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Abstract: Extracting accurate values for relevant unknown parameters of solar cell models is vital
and necessary for performance analysis of a photovoltaic (PV) system. This paper presents an
effective application of a young, yet efficient metaheuristic, named the symbiotic organisms search
(SOS) algorithm, for the parameter extraction of solar cell models. SOS, inspired by the symbiotic
interaction ways employed by organisms to improve their overall competitiveness in the ecosystem,
possesses some noticeable merits such as being free from tuning algorithm-specific parameters,
good equilibrium between exploration and exploitation, and being easy to implement. Three test cases
including the single diode model, double diode model, and PV module model are served to validate
the effectiveness of SOS. On one hand, the performance of SOS is evaluated by five state-of-the-art
algorithms. On the other hand, it is also compared with some well-designed parameter extraction
methods. Experimental results in terms of the final solution quality, convergence rate, robustness,
and statistics fully indicate that SOS is very effective and competitive.
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1. Introduction

Solar energy is considered as a promising tool to fight environmental pollution and fossil energy
consumption. As the main application of solar energy, solar photovoltaic (PV) has recently achieved
leapfrog development. Solarpower Europe reveals that only seven countries installed over 1 GW PV
in 2016. That number was changed to nine in 2017, and in 2018, the number keeps increasing and
should reach 14 [1]. China, as the country with the biggest capacity of PV power, installed 24.3 GW,
which was about 38% of the world’s newly installed capacity PV power, in the first half of 2018 [2].
According to data from the International Energy Agency, by 2040, the fast-developing market of PV in
China and India will cause solar to be the largest source of low-carbon capacity [3]. A PV system is a
multi-component power unit utilized to directly convert solar energy into electricity. As the core device
of a PV system, a solar cell’s accurate modelling and parameter extraction are very important for the
performance analysis of the PV system [4]. For solar cells, their current-voltage (I-V) characteristics are
widely simulated by the most popular single diode model and double diode model [5], which have
five and seven unknown parameters, respectively, that need to be extracted.

Extracting accurate value for these relevant unknown model parameters is vital and necessary,
and has drawn researchers’ attention in recent years [6,7]. The propounded parameter extraction
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methods roughly include analytical methods [8–15] and optimization methods. Analytical methods
employ mathematical formulations to obtain the model parameters based on a few pivotal data
points of I-V characteristic curve. Their merits are simplicity, computational efficiency, and ease of
implementation. However, the solution quality depends heavily on the accuracy of the opted data
points. A small degree of noise on these points may result in significant errors for these parameters.

Instead of relying on several key data points, optimization methods take all measured data
points into account. The parameter extraction problem is firstly converted to an optimization problem.
A well-designed optimization method is then used to solve the problem to optimality with the goal
of fitting all measured points. Compared with the analytical methods, the dominant advantage of
optimization methods is that more accurate values for these relevant parameters can be achieved as a
result of the utilization of all measured I-V points. The optimization methods consist of deterministic
methods and metaheuristic methods. Deterministic methods, in general, are local search algorithms
because they rely mostly on the gradient information. Therefore, they are prone to being caught in a
local extremum, especially in solving intricate multimodal problems such as the parameter extraction
problem concerned here. In addition, they require the target functions to be convex and differentiable,
among others. To meet the implementation demand, simplification and linearization are usually
needed, which may lead to poor approximate solutions and thus cause them to be unreliable [16].

Metaheuristic methods, as a feasible and effective alternative to the deterministic methods,
have gained increasing interest recently. They relax the problem formulation and pay no attention to
the gradient information, and thus can overcome the shortcomings of deterministic methods. Hence,
they can serve as reliable tools for multimodal problems. In the last few years, researchers have
attempted to apply various metaheuristic methods to deal with the problem concerned in this paper.
Bastidas-Rodriguez et al. [17] utilized genetic algorithm (GA) to extract parameters of the single
diode model based on five operating points. El-Naggar et al. [18] applied simulated annealing (SA)
to identify parameters of PV models. Bana and Saini [19] developed a particle swarm optimization
(PSO) with binary constraints to extract single diode model parameters. Nunes et al. [20] proposed a
guaranteed convergence PSO for both benchmark cases and real experimental data. Ishaque et al. [21]
put forward a penalty based differential evolution (DE) to achieve accurate parameters of PV modules
at different environmental conditions. Chellaswamy and Ramesh [22] designed an adaptive DE to
yield accurate parameters of solar cell models. Jiang et al. [23] implemented an improved adaptive DE
(IADE) to estimate the parameters of solar cells and modules. Askarzadeh and Rezazadeh [24] applied
artificial bee swarm optimization (ABSO) to obtain promising parameters for both single diode and
double diode models. Chen et al. [25] proposed a generalized oppositional teaching-learning-based
optimization (GOTLBO) to acquire accurate parameters of solar cells, and then hybridized artificial bee
colony (ABC) with TLBO to identify parameters of different PV models [26]. Yu et al. developed several
well-designed methods including self-adaptive TLBO [27], improved JAYA (IJAYA) [28], and multiple
learning backtracking search algorithm [29] to estimate parameters of PV models. Oliva et al. used
chaotic maps to enhance the performance of whale optimization algorithm (WOA) [30] and ABC [31],
respectively, for parameter extraction of solar cells. Kichou et al. [32] employed five different algorithms
to achieve parameters for two PV models. Ma et al. [33] statistically compared the performance of
six algorithms on parameter extraction of PV models. In addition to the abovementioned methods,
many more different types of metaheuristics [34–46] are also applied to the problem considered here.

Metaheuristic methods exhibit diverse attributes regarding number of tuning parameters and
searching strategies. However, the famous no-free-lunch theorem [47] has highly remarked that no
single method that can be adopted as the gold standard for every optimization problem. Hence, it is
necessary and important to attempt new ones with the constant hope of obtaining promising solutions
for the parameter extraction problem of solar cell models, which motivates the authors to apply a young,
yet efficient metaheuristic named the symbiotic organisms search (SOS) algorithm in this paper to assess
its performance. SOS, proposed by Cheng and Prayogo [48], is inspired by the symbiotic interaction
ways employed by organisms to improve their overall competitiveness in the ecosystem. SOS has
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some noticeable merits such as being free from tuning algorithm-specific parameters, good equilibrium
between exploration and exploitation, and being easy to implement [49,50]. These merits encourage
researchers to apply SOS to a host of engineering problems.

SOS has proven itself a worthy competitor and alternative in many optimization problems.
Nonetheless, the promising method has not been employed to solve the problem considered here.
The aim of this paper is first to present experimental results validating the performance of SOS in
dealing with the parameter extraction problem of solar cell models. Three test cases consisting of the
single diode model, double diode model, and PV module model are served to evaluate the effectiveness
of SOS along with necessary comparisons. The experimental results comprehensively indicate that
SOS behaves competitively compared with other methods.

The rest of this paper is organized as follows. The problem formulation is briefly presented in
Section 2. In Section 3, the SOS is provided. Then, the results are analyzed in Section 4 and this paper
is concluded in Section 5.

2. Problem Formulation

2.1. Single Diode Model

Single diode model is a very popular model used to simulate the I-V characteristic of a solar
cell. The output current IL (A), as depicted in Figure 1, can be formulated as follows according to
Kirchhoff’s current law.

IL = Iph − Id − Ish (1)

where Iph, Id, and Ish are the photo generated current (A), diode current (A), and shunt resistor current
(A), respectively. Id and Ish are calculated by Equations (2) and (3), respectively [24,35,51–53].

Id = Isd · [exp(
VL + Rs · IL

nVt
)− 1] (2)

Ish =
VL + Rs · IL

Rsh
(3)

Vt =
kT
q

(4)

where VL and Vt represent the output voltage (V) and thermal voltage (V), respectively. Isd is the
reverse saturation current (A). Rs and Rsh denote the series resistance (Ω) and shunt resistance
(Ω), respectively. n is the diode ideal factor. k = 1.3806503× 10−23J/K is the Boltzmann constant.
q = 1.60217646× 10−19C is the electron charge. T denotes the cell temperature in Kelvin.

Substituting Equations (2)–(4) into Equation (1), the output current IL can be written as follows:

IL = Iph − Isd · [exp(
VL + Rs · IL

nVt
)− 1]− VL + Rs · IL

Rsh
(5)

It is observed from Equation (5) that if we know the values of Iph, Isd, Rs, Rsh, and n, then the I-V
characteristic of this model can be constructed. Therefore, accurate extraction of these five unknown
parameters is the core of this study.
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Figure 1. Single diode model.

2.2. Double Diode Model

The above model performs well for almost all types of solar cells [5]. However, its performance is
unsatisfactory at low irradiance for thin films based solar cells. The problem can be handled well by
the double diode model [24,35]. The output current in Figure 2 is formulated as follows [52,54,55]:

IL = Iph − Id1 − Id2 − Ish

= Iph − Isd1 · [exp(VL+Rs·IL
n1Vt

)− 1]
−Isd2 · [exp(VL+Rs·IL

n2Vt
)− 1]− VL+Rs·IL

Rsh

(6)

where Isd1 and Isd2 represent the diffusion current (A) and saturation current (A), respectively. n1 and
n2 are the diode ideal factors. Compared with the single diode mode, this model adds two more
unknown parameters (Isd2 and n2) and thereby the total number of unknown parameters that need to
be extracted is seven (Iph, Isd1, Isd2, Rs, Rsh, n1 and n2).
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2.3. PV Module

In general, a PV module is used to raise the output voltage. The corresponding output current is
calculated as follows [19,28,56,57]:

IL = Np

{
Iph − Isd · [exp(

VL/Ns + Rs ILNp

nVt
)− 1]−

VL/Ns + Rs IL/Np

Rsh

}
(7)
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where Ns and Np denote the number of solar cells in series and in parallel, respectively.

2.4. Objective Function

Accurate extracted values for the involved unknown parameters of solar cell models should
make the constructed model coincide with the real model. Namely, by using the constructed model,
the calculated data should match the measured data well. Therefore, the difference between the
measured current and the calculated current can be used to reflect the agreement degree. In general,
the root mean square error (RMSE) is highly preferred [18,20–25].

minF(x) = RMSE(x) =

√
1
N ∑N

i=1 fi(VL, IL, x)2 (8)

where N is the number of measured data and x is the solution vector.
For the abovementioned three models, the objective functions f (VL, IL, x) and the solution vectors

x are as follows:{
fsingle diode(VL, IL, x) = Iph − Isd · [exp(VL+Rs·IL

nVt
)− 1]− VL+Rs·IL

Rsh
− IL

xsingle diode = {Iph, Isd, Rs, Rsh, n}
(9)


fdouble diode(VL, IL, x) = Iph − Isd1 · [exp(VL+Rs·IL

n1Vt
)− 1]

− Isd2 · [exp(VL+Rs·IL
n2Vt

)− 1]
− VL+Rs·IL

Rsh
− IL

xdouble diode = {Iph, Isd1, Isd2, Rs, Rsh, n1, n2}

(10)

 fPV module(VL, IL, x) = Np

{
Iph − Isd · [exp(VL/Ns+Rs IL/Np

nVt
)− 1]

−VL/Ns+Rs IL/Np
Rsh

}
− IL

xPV module = {Iph, Isd, Rs, Rsh, n}

(11)

3. Symbiotic Organisms Search (SOS) Algorithm

SOS [48] is a young, yet effective metaheuristic inspired by the symbiotic interaction ways
employed by organisms to improve their overall competitiveness in the ecosystem. Each organism
(i.e., population individual) is represented as a D-dimensional vector Xi = [xi,1, xi,2, . . . , xi,D], where
i = 1, 2, . . . , ps, ps is the number of organisms in the ecosystem (i.e., population size). SOS contains
mutualism, commensalism, and parasitism phases.

3.1. Mutualism Phase

In this phase, two organisms establish a good interaction relationship in which they can obtain
what they need, and thus their mutual survival advantage can be increased simultaneously. For each
organism Xi of the ecosystem, a random distinct organism Xj is selected to interact with Xi by the
following formulations:

Xi,new = Xi + rand(0, 1) · (Xbest − BF1 ·MV) (12)

Xj,new = Xj + rand(0, 1) · (Xbest − BF2 ·MV) (13)

where Xi,new and Xj,new are new candidate solutions for Xi and Xj, respectively. rand(a, b) is a
random number generated uniformly in (a,b). BF1 and BF2 are benefit factors with the random
value 1 or 2. Xbest represents the best organism of the ecosystem. MV = (Xi + Xj)/2 is the
relationship characteristic.
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3.2. Commensalism Phase

In this phase, two organisms build a unidirectional relationship where one organism Xi benefits
from the other organism Xj as shown in Equation (14), whereas Xj gets nothing from Xi.

Xi,new = Xi + rand(−1, 1) · (Xbest − Xj) (14)

3.3. Parasitism Phase

In parasitism, one organism Xi improves its survivability through harming the other organism
Xj. In SOS, this relationship is modeled as follows. An organism Xi is copied and used to create an
artificial parasite AP. Then, some random dimensions of AP are selected and modified by a random
number generated within the corresponding bounds. The other organism Xj, selected randomly from
the ecosystem, serves as a host to the parasite AP. If AP is better than Xj, then Xj will be replaced by
AP; otherwise, AP will be discarded.

The pseudo-code of SOS is presented in Algorithm 1. It can be seen that apart from the
common parameter, that is, the population size used in all metaheuristic algorithms, SOS has no
algorithm-specific parameters that need to be well-tuned.

Algorithm 1: The pseudo-code of SOS

1: Initialize an ecosystem X with ps organisms randomly
2: Calculate the fitness value of each organism
3: Set the iteration number t = 1
4: While the terminating criterion is not met do
5: Select the fittest organism Xbest of the ecosystem
6: For i = 1 to ps do
7: /* mutualism phase */
8: Select a random organism Xj (j 6= i) from the ecosystem
9: Generate the i-th new organism Xi,new using Equation (12)
10: Generate the j-th new organism Xj,new using Equation (13)
11: Calculate the fitness value of Xi,new and Xj,new

12: Replace the old organism if it is defeated by the new one
13: /* commensalism phase */
14: Select a random organism Xj (j 6= i) from the ecosystem
15: Generate the i-th new organism Xi,new using Equation (14)
16: Calculate the fitness value of Xi,new

17: Replace the old organism if it is defeated by the new one
18: /* parasitism phase */
19: Select a random organism Xj (j 6= i) from the ecosystem
20: Generate an artificial parasite AP = Xi
21: Select a random number of dimensions of AP
22: Replace the selected dimensions using a random number
23: Calculate the fitness value of the modified AP
24: Replace Xj if the modified AP is better than Xj
25: End for
26: t = t + 1
27: End while

4. Results and Discussions

4.1. Test PV Models

In this work, SOS is applied to three cases including single diode, double diode, and PV module
models. The datasets are derived from the literature [58]. The measurements are conducted on an
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RTC France silicon solar cell and a Photowatt-PWP201 solar module. The former operates under
1000 W/m2 at 33 ◦C. The latter contains 36 polycrystalline silicon cells connected in series operating
under 1000 W/m2 at 45 ◦C. The boundaries of extracted parameters are presented in Table 1.

Table 1. Parameter boundaries of solar cell models.

Parameter
Single/Double Diode Model PV Module Model

Lower Bound Upper Bound Lower Bound Upper Bound

Iph (A) 0 1 0 2
Isd (µA) 0 1 0 50
Rs (Ω) 0 0.5 0 2
Rsh (Ω) 0 100 0 2000
n, n1, n2 1 2 1 50

4.2. Experimental Settings

In this work, the maximum number of fitness evaluations (Max_FEs), which is set to 50,000 [29],
serves as the terminating criterion. In addition, to verify the effectiveness of SOS, five state-of-the-art
algorithms including across neighborhood search (ANS) [59], biogeography-based learning particle
swarm optimization (BLPSO) [60], competitive swarm optimizer (CSO) [61], chaotic teaching-learning
algorithm (CTLA) [62], and levy flight trajectory-based whale optimization algorithm (LWOA) [63]
are used for performance comparison. These five methods keep the original algorithm parameters,
except the population size ps, setting the same unified value 50 for fair comparison. For each case,
each method runs 50 times independently.

4.3. Experimental Results and Comparison

4.3.1. Results Comparison on the Single Diode Model

The experimental results of the first case are tabulated in Table 2. The symbols Min, Max, Mean,
and Std. dev. represent the minimum, maximum, mean, and standard deviation values, respectively,
over 50 independent runs. The experimental results of some well-designed methods, including SA [18]
IADE [23], ABSO [24], GOTLBO [25], IJAYA [28], differential evolution (DE) [33], biogeography-based
optimization algorithm with mutation strategies (BBO-M) [34], grouping-based global harmony
search (GGHS) [35], chaotic asexual reproduction optimization (CARO) [40], bird mating optimizer
(BMO) [44], and pattern search (PS) [45], are also provided in Table 2 for comparison. It can be
seen that, compared with ANS, BLPSO, CSO, CTLA, and LWOA, SOS can acquire the lowest RMSE
value (9.8609 × 10−4). Considering the mean, maximum, and standard deviation values, SOS also
consistently performs better than them. In addition, SOS is also highly competitive against other
recently proposed methods. It is better than IADE, ABSO, BBO-M, GGHS, GOTLBO, CARO, PS,
and SA, except not better than DE, IJAYA, and BMO. Although DE, IJAYA, and BMO beat SOS,
the disparities are very small.

The best extracted values for the five unknown parameters of single diode model are given in
Table 3. We observe that these listed methods almost extract close values for the unknown parameters.
Utilizing the extracted parameters in Table 3, we reconstruct the characteristic curves as illustrated
in Figure 3. We see that both the output current and power calculated by SOS match the measured
values well throughout the whole range of voltage. In addition, we also tabulate the output current
data calculated by ANS, BLPSO, CSO, CTLA, LWOA, and SOS in Table 4. An error index the sum of
individual absolute error (SIAE) given in Equation (15) is used to evaluate the fitting error. It is obvious
that the SIAE value of SOS is the smallest, followed by that of ANS, LWOA, BLPSO, CTLA, and CSO,
meaning that SOS achieves more accurate values for the relevant parameters of single diode model.

SIAE = ∑N
i

∣∣∣ILi,measured − ILi,calculated

∣∣∣ (15)
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Table 2. RMSE results for the single diode model.

Method Min Max Mean Std. Dev.

IADE 9.8900 × 10−4 NA NA NA
ABSO 9.9124 × 10−4 NA NA NA

BBO-M 9.8634 × 10−4 NA NA NA
GGHS 9.9078 × 10−4 NA NA NA

GOTLBO 9.87442 × 10−4 1.98244 × 10−3 1.33488 × 10−3 2.99407 × 10−4

CARO 9.8665 × 10−4 NA NA NA
DE 9.8602 × 10−4 NA NA NA

IJAYA 9.8603 × 10−4 1.0622 × 10−3 9.9204 × 10−4 1.4033 × 10−5

BMO 9.8608 × 10−4 NA NA NA
PS 2.863 × 10−1 NA NA NA
SA 1.70 × 10−3 NA NA NA

ANS 9.9689 × 10−4 1.4385 × 10−3 1.1051 × 10−3 1.0141 × 10−4

BLPSO 1.4836 × 10−3 2.2415 × 10−3 1.9092 × 10−3 1.7404 × 10−4

CSO 1.6358 × 10−3 2.4104 × 10−3 2.0058 × 10−3 1.7398 × 10−4

CTLA 1.0991 × 10−3 1.8027 × 10−3 1.3772 × 10−3 1.7132 × 10−4

LWOA 1.0873 × 10−3 9.1622 × 10−3 3.1119 × 10−3 1.8838 × 10−3

SOS 9.8609 × 10−4 1.1982 × 10−3 1.0245 × 10−3 5.2184 × 10−5

NA: Not available in the literature.

Table 3. xtracted parameters for the single diode model.

Method Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n RMSE

IADE 0.7607 0.33613 0.03621 54.7643 1.4852 9.8900 × 10−4

ABSO 0.76080 0.30623 0.03659 52.2903 1.47583 9.9124 × 10−4

BBO-M 0.76078 0.31874 0.03642 53.36277 1.47984 9.8634 × 10−4

GGHS 0.76092 0.32620 0.03631 53.0647 1.48217 9.9079 × 10−4

GOTLBO 0.760780 0.331552 0.036265 54.115426 1.483820 9.8744 × 10−4

CARO 0.76079 0.31724 0.03644 53.0893 1.48168 9.8665 × 10−4

DE 0.7608 0.323 0.0364 53.719 1.4812 9.8602 × 10−4

IJAYA 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603 × 10−4

PS 0.7617 0.9980 0.0313 64.1026 1.6000 2.863 × 10−1

SA 0.7620 0.4798 0.0345 43.1034 1.5172 1.70 × 10−3

ANS 0.7607 0.3407 0.0362 54.7917 1.4866 9.9689 × 10−4

BLPSO 0.7599 0.4977 0.0347 96.5115 1.5257 1.4836 × 10−3

CSO 1.0205 0.3658 1.2122 1689.0050 48.8206 1.6358 × 10−3

CTLA 0.7650 0.4280 0.0357 61.1131 1.5092 1.0991 × 10−3

LWOA 1.0284 0.3145 1.2218 1272.0197 48.2413 1.0873 × 10−3

SOS 0.7608 0.3579 0.0359 53.7835 1.4916 9.8609 × 10−4
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SA 0.7620 0.4798 0.0345 43.1034 1.5172 1.70 × 10−3 

ANS 0.7607 0.3407 0.0362 54.7917 1.4866  9.9689 × 10−4 

BLPSO 0.7599 0.4977 0.0347 96.5115 1.5257 1.4836 × 10−3 
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LWOA 1.0284 0.3145 1.2218 1272.0197 48.2413 1.0873 × 10−3 

SOS 0.7608 0.3579 0.0359 53.7835 1.4916 9.8609 × 10−4 
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Table 4. Fitting results for the single diode model.

Item VL (V) IL Measured (A)
IL Calculated (A)

ANS BLPSO CSO CTLA LWOA SOS

1 −0.2057 0.7640 0.7639 0.7617 0.7614 0.7679 0.7631 0.7641
2 −0.1291 0.7620 0.7625 0.7609 0.7606 0.7667 0.7618 0.7627
3 −0.0588 0.7605 0.7613 0.7602 0.7598 0.7655 0.7607 0.7614
4 0.0057 0.7605 0.7601 0.7595 0.7591 0.7645 0.7597 0.7602
5 0.0646 0.7600 0.7590 0.7589 0.7585 0.7635 0.7587 0.7591
6 0.1185 0.7590 0.7580 0.7584 0.7579 0.7626 0.7578 0.7581
7 0.1678 0.7570 0.7571 0.7578 0.7573 0.7618 0.7570 0.7572
8 0.2132 0.7570 0.7561 0.7572 0.7567 0.7609 0.7561 0.7562
9 0.2545 0.7555 0.7551 0.7564 0.7559 0.7599 0.7552 0.7551
10 0.2924 0.7540 0.7537 0.7552 0.7546 0.7585 0.7538 0.7537
11 0.3269 0.7505 0.7514 0.7530 0.7524 0.7561 0.7517 0.7514
12 0.3585 0.7465 0.7473 0.7489 0.7484 0.7519 0.7477 0.7473
13 0.3873 0.7385 0.7400 0.7414 0.7412 0.7443 0.7406 0.7399
14 0.4137 0.7280 0.7273 0.7282 0.7288 0.7310 0.7280 0.7271
15 0.4373 0.7065 0.7068 0.7072 0.7091 0.7099 0.7076 0.7065
16 0.4590 0.6755 0.6751 0.6750 0.6789 0.6774 0.6759 0.6748
17 0.4784 0.6320 0.6306 0.6303 0.6369 0.6322 0.6315 0.6303
18 0.4960 0.5730 0.5719 0.5715 0.5812 0.5727 0.5726 0.5716
19 0.5119 0.4990 0.4994 0.4991 0.5119 0.4997 0.4999 0.4991
20 0.5265 0.4130 0.4134 0.4134 0.4288 0.4133 0.4137 0.4133
21 0.5398 0.3165 0.3173 0.3175 0.3342 0.3169 0.3173 0.3172
22 0.5521 0.2120 0.2122 0.2126 0.2292 0.2116 0.2120 0.2122
23 0.5633 0.1035 0.1029 0.1032 0.1181 0.1021 0.1026 0.1029
24 0.5736 −0.0100 −0.0091 −0.0091 −0.0025 −0.0101 −0.0094 −0.0091
25 0.5833 −0.1230 −0.1243 −0.1249 −0.1180 −0.1255 −0.1245 −0.1244
26 0.5900 −0.2100 −0.2092 −0.2104 −0.2078 −0.2105 −0.2092 −0.2094

SIAE 0.0182 0.0275 0.1347 0.0739 0.0191 0.0181

Besides, the convergence curves are presented in Figure 4. It is obvious that SOS is slightly slower
than LWOA in the opening phase, however, the latter stagnates soon and then suffers from premature
convergence, indicating that it has been caught in a local optimum. For the other four methods,
SOS consistently converges faster than them throughout the whole evolutionary process.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 21 
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4.3.2. Results Comparison on the Double Diode Model

The experimental results of the second case are summarized in Table 5. Similar to the comparison
results on the single diode model, SOS performs better than ANS, BLPSO, CSO, CTLA, and LWOA in
various RMSE indicators on the double diode model. SOS is surpassed by GOTLBO, CARO, and IJAYA,
but it outperforms GGHS, PS, and SA. It is worth noting that the standard deviation value of SOS is
the smallest among all compared methods, which indicates that SOS is highly robust. The extracted
parameters are tabulated in Table 6. The reconstructed characteristic curves provided in Figure 5 clearly
demonstrate that the calculated current and power achieved by SOS match up well with the measured
values. The curve fitting results presented in Table 7 manifest once again that SOS can yield the
smallest SIAE value (0.0182), followed by ANS, LWOA, BLPSO, CTLA, and CSO, which demonstrates
the high accuracy of the parameters extracted by SOS for the double diode model. The convergence
graph illustrated in Figure 6 reveals that SOS exhibits noticeably faster convergence rate than BLPSO,
CSO, CTLA, and LWOA, but not ANS, which is slightly faster than SOS during the intermediate stage.
However, ANS is surpassed by SOS in other stages.

Table 5. RMSE results for the double diode model.

Method Min Max Mean Std. dev.

GGHS 9.8635 × 10−4 NA NA NA
GOTLBO 9.83177 × 10−4 1.78774 × 10−3 1.24360 × 10−3 2.09115 × 10−4

CARO 9.8260 × 10−4 NA NA NA
IJAYA 9.8293 × 10−4 1.4055 × 10−3 1.0269 × 10−3 9.8625 × 10−5

PS 1.5180 × 10−2 NA NA NA
SA 1.9000 × 10−2 NA NA NA

ANS 1.0042 × 10−3 1.4456 × 10−3 1.1337 × 10−3 9.9500 × 10−5

BLPSO 1.5704 × 10−3 2.5312 × 10−3 2.0554 × 10−3 2.0186 × 10−4

CSO 1.7013 × 10−3 2.7735 × 10−3 2.2421 × 10−3 2.2059 × 10−4

CTLA 1.3216 × 10−3 3.1002 × 10−3 2.0145 × 10−3 4.0895 × 10−4

LWOA 1.3120 × 10−3 1.3387 × 10−2 3.5838 × 10−3 2.6270 × 10−3

SOS 9.8518 × 10−4 1.3498 × 10−3 1.0627 × 10−3 9.6141 × 10−5

NA: Not available in the literature.

Table 6. Extracted parameters for the double diode model.

Method Iph (A) Isd1 (µA) Rs (Ω) Rsh (Ω) n1 Isd2 (µA) n2 RMSE

GGHS 0.76079 0.97310 0.03690 56.8368 1.92126 0.16791 1.42814 9.8635 × 10−4

GOTLBO 0.760752 0.800195 0.036783 56.075304 1.999973 0.220462 1.448974 9.83177 × 10−4

CARO 0.76075 0.29315 0.03641 54.3967 1.47338 0.09098 1.77321 9.8260 × 10−4

IJAYA 0.7601 0.0050445 0.0376 77.8519 1.2186 0.75094 1.6247 9.8293 × 10−4

PS 0.7602 0.9889 0.0320 81.3008 1.6000 0.0001 1.1920 1.5180 × 10−2

SA 0.7623 0.4767 0.0345 43.1034 1.5172 0.0100 2.0000 1.9000 × 10−2

ANS 0.7609 0.1785 0.0369 51.5905 1.8181 0.2466 1.4581 1.0042 × 10−3

BLPSO 0.7607 0.5481 0.0338 78.6922 1.5442 0.0542 1.5765 1.5704 × 10−3

CSO 0.7628 0.7954 0.0409 15.7733 1.6936 0.6780 1.8138 1.7013 × 10−3

CTLA 0.7570 0.8542 0.0313 89.6464 1.7879 0.3812 1.5230 1.3216 × 10−3

LWOA 0.7597 0.2342 0.0355 86.8763 1.4679 0.3709 1.6989 1.3120 × 10−3

SOS 0.7606 0.5408 0.0365 55.5537 1.9346 0.2418 1.4579 9.8518 × 10−4



Appl. Sci. 2018, 8, 2155 11 of 18

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 21 

 

Figure 4. Convergence curves for the single diode model. 

Table 5. RMSE results for the double diode model. 

Method Min Max Mean Std. dev. 

GGHS 9.8635 × 10−4 NA NA NA 

GOTLBO 9.83177 × 10−4 1.78774 × 10−3 1.24360 × 10−3 2.09115 × 10−4 

CARO 9.8260 × 10−4 NA NA NA 

IJAYA 9.8293 × 10−4 1.4055 × 10−3 1.0269 × 10−3 9.8625 × 10−5 

PS 1.5180 × 10−2 NA NA NA 

SA 1.9000 × 10−2 NA NA NA 

ANS 1.0042 × 10−3 1.4456 × 10−3 1.1337 × 10−3 9.9500 × 10−5 

BLPSO 1.5704 × 10−3 2.5312 × 10−3 2.0554 × 10−3 2.0186 × 10−4 

CSO 1.7013 × 10−3 2.7735 × 10−3 2.2421 × 10−3 2.2059 × 10−4 

CTLA 1.3216 × 10−3 3.1002 × 10−3 2.0145 × 10−3 4.0895 × 10−4 

LWOA 1.3120 × 10−3 1.3387 × 10−2 3.5838 × 10−3 2.6270 × 10−3 

SOS 9.8518 × 10−4 1.3498 × 10−3 1.0627 × 10−3 9.6141 × 10−5 

NA: Not available in the literature. 

 

Figure 5. Extraction results by SOS for the double diode model. (a) Current; (b) power. 

 

Figure 5. Extraction results by SOS for the double diode model. (a) Current; (b) power.

Table 7. Fitting results for the double diode model.

Item VL (V) IL Measured (A)
IL Calculated (A)

ANS BLPSO CSO CTLA LWOA SOS

1 −0.2057 0.7640 0.7644 0.7630 0.7738 0.7591 0.7618 0.7638
2 −0.1291 0.7620 0.7629 0.7620 0.7690 0.7582 0.7609 0.7625
3 −0.0588 0.7605 0.7615 0.7611 0.7645 0.7574 0.7601 0.7612
4 0.0057 0.7605 0.7603 0.7603 0.7605 0.7567 0.7593 0.7600
5 0.0646 0.7600 0.7591 0.7595 0.7567 0.7561 0.7586 0.7590
6 0.1185 0.7590 0.7581 0.7588 0.7533 0.7554 0.7580 0.7580
7 0.1678 0.7570 0.7571 0.7581 0.7501 0.7548 0.7574 0.7571
8 0.2132 0.7570 0.7561 0.7574 0.7470 0.7541 0.7567 0.7561
9 0.2545 0.7555 0.7550 0.7565 0.7440 0.7532 0.7559 0.7551
10 0.2924 0.7540 0.7536 0.7552 0.7407 0.7518 0.7547 0.7536
11 0.3269 0.7505 0.7513 0.7528 0.7366 0.7494 0.7525 0.7513
12 0.3585 0.7465 0.7472 0.7485 0.7312 0.7449 0.7484 0.7472
13 0.3873 0.7385 0.7400 0.7407 0.7233 0.7369 0.7410 0.7399
14 0.4137 0.7280 0.7274 0.7273 0.7116 0.7234 0.7280 0.7271
15 0.4373 0.7065 0.7071 0.7060 0.6951 0.7023 0.7072 0.7066
16 0.4590 0.6755 0.6756 0.6737 0.6718 0.6704 0.6753 0.6750
17 0.4784 0.6320 0.6312 0.6290 0.6412 0.6265 0.6307 0.6307
18 0.4960 0.5730 0.5724 0.5704 0.6024 0.5689 0.5719 0.5720
19 0.5119 0.4990 0.4997 0.4984 0.5557 0.4979 0.4994 0.4995
20 0.5265 0.4130 0.4136 0.4133 0.5009 0.4136 0.4137 0.4136
21 0.5398 0.3165 0.3172 0.3178 0.4394 0.3185 0.3176 0.3174
22 0.5521 0.2120 0.2120 0.2133 0.3717 0.2137 0.2126 0.2123
23 0.5633 0.1035 0.1026 0.1041 0.3002 0.1034 0.1031 0.1029
24 0.5736 −0.0100 −0.0093 −0.0082 0.2259 −0.0105 −0.0090 −0.0091
25 0.5833 −0.1230 −0.1243 −0.1241 0.1483 −0.1289 −0.1246 −0.1243
26 0.5900 −0.2100 −0.2089 −0.2098 0.0904 −0.2168 −0.2098 −0.2091

SIAE 0.0189 0.0283 1.6176 0.0789 0.0247 0.0182
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4.3.3. Results Comparison on the PV Module Model

The RMSE values of the third case listed in Table 8 indicate that SOS, together with IJAYA,
can provide the smallest RMSE value (2.4251 × 10−3) among all methods. Based on the optimal
extracted parameters in Table 9, the corresponding characteristic curves are rebuilt and illustrated in
Figure 7. It is clear that the output current and power calculated by SOS are highly in coincidence
with the measured values. The SIAE results presented in Table 10 repeatedly manifest that SOS can
achieve the most accurate values for the unknown parameters, followed by ANS, BLPSO, LWOA,
CTLA, and CSO. The curves presented in Figure 8 state clearly that SOS is consistently faster than its
competitors from beginning to end.

Table 8. RMSE results for the photovoltaic (PV) module model.

Method Min Max Mean Std. dev.

CARO 2.427 × 10−3 NA NA NA
IJAYA 2.4251 × 10−3 2.4393 × 10−3 2.4289 × 10−3 3.7755 × 10−6

PS 1.18 × 10−2 NA NA NA
SA 2.70 × 10−3 NA NA NA

ANS 2.4310 × 10−3 2.5658 × 10−3 2.4702 × 10−3 2.9121 × 10−5

BLPSO 2.4296 × 10−3 2.5616 × 10−3 2.4884 × 10−3 3.3055 × 10−5

CSO 2.4537 × 10−3 3.0650 × 10−3 2.5804 × 10−3 7.7274 × 10−5

CTLA 2.4782 × 10−3 3.5579 × 10−3 2.7760 × 10−3 2.4714 × 10−4

LWOA 2.6352 × 10−3 6.7023 × 10−2 1.0936 × 10−2 1.3115 × 10−2

SOS 2.4251 × 10−3 2.5103 × 10−3 2.4361 × 10−3 1.7503 × 10−5

NA: Not available in the literature.
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Table 9. Extracted parameters for the PV module model.

Method Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n RMSE

CARO 1.03185 3.28401 1.20556 841.3213 48.40363 2.427 × 10−3

IJAYA 1.0305 3.4703 1.2016 977.3752 48.6298 2.4251 × 10−3

PS 1.0313 3.1756 1.2053 714.2857 48.2889 1.18 × 10−2

SA 1.0331 3.6642 1.1989 833.3333 48.8211 2.7000 × 10−3

ANS 1.0301 3.6650 1.1967 1070.4564 48.8377 2.4310 × 10−3

BLPSO 1.0302 3.6462 1.1964 1029.5378 48.8198 2.4296 × 10−3

CSO 1.0205 3.6578 1.2122 1689.0050 48.8206 2.4537 × 10−3

CTLA 1.0248 2.6365 1.2689 1722.6637 47.5838 2.4782 × 10−3

LWOA 1.0284 3.1435 1.2218 1272.0197 48.2413 2.6352 × 10−3

SOS 1.0303 3.5616 1.1991 1017.7000 48.7291 2.4251 × 10−3
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Table 10. Fitting results for the PV module model.

Item VL (V) IL Measured (A)
IL Calculated (A)

ANS BLPSO CSO CTLA LWOA SOS

1 0.1248 1.0315 1.0288 1.0289 1.0197 1.0240 1.0273 1.0289
2 1.8093 1.0300 1.0272 1.0272 1.0187 1.0230 1.0259 1.0272
3 3.3511 1.0260 1.0257 1.0257 1.0177 1.0220 1.0246 1.0256
4 4.7622 1.0220 1.0241 1.0241 1.0166 1.0210 1.0233 1.0241
5 6.0538 1.0180 1.0224 1.0223 1.0154 1.0198 1.0218 1.0223
6 7.2364 1.0155 1.0201 1.0200 1.0135 1.0180 1.0198 1.0199
7 8.3189 1.0140 1.0166 1.0164 1.0103 1.0151 1.0165 1.0164
8 9.3097 1.0100 1.0108 1.0106 1.0047 1.0098 1.0110 1.0105
9 10.2163 1.0035 1.0009 1.0007 0.9951 1.0006 1.0014 1.0007
10 11.0449 0.9880 0.9848 0.9846 0.9792 0.9850 0.9857 0.9847
11 11.8018 0.9630 0.9598 0.9596 0.9542 0.9603 0.9609 0.9597
12 12.4929 0.9255 0.9230 0.9229 0.9175 0.9235 0.9242 0.9230
13 13.1231 0.8725 0.8725 0.8724 0.8668 0.8726 0.8736 0.8725
14 13.6983 0.8075 0.8072 0.8071 0.8014 0.8064 0.8080 0.8072
15 14.2221 0.7265 0.7278 0.7277 0.7220 0.7261 0.7283 0.7279
16 14.6995 0.6345 0.6363 0.6363 0.6305 0.6337 0.6364 0.6364
17 15.1346 0.5345 0.5356 0.5356 0.5299 0.5323 0.5353 0.5357
18 15.5311 0.4275 0.4288 0.4288 0.4234 0.4252 0.4281 0.4288
19 15.8929 0.3185 0.3186 0.3187 0.3137 0.3154 0.3179 0.3187
20 16.2229 0.2085 0.2079 0.2079 0.2034 0.2053 0.2071 0.2079
21 16.5241 0.1010 0.0984 0.0984 0.0945 0.0970 0.0978 0.0984
22 16.7987 −0.0080 −0.0082 −0.0081 −0.0114 −0.0081 −0.0085 −0.0081
23 17.0499 −0.1110 −0.1110 −0.1110 −0.1135 −0.1093 −0.1109 −0.1109
24 17.2793 −0.2090 −0.2092 −0.2092 −0.2110 −0.2056 −0.2087 −0.2091
25 17.4885 −0.3030 −0.3021 −0.3021 −0.3032 −0.2966 −0.3011 −0.3020

SIAE 0.0423 0.0424 0.1380 0.0646 0.0452 0.0421
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9 10.2163 1.0035 1.0009 1.0007 0.9951 1.0006 1.0014 1.0007 

10 11.0449 0.9880 0.9848 0.9846 0.9792 0.9850 0.9857 0.9847 

11 11.8018 0.9630 0.9598 0.9596 0.9542 0.9603 0.9609 0.9597 

12 12.4929 0.9255 0.9230 0.9229 0.9175 0.9235 0.9242 0.9230 

13 13.1231 0.8725 0.8725 0.8724 0.8668 0.8726 0.8736 0.8725 

14 13.6983 0.8075 0.8072 0.8071 0.8014 0.8064 0.8080 0.8072 

15 14.2221 0.7265 0.7278 0.7277 0.7220 0.7261 0.7283 0.7279 

16 14.6995 0.6345 0.6363 0.6363 0.6305 0.6337 0.6364 0.6364 

17 15.1346 0.5345 0.5356 0.5356 0.5299 0.5323 0.5353 0.5357 

18 15.5311 0.4275 0.4288 0.4288 0.4234 0.4252 0.4281 0.4288 

19 15.8929 0.3185 0.3186 0.3187 0.3137 0.3154 0.3179 0.3187 

20 16.2229 0.2085 0.2079 0.2079 0.2034 0.2053 0.2071 0.2079 

21 16.5241 0.1010 0.0984 0.0984 0.0945 0.0970 0.0978 0.0984 

22 16.7987 −0.0080 −0.0082 −0.0081 −0.0114 −0.0081 −0.0085 −0.0081 

23 17.0499 −0.1110 −0.1110 −0.1110 −0.1135 −0.1093 −0.1109 −0.1109 

24 17.2793 −0.2090 −0.2092 −0.2092 −0.2110 −0.2056 −0.2087 −0.2091 

25 17.4885 −0.3030 −0.3021 −0.3021 −0.3032 −0.2966 −0.3011 −0.3020 

SIAE 0.0423 0.0424 0.1380 0.0646 0.0452 0.0421 

  

Figure 8. Convergence curves for the PV module model.

4.3.4. Statistical Analysis

The significance difference between two methods can be measured by the statistical analysis.
Wilcoxon’s rank sum test is a reliable and robust statistical analysis tool and is widely used in
metaheuristic methods. In this paper, the Wilcoxon’s rank sum test at a 0.05 confidence level is
used to identify the significance difference between SOS and other compared methods on the same
case. The test results are tabulated in Table 11. The symbol “†” denotes that SOS is statistically better
than its competitor. The results demonstrate that SOS significantly outperforms every method on
every case (p < 0.05), indicating the better performance of SOS from another perspective.

Table 11. Statistical analysis results based on Wilcoxon’s rank sum.

SOS Vs. Single Diode Model Double Diode Model PV Module Model

ANS † (p = 2.3044 × 10−8) † (p = 3.4341 × 10−6) † (p = 5.5646 × 10−12)
BLPSO † (p = 7.0661 × 10−18) † (p = 7.0661 × 10−18) † (p = 9.9263 × 10−14)

CSO † (p = 7.0661 × 10−18) † (p = 7.0661 × 10−18) † (p = 8.9852 × 10−18)
CTLA † (p = 2.1975 × 10−17) † (p = 7.5041 × 10−18) † (p = 9.5403 × 10−18)
LWOA † (p = 1.2866 × 10−17) † (p = 8.4620 × 10−18) † (p = 7.0661 × 10−18)

5. Conclusions and Future Work

The SOS algorithm is applied to solve the parameter extraction problem of solar cell models in
this paper. To validate the effectiveness of SOS, it is applied to three models including single diode
model, double diode model, and PV module models. From the comparison results of SOS with five
state-of-the-art algorithms, namely, ANS, BLPSO, CSO, CTLA, and LWOA, it is summarized that SOS
can extract more accurate and robust values for the unknown parameters with a faster convergence
rate. The superiority of SOS is also demonstrated through statistical analysis based on the Wilcoxon’s
rank sum test. In addition, the feasibility of SOS is further confirmed through comparison with
some well-designed parameter extraction methods and it indicates that SOS is highly competitive.
Meanwhile, there is still room for improvement for SOS to achieve more accurate values, especially
for the double diode model. In summary, SOS behaves potential effectively in solving the parameter
extraction problem of solar cell models. In future, some advanced strategies such as orthogonal
learning and hybridization will be employed to further improve its performance.
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Nomenclature

AP artificial parasite
BF1, BF2 benefit factors determined randomly as either 1 or 2
D dimension of individual vector
Id diode current (A)
IL output current (A)
Iph photo generated current (A)
Isd, Isd1, Isd2 saturation currents (A)
Ish shunt resistor current (A)
k Boltzmann constant (1.3806503 × 10−23 J/K)
n, n1, n2 diode ideality factors
Max_FEs maximum number of fitness evaluations
N number of experimental data
Np number of cells connected in parallel
Ns number of cells connected in series
ps size of population
q electron charge (1.60217646 × 10−19 C)
rand(a,b) uniformly distributed random real number in (a,b)
Rs series resistance (Ω)
Rsh shunt resistance (Ω)
t current iteration
T cell temperature (K)
VL output voltage (V)
Vt diode thermal voltage (V)
x extracted parameters vector
xi,d dth parameter of ith organism
Xi ith organism
Xbest best organism found so far
I-V current-voltage
P-V power-voltage
PV photovoltaic
RMSE root mean square error
SIAE sum of individual absolute error
Min minimum RMSE
Max maximum RMSE
Mean mean RMSE
Std Dev standard deviation
ABSO artificial bee swarm optimization
ANS across neighborhood search
BBO-M biogeography-based optimization algorithm with mutation strategies
BLPSO biogeography-based learning particle swarm optimization
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BMO bird mating optimizer
CARO chaotic asexual reproduction optimization
CSO competitive swarm optimizer
CTLA chaotic teaching-learning algorithm
DE differential evolution
GGHS grouping-based global harmony search
GOTLBO generalized oppositional teaching learning based optimization
IADE improved adaptive DE
IJAYA improved JAYA
LWOA levy flight trajectory-based whale optimization algorithm
PS pattern search
SOS symbiotic organisms search
SA simulated annealing
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