptive particle swarm optimization algorithm with dynamically
changing inertia weight. Control Decis. 2008, 23, 1253–1257.

37. Higashi, N.; Iba, H. Particle swarm optimization with Gaussian mutation. In Proceedings of the IEEE Swarm
Intelligence Symposium (SIS 2003), Indianapolis, IN, USA, 26–26 April 2003.

38. Teunissen, P.J.G.; Dennis, O. Ambiguity Dilution of Precision: Definition, Properties and Application.
In Proceedings of the 10th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GPS 1997), Kansas City, KS, USA, 16–19 September 1997.

39. Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open source program package
RTKLIB. In Proceedings of the International symposium on GPS/GNSS, Seogwipo-si Jungmun-dong, Korea,
4–6 November 2009.

40. Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An open-source software of multi-GNSS
precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 22–33.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00190-011-0501-z
http://dx.doi.org/10.1016/j.eswa.2011.11.117
http://dx.doi.org/10.1016/j.eswa.2010.09.048
http://dx.doi.org/10.1108/SR-12-2015-0198
http://dx.doi.org/10.1016/j.asr.2013.03.007
http://dx.doi.org/10.1016/j.asr.2009.07.006
http://dx.doi.org/10.1016/j.camwa.2013.01.016
http://dx.doi.org/10.1007/s10291-018-0699-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Mathematical Model of GNSS Positioning 
	IPSO–AR Method 
	Standard PSO Algorithm 
	IPSO Algorithm 
	Illustration of the IPSO–AR Algorithm 


	Experiments and Result Analysis 
	Search Procedure of IPSO–AR 
	Performance Analysis of IPSO–AR 
	Scheme #1 Experiments 
	Scheme #2 Experiments 
	Scheme #3 Experiments 
	Recommended Parameter Settings for IPSO–AR 

	Validation of the IPSO–AR Algorithm with Known Baseline 

	Conclusions 
	References

