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Abstract: The city of Hamburg has decided to electrify its bus fleets. The two public transportation
companies in this city expect to operate up to 1500 buses by 2030. In order to accomplish this
ambitious goal, both companies need to build an appropriate charging infrastructure. They have
both decided to implement the centralized depot charging concept. Buses can therefore charge only
at the depot and do not have the possibility for opportunity charging at intermediate stations. The
load profile of such a bus depot is highly dependent on the charging schedule of buses. Without
an intelligent scheduling system, the buses charge on demand as soon as they arrive to the depot.
This can lead to an unevenly distributed load profile with high load peaks, which is problematic
for the local grid as well as for the equipment dimensioning at the depot. Charging scheduling on
large-scale bus depots is a relatively new and poorly researched topic. This paper addresses the issue
and proposes two algorithms for charging scheduling on large-scale bus depots with the goal to
minimize the peak load. The schedules created with the proposed algorithms were both tested and
validated in the Bus Depot Simulator, a cosimulation platform used for bus depot simulations.
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1. Introduction

The city of Hamburg is determined to reduce its CO2 emission due to public transportation. In
accordance with this goal, the city has decided to allow purchases of exclusively emission free buses
from the year 2020. The two public transportation companies in the city, Hamburger Hochbahn AG
and Verkehrsbetriebe Hamburg-Holstein (VHH) have already started electrifying their bus fleets and
building the necessary charging infrastructure. Both companies have decided to use the centralized
depot concept. Hochbahn plans eight large-scale depots in the city, with the smallest one operating 50
buses and the biggest one operating 240 buses.

Other charging concepts such as opportunity charging have their advantages but they have
shown to be less effective in the particular case of the City of Hamburg. The buses in Hamburg have
circular routes with very short stops at the bus stations (1–2 min). This is not enough to charge the
buses effectively; especially taking into consideration that very often two or more buses arrive at
one bus station in the same time. In such a scenario, the charging organization poses a big problem.
Additional issue is the charging infrastructure for opportunity charging due to the lack of space at the
bus stations, especially in the inner city. For these reasons, the public transportation companies in
Hamburg chose to implement the central depot-charging concept. Nevertheless, the centralized depot
concept also has several disadvantages. The integration of such large-scale electric bus depots into the
local distribution grid can lead to problems. Load profile on one bus depot is highly dependent on
the charging schedule of the buses and therefore unevenly distributed. In the periods when multiple
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buses charge simultaneously, there will be load peaks. Depending on the number of buses operated at
the depot, the additional load for the grid can be significant. If this load exceeds the reserves in the
local substation, new infrastructure and investments are necessary.

The local grid is not the only one affected by the charging schedule. The electrical infrastructure
at the depot needs to be designed to operate with the highest expected loads. Uneven load profile
with short periods of extremely high loads, followed by long periods of lower demand, leads to an
overdesigned equipment and bigger losses within the depot itself.

To avoid the problems mentioned above it is necessary to optimize the charging schedule of buses
and minimize the load on the bus depot.

Numerous researchers already studied the scheduling of electrical vehicles and its impact on
the electrical grid [1–6]. At the same time there are only a few studies investigating scheduling for
electric bus fleets. Even less researchers focused on large-scale bus fleets and the corresponding
charging infrastructure.

Mohamed et al. analyze different charging concepts for bus fleets: flash, opportunity, and depot
charging [7]. They investigate the operational feasibility and the grid impact of these three concepts.
Thiringer et al. focus on power quality issues of fast charging station using the real data from the
electric bus fleet in Gothenburg [8]. Schumann et al. analyze the impact of electrical vehicles (including
electrical buses) on the substation reserves in the city of Hamburg [9]. These studies analyze the
potential issues when it comes to the impact on the grid but they do not suggest solutions in a form of
a charging schedule.

There are several proposed optimization methods for electrical bus scheduling for bus fleets using
the battery exchange concept [10–12]. Zhou et al. propose various optimization methods for fast
charging [13]. Yan et al. propose a new charging strategy with the fast charging during the day and
regular charging at night [14]. They optimized the charging sequences on one fast charging station
in the city of Beijing. Yang et al. analyze scheduling bus fleets based on flash wireless charging
concept [15]. These studies are not applicable to the centralized depot concept with regular charging
used in Hamburg.

Paul et al. propose a k-Greedy algorithm for a fleet consisting of electrical and diesel buses [16].
Their schedule reduces the usage of diesel buses and maximizes the amount of routes driven by
electrical buses. Leou et al. propose a constraint based mathematical model for scheduling buses
on a centralized depot for a small bus fleet of up to 10 buses [17]. The model takes into account the
variable electricity prices during the day and schedules the charging with the goal to minimize the costs.
Gao et al. combine power consumption forecasting and the scheduling of bus charging [18]. They use
wavelet neural network to predict the power consumption of buses based on several external factors
such as weather and historical data about passenger travelling habits. The method uses the predicted
power consumption to schedule the bus charging for the next day with the objective of minimizing
the charging cost. Rinaldi et al. analyze a mixed fleet of hybrid and electrical buses in the city of
Luxemburg [19]. The proposed algorithm has the objective to minimize the operational costs as well as
to determine the amount of electrical buses necessary to replace hybrid buses. Houbbadi et al. focus on
multiobjective evolutionary algorithms for management of electric bus fleet charging [20]. The authors
propose an optimal charging schedule with the goal to reduce the charging costs and battery ageing.
They tested their optimization method for a scenario with one electrical bus. The mentioned studies
analyze bus fleets with regular charging mode on centralized bus depots. Nevertheless, they analyze
mixed fleets of electrical and diesel (or hybrid) buses or small-scale bus depots. The suggested solutions
are not applicable to the large-scale bus depots in Hamburg, consisting of purely electrical buses.

Jiang et al. propose a heuristic algorithm for scheduling electrical buses under regular charging
mode [21]. They use a real example of bus fleet in the city of Shenzhen in China. The suggested
approach minimizes the number of buses necessary for the scheduled routes as well as the cost of
the used energy. Wang et al. also analyzed the bus fleet in Shenzhen [22]. They designed a new
scheduling system called bCharge and tested it on a fleet of 16,359 buses. bCharge is a real-time
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charging scheduling system based on Markov Decision Process with the overall objective of reducing
the charging and operation costs. They tested the system with a real-world streaming data. Chen et al.
consider scheduling bus charging at the depot, while predicting their arrival and departure time [23].
They propose two real-time coordinated strategies to improve the charging costs by responding to the
time-of-use electricity prices. Although the studies [21–23] deal with large-scale centralized depots,
their optimization is based on electricity prices and its objective is to minimize the charging costs, not
to minimize the peak demand. Hochbahn purchases electricity in advance and is not affected by the
electricity price changes at the market. Therefore, the suggested algorithms are not applicable to the
bus depot analyzed in this paper.

To the authors knowledge there are no publications concerning large-scale electric bus depots and
charging schedule with the objective of pure load peak minimization.

1.1. Contribution of the Paper

Charging scheduling for electric bus fleets is a relatively new and poorly researched topic. While
there are some publications focusing on smaller and mixed bus fleets, there are only a few researchers
analyzing large-scale electric bus fleets. They address the centralized charging on big bus depots but
mostly from the perspective of optimizing the operational costs. They do not analyze pure load peak
minimization. This paper addresses this issue and proposes two algorithms for charging scheduling
on large-scale bus depots with the goal of load peak minimization. The first algorithm follows a simple
greedy logic. It attempts to schedule all charging tasks while respecting the limit for a maximum
number of buses charging simultaneously. The limit is iteratively decreased until the algorithm fails in
its scheduling attempt. The last limit, for which the algorithm successfully scheduled all charging tasks,
is the minimum peak demand. The second algorithm is a heuristic that creates a charging schedule
with a goal to minimize the peak demand.

Real data from the electrical bus depot Alsterdorf were used to generate the charging schedules with
the both proposed algorithms. The schedules were tested and validated with the Bus Depot Simulator.

1.2. Organization of the Paper

Section 2 presents the investigated bus depot. It describes the charging infrastructure, the energy
consumption of buses, the route assigning, as well as the charging and preconditioning process.
Section 3 provides a short overview of the Bus Depot Simulator, the cosimulation platform used to
simulate bus depots in quasi-real-time. The Section 4 describes the methodology and the proposed
algorithms. In Section 5, the authors present the results and compare the load profiles resulting from
the suggested algorithms with the original load profile, without charging scheduling. Section 6 focuses
on the results interpretation and discussion.

2. Bus Depot Alsterdorf

2.1. Electrical Infrastructure

Bus depot Alsterdorf is the newly planned depot in the city of Hamburg and the biggest electrical
bus depot from the company Hochbahn. Figure 1 shows the diagram of the depot with its carports
and a detailed representation of the Carport 6.

Two redundant transformers are connecting the depot to the grid. The medium voltage grid
within the depot consists of four rings, operating at 20 kV. One ring is used for the emergency power
supply (10 kV grid) and the self-consumption (administration building and workshop). The remaining
three rings are connected to carports. Carports have four modules with a medium voltage transformer
and 10 fast charging DC-charging stations per module. This makes a total capacity of 40 buses per
Carport and 240 buses on the depot. Previous studies estimated the peak power demand of this depot
to 16.56 MW [24]. Due to its high power demand, it is connected to the 110 kV high voltage grid.
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Figure 1. Electrical infrastructure on the Bus Depot Alsterdorf with the detailed representation of the
Carport No. 6.

2.2. Electrical Energy Consumption of the Buses

Hochbahn has been gathering field data based on the operation of already existing electric buses
in their fleet. The analysis shows that the energy consumption depends on the ambient temperature.
Table 1 gives an overview of energy consumption of different bus types for several temperatures.
Further dependencies such as road topology and number of passengers also influence the energy
consumption. These factors are not considered in this paper.

Table 1. Energy consumption of electric buses in dependence on the ambient temperature.

Bus Type −15 ◦C +20 ◦C +28 ◦C Unit

Standard 2.11 1.40 1.60 kWh/km
Articulated 3.25 2.05 2.40 kWh/km

Double articulated 4.50 2.68 3.17 kWh/km

The biggest loads on the depot occur with very low temperatures, which makes this a very
interesting scenario for load peak minimization. For this reason, the ambient temperature in this paper
is set to −15 ◦C.

2.3. Route Assigining

Bus depot Alsterdorf currently does not have any assigned routes as it is still in the construction
phase. For the simulation purposes, the data from a bus depot nearby (currently running with diesel
buses) were gathered and used. This results in a scenario with 127 buses and an average of 230 daily
trips/routes. Buses are assigned to routes based on the first-in-first-out scheduling concept. While
assigning the buses additional conditions have to be fulfilled:

1. Bus cannot take a route if the expected state-of-charge (SoC) upon its return to the depot will be
smaller than 20%.

2. Bus needs to match the bus type necessary for the trip (standard, articulated, and double
articulated).
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A driving schedule was assembled based on the timetable of the neighboring diesel depot and
the conditions stated above. Table 2 shows an example of such schedule for three random buses. The
expected SoC values before and after the trip are calculated for orientation purposes.

Table 2. Example of an assembled driving schedule for buses at the bus depot Alsterdorf.

Bus ID Route ID Departure
Time Arrival Time SoC Before

Trip SoC After Trip

1 66,001 05:43 09:51 100% 80%
2 66,002 06:04 14:50 100% 50%
3 66,003 07:07 13:15 100% 60%

2.4. Charging and Preconditioning

The available charging power for the buses is 150 kW. This is also the only available power level
at the charging station. It is not possible to charge buses at any other level between 0 and 150 kW.

An additional power consumption occurs during the preconditioning time. This is the electrical
heating of the bus before it leaves the depot. It is assumed that the bus needs to heat for one hour prior
to its departure if it was parked at the depot for longer than two hours.

The amount of power consumed during the preconditioning phase depends on the ambient
temperature. As the ambient temperature is set to −15 ◦C, the heating power corresponds to 65 kW.
This value was assumed according to the experiences gathered in Hochbahn.

Preconditioning reduces the charging power available for the battery charging to 85 kW.

3. Bus Depot Simulator

Bus Depot Simulator is a quasi-real-time cosimulation program based on software Python and
DigSilent PowerFactory. It simulates the operation of a large-scale bus depot taking into consideration
buses arriving and leaving, ambient temperature, delays due to traffic, dis/charging processes, etc.
Figure 2 shows the structure of the program with the belonging classes.
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Figure 2. Cosimulation process with Python and Power Factory.

The Controller manages the simulation by communicating with other classes such as Schedule,
Depot and Environment, which are implemented in Python. The Controller also communicates with
PowerFactory. The simulation runs in discrete time steps of one minute. For each minute, Python
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sends active power set points to PowerFactory based on the information, which buses are currently
charging at which charging station. PowerFactory executes a Load Flow and sends the results back to
Python. In that way, the user can follow the load profile of the depot in a quasi-real-time. During the
initialization process, the Simulator creates all objects, establishes a connection with PowerFactory
and loads the Schedule class. If there is no charging schedule in the Schedule class, the Simulator will
charge the buses on demand as soon as they arrive to the depot. When a charging schedule is provided,
the buses will charge only in the time interval defined in the schedule. In this way, the Simulator is
independent from the Schedule class and can be used to validate any type of scheduling algorithms.

Figure 3 shows one part of the Bus Depot Simulator and the tab “Inside Depot”. This tab gives
an overview of the buses currently at the depot together with their SoC. The figure also shows the
flowchart with the co-simulation procedure.
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Besides the tab “Inside Depot”, the Simulator also provides a deeper overview of different
components of the system during the simulation, showing the following:

• The decisions the Controller is making.
• An overview of the buses currently driving outside of the depot (the route they are driving and

the expected arrival back at the depot).
• Load profile at different terminals within the depot (active and reactive power at the connection

point as well as on all carport terminals).

4. Methodology and the Proposed Algorithms

4.1. Methodology

There are two perspectives to scheduling with electrical buses that can be observed independent or
in correlation with each other; routes scheduling (which bus takes which route) and charging schedule
(when and how much do the buses charge). This paper focuses on charging schedule, considering
the routes are fixed as already discussed in Section 2.3. Each bus therefore has an already defined
arrival and departure time. The time in between can be used for charging. Figure 4 gives a graphical
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representation of the mentioned timeline. The blocks represent the buses. Each bus draws power from
the grid for two different tasks, charging, and preconditioning. Accordingly, there are two types of
blocks, charging and preconditioning blocks. They can overlap or occur in different time slots. The
length of the block is the time needed for preconditioning/charging. The height of the block is the
power demand of the bus normalized based on the maximum charging power of 150 kW. There are
three possible heights:

1. Block height is 1: Bus is charging with 150 kW and there is no preconditioning.
2. Block height is 0.567: Preconditioning is active and bus is charging with 85 kW.
3. Block height is 0.433: Bus is not charging but there is preconditioning with 65 kW.
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Figure 4. Graphical representation of the scheduling problem with several random buses already
charging (white blocks) and a new bus arriving at the depot (green block).

Preconditioning blocks are fixed in time and cannot be moved. Charging blocks can be freely
moved in the time window between the arrival and departure time.

A certain number of buses in Figure 4 already arrived at the depot and started charging (white
blocks in the figure). The number of buses charging simultaneously directly corresponds to the load at
the depot. The problem is defined as follows; Where exactly between its arrival and departure time
should the new coming bus 27 (green block in the figure) charge in order to minimize the number of
buses charging simultaneously?

By observing the bus charging as a non-preemptive task, it is easy to reduce the above mentioned
problem to a classical job scheduling problem. Two very similar variations of this problem have already
been analyzed:

1. Scheduling with release time and deadlines on a minimum number of machines.
2. Scheduling non-preemptive jobs to minimize the peak demand.

Cieliebak et al. propose several exact and approximation algorithms for solving the problem of
scheduling with release time and deadlines on a minimum number of machines [25]. Although this is
a very similar problem to the bus depot, there is one fundamental difference. The jobs in the bus depot
problem have three possible heights and Cieliebak et al. schedule jobs with the same height. Yaw et al.
propose an exact algorithm, an approximation and a simple heuristic for the problem of scheduling
non-preemptive jobs to minimize the peak demand in a smart grid [26]. They are scheduling jobs
such as household appliances (dishwasher or water heater). These jobs have different heights, which
makes it similar to the depot problem. However, this study focuses on non-resizable jobs. Using
the example from Figure 4, this would mean that the blocks have fixed lengths. On the other hand,
in the bus depot problem, the bus charging is considered a resizable job. The charging job resizing
occurs due to preconditioning as shown in Figure 5. Bus 27 arrived to the depot at 23:00 in the evening
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and leaves again at 06:00 the following morning. It needs to charge for 1 h and 50 min with the
maximum power of 150 kW. The bus is also preconditioning from 05:00 to 06:00 in the morning, before
its departure. Shifting the charging of this bus to the morning hours, when it possibly overlaps with
the preconditioning, will extend the time necessary to charge. This is due to the reduced charging
power to the maximum of 85 kW.
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Figure 5. Change in the length of the charging block (green) due to the preconditioning block (blue) for
two different scenarios: (a) no overlapping with preconditioning; charging time is 1 h and 50 min and
(b) overlapping with preconditioning for 15 min; charging time is 2 h and 2 min.

The algorithms proposed by Yaw et al. are, to some extent, applicable to the bus depot problem
but need to be adjusted.

4.2. Problem Definition

The problem of bus charging scheduling is defined similar to the job scheduling problems
presented by Cieliebak et al. and Yaw et al. The bus b has an arrival time ab, departure time db,
charging start sb, charging length lb, and a height hb. The bus can charge in the interval [ab, db] with the
following condition.

db − ab ≥ lb > 0. (1)

The difference db − ab − lb is defined as the shifting time δb. If the difference db − ab equals to the
length of the charging time lb, the shifting time is zero. In that case, there is only one possible charging
interval for the bus. If on the other hand, δb > 0 there are multiple possible charging intervals for the
bus. Charging interval is defined as [sb, sb + lb] so that

[sb, sb + lb] ∈ [ab, db]. (2)

All possible charging intervals of bus b are defined with tuple Pb so that

Pb =
{
[sb, sb + lb], sb = ab + δ, f or δ = 0, 1, . . . , δb

}
. (3)

When calculating the intervals from the tuple Pb it is necessary to calculate the length lb for each
possible interval, since this length can change due to preconditioning.

The total height H at the time instance t is the sum of all heights of buses charging at that time:

H(t) =
∑

b,t∈[sb,sb+lb]

hb. (4)
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The peak demand is the biggest height Hmax occurring during the complete analyzed period [0,T].
The goal is to minimize the Hmax by assigning one charging interval to each bus from its tuple of all
possible charging intervals Pb.

This problem was proven to be NP-hard [25,26].

4.3. Greedy Algorithm

This algorithm uses a simple greedy logic. It defines a limit for the maximum allowed height τmax.
The algorithm chooses the charging intervals for each bus, so that the Hmax ≤ τmax .The limit τmax is
reduced iteratively as long as it is possible to schedule all charging jobs. The smallest limit for which
the algorithm manages to schedule all jobs is considered the minimum peak demand. Before executing
the algorithm, the following steps are required.

Step 1: Schedule all preconditioning jobs (these jobs are fixed and cannot be rescheduled).
Step 2: Calculate all possible charging intervals for all buses and write them into tuples Pb.
Step 3: Organize all buses ascending by the arrival time.
Step 4: Initialize the limit τmax = c× number o f buses, where c is a curtailment factor.

The curtailment factor c depends on the number of buses at the depot. Haffner et al. did a
sensitivity analysis and calculated the curtailment factor for different number of buses per module for
the analyzed depot Alsterdorf [27]. They allowed the buses to charge on demand, without any charging
schedule. The curtailment factor c is a limit for the number of buses that can charge simultaneously
without affecting the charging process itself. The study showed that for 127 buses at the depot, the
curtailment factor is 54%. τmax is therefore initialized with c = 0.54.

Figure 6 shows the flowchart of the proposed algorithm for a scenario of n buses. The variable
MinPeak represents the minimum peak demand.
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Organizing the buses ascending by the arrival time is an important step for this algorithm. It allows
the buses to charge as soon as possible, usually at the far left side of the available interval [ab, db].

4.4. Heuristic Algorithm

This algorithm is an adjustment of the heuristic proposed by Yaw et al. An additional variable
Hinterval is defined as the sum of all heights in one charging interval [sb, sb + lb]:

Hinterval =

sb+lb∑
t= sb

ht. (5)

Before executing the algorithm, the following steps are necessary.

Step 1: Schedule all preconditioning jobs (these jobs are fixed and cannot be rescheduled).
Step 2: Calculate all possible charging intervals for all buses and write them into tuples Pb.
Step 3: Organize all buses ascending by their shifting time δb.

The algorithm flowchart for a scenario of n buses is presented in Figure 7. The greatest Hmax

resulting from the presented logic is the minimum peak demand.
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A crucial difference compared with the greedy algorithm is the preparation Step 3, organizing the
buses ascending by their shifting time δb. The algorithm will first schedule the buses with no δb. These
jobs are fixed in time and cannot be shifted. In this way, the algorithm leaves the jobs, which are more
flexible for later scheduling. The buses with big δb are scheduled last. Because of their flexibility, there
is a high probability of scheduling without further increasing the height Hmax.

5. Results

The two algorithms described in Section 4 were used to create charging schedules for the Bus Depot
Simulator. The schedules were created for five working days but only a 36 h period was simulated. This
is because there is no difference between the load profiles on different working days. The algorithms
were observed in two separate scenarios. An additional third scenario, with no charging schedule was
also observed. This scenario will further be referred to as the “original schedule”. Figure 8 shows the
total load profile at the point of connection using the original schedule. The dark blue area shows the
load resulting only from preconditioning. In this scenario, the buses are charged on demand as soon as
they arrive to the depot. This leads to a high load at approximately 21:00 in the evening. The peak load
in this case is 7.5 MW. The preconditioning has its peak at approximately 05:00 in the morning, with up
to 4.1 MW. The preconditioning load cannot be rescheduled and it is considered to be the base load.
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Figure 8. Load profile resulting from the original charging schedule together with the
preconditioning load.

Figure 9 shows the load profiles resulting from the schedules created with the greedy and heuristic
algorithm, compared to the original schedule. Greedy algorithm leads to a load peak of 5.67 MW,
which corresponds to the maximum of 37 buses charging simultaneously. Heuristic schedule results
in a peak load of 5.47 MW, corresponding to 35 buses charging in the same time. Compared to the
original schedule, the load peak resulting from the greedy algorithm is 24.4% smaller and the load
peak from the heuristic algorithm 27.1%. The heuristic schedule also shows deviation from the original
schedule during the morning hours, between 9:00 and 12:00. Greedy algorithm did not reschedule any
charging tasks in this period and shows no deviation from the original.

The load profile from the heuristic algorithm shows more small amplitude fluctuations during
the night but it is generally better distributed. The greedy schedule resulted in a load profile, which
was closer to constant in the time period from 20:00 to 23:00, but then showed a significant load dip at
approximately 04:00.
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The difference in load distribution between the three compared scenarios is shown in Figure 10.
The greedy algorithm minimized the peak demand but in the area of lower load it does not show any
difference to the original schedule. Heuristic algorithm instead managed not only to reduce the peak
demand but also to flatten the average load. The flattening occurred two times, once in the range from
5.0 to 5.47 MW, and once more in the range of 2.0 to 2.3 MW.
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Figure 10. Load distribution from the three compared algorithms during the simulated time.

The active power losses in the transformers and cables within the bus depot for the three compared
algorithms are shown in Figure 11. The original schedule resulted in energy losses of 2634 kWh for the
analyzed period of 36 h. The greedy schedule leads to energy losses of 2636 kWh and the heuristic
algorithm to 2611 kWh. Although the greedy schedule shows smaller load peak compared to the
original, it resulted in slightly bigger energy losses with the increase of 2 kWh. The heuristic algorithm
on the other hand shows smaller load peak and smaller energy losses. Compared to the original
schedule, it reduced the energy losses for 23 kWh.
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The preconditioning in winter months leads to a high load peak at the depot. However, during
summer months, when there is no (or less) preconditioning, the peak load can be further reduced.
Figure 12 shows the load profile from the original, heuristic and greedy schedule in summer months,
assuming there is no preconditioning and the ambient temperature is 28 ◦C. The energy consumption of
buses is smaller in the summer months. Therefore, the load profile resulting from the original schedule
is also smaller than the one in winter and leads to a load peak of 5.7 MW. The greedy algorithm results
in a load peak of 3.55 MW, corresponding to 23 buses charging in the same time. On the other hand,
the heuristic algorithm shows better results and leads to a load peak of 3.27 MW and 21 buses charging
simultaneously. Compared to the original schedule in this scenario, the greedy algorithm managed to
reduce the load peak for 37.7% and the heuristic algorithm for 42.6%.
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6. Discussion

This paper analyzes the charging scheduling problem on large-scale electric bus depots and
proposes two algorithms for the load peak minimization. Real data from the bus depot in Alsterdorf
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in Hamburg were used for the simulation. The proposed algorithms were able to reduce the peak
demand and flatten the peak load at the bus depot. Greedy schedule resulted in a slightly higher
peak demand but an evenly distributed load during very high load periods. It managed to reduce the
load peak for 24.4% compared to the original load profile. Nevertheless, it did not manage to reduce
the cumulative energy losses within the depot. For the analyzed period of 36 h, it resulted in 2 kWh
additional losses compared to the original load profile. Heuristic schedule in this case achieved an
even smaller peak load and reduced it for 27.1% compared to the original load peak. It also reduced
the energy losses for 23 kWh. The heuristic algorithm managed to distribute the average load better
during the night as well as during the day, in the time from 09:00 to 12:00. However, it resulted in a
load profile with more small amplitude fluctuations compared to greedy.

For the summer scenario, all algorithms showed smaller load peaks. This is due to the lower
demand for preconditioning compared to the winter months. Greedy schedule managed to reduce
the peak load for 37.7% compared to the original load profile. Heuristic schedule on the other hand
reduced the load peak for 42.6%. In this case, the greedy algorithm resulted in a relatively flat load
profile in time from 20:00 to 02:00. In the same time, the heuristic load profile once again showed many
small amplitude load changes.

The charging process was considered as a non-preemptive job for the purposes of this paper. This
means that once a bus has started charging, it continues until it reaches its goal SoC. The process can
also be observed in a preemptive manner, allowing the bus to charge several times within its available
charging interval. Additional interesting variable that could be included in the scheduling algorithms
is the load forecast from the grid operator. The load profile at the bus depot would in that case support
the overall load profile in the grid. Such scenarios, including online scheduling, are the topic of our
future research.

Author Contributions: A.J. wrote the article and programmed the proposed algorithms. A.J. and M.E. developed
the proposed algorithms. D.S. supervised the work and provided helpful feedback regarding both the algorithms
and the article.

Funding: This work is a part of the project Accompanying Research for Charging Infrastructure on Bus Depots.
It is supported by the German Federal Ministry of Transport and Digital Infrastructure (AKZ G20/3552.1/3).

Acknowledgments: The authors would like to thank HOCHBAHN AG for the good cooperation and the
provided data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alonso, M.; Amaris, H.; Germain, J.G.; Galan, J.M. Optimal Charging Scheduling of Electric Vehicles in Smart
Grids by Heuristic Algorithms. Energies 2014, 7, 2449–2475. [CrossRef]

2. Hu, J.; Morais, H.; Sousa, T.; Lind, M. Electric vehicle fleet management in smart grids: A review of services,
optimization and control aspects. Renew. Sustain. Energy Rev. 2016, 56, 1207–1226. [CrossRef]

3. Yang, Y.; Zhang, W.; Niu, L.; Jiang, J. Coordinated Charging Strategy for Electric Taxis in Temporal and
Spatial Scale. Energies 2015, 8, 1256–1272. [CrossRef]

4. Abul’Wafa, A.; El’Garably, A.; Mohamed, W. Uncoordinated vs Coordinated Charging of Electric Vehicles in
Distribution System Performance. Int. J. Eng. Inf. Syst. 2017, 1, 54–65.

5. Ma, Z.; Callaway, D.S.; Hiskens, I.A. Decentralized Charging Control of Large Populations of Plug-in Electric
Vehicles. IEEE Trans. Control Syst. Technol. 2013, 21, 67–68. [CrossRef]

6. Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Impact of Electric Vehicle Charging Station Load on Distribution
Network. Energies 2018, 11, 178. [CrossRef]

7. Mohamed, M.; Farag, H.; El-Taweel, N.; Ferguson, M. Simulation of electric buses on a full transit network:
Operational feasibility and grid impact analysis. Electr. Power Syst. Res. 2017, 142, 163–175. [CrossRef]

8. Thiringer, T.; Haghbin, S. Power Quality Issues of a Battery Fast Charging Station for a Fully-Electric Public
Transport System in Gothenburg City. Batteries 2015, 1, 22–33. [CrossRef]

http://dx.doi.org/10.3390/en7042449
http://dx.doi.org/10.1016/j.rser.2015.12.014
http://dx.doi.org/10.3390/en8021256
http://dx.doi.org/10.1109/TCST.2011.2174059
http://dx.doi.org/10.3390/en11010178
http://dx.doi.org/10.1016/j.epsr.2016.09.032
http://dx.doi.org/10.3390/batteries1010022


Appl. Sci. 2019, 9, 1748 15 of 16

9. Schumann, M.; Meyer, M.; Dietmannsberger, M.; Detlef, S. Demands on the Electrical Grid due to
Electromobility in Hamburg. In Proceedings of the 1st E-Mobility Power System Integration Symposium,
Berlin, Germany, 23 October 2017.

10. Chao, Z.; Chen, X. Optimizing Battery Electric Bus Transit Vehicle Scheduling with Battery Exchanging:
Model and Case Study. Procedia Soc. Behav. Sci. 2013, 96, 2725–2736. [CrossRef]

11. Dai, Q.; Cai, T.; Duan, S.; Zhang, W.; Zhao, J. A smart energy management system for electric city bus battery
swap station. In Proceedings of the IEEE Conference and Expo Transportation Electrification Asia-Pacific
(ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014.

12. You, P.; Yang, Z.; Zhang, Y.; Low, S.H.; Sun, Y. Optimal Charging Schedule for a Battery Switching Station
Serving Electric Buses. IEEE Trans. Power Syst. 2016, 31, 3473–3483. [CrossRef]

13. Zhou, D.; Ren, Z.; Sun, K.; Dai, H. Optimization Method of Fast Charging Buses Charging Strategy for
Complex Operating Environment. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy
System Integration (EI2), Beijing, China, 20–22 October 2018.

14. Yan, Y.; Jiang, J.; Zhang, W.; Huang, M.; Chen, Q.; Wang, H. Research on Power Demand Suppression Based
on Charging Optimization and BESS Configuration for Fast-Charging Stations in Beijing. Appl. Sci. 2018, 8,
1212. [CrossRef]

15. Yang, C.; Lou, W.; Yao, J.; Xie, S. On Charging Scheduling Optimization for a Wirelessly Charged Electric Bus
System. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1814–1826. [CrossRef]

16. Paul, T.; Yamada, H. Operation and charging scheduling of electric buses in a city bus route network.
In Proceedings of the 17th IEEE International Conference on Intelligent Transportation Systems (ITSC),
Qingdao, China, 8–11 October 2014.

17. Leou, R.C.; Hung, J.J. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging
Stations. Energies 2017, 10, 483. [CrossRef]

18. Gao, Y.; Guo, S.; Ren, J.; Zhao, Z.; Ehsan, A.; Zheng, Y. An Electrical Bus Power Consumption Model and
Optimization of Charging Scheduling Concerning Multi-External Factors. Energies 2018, 11, 2060. [CrossRef]

19. Rinaldi, M.; Parisi, F.; Laskaris, G.; D’Adriano, A.; Viti, F. Optimal dispatching of electric and hybrid buses
subject to scheduling and charging constraints. In Proceedings of the 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018.

20. Houbbadi, A.; Trigui, R.; Pelissier, S.; Bouton, T.; Redondo-Iglesias, E. Multi-Objective Optimisation of the
Management of Electric Bus Fleet Charging. In Proceedings of the IEEE Vehicle Power and Propulsion
Conference (VPPC), Belfort, France, 11–14 December 2017.

21. Jiang, M.; Zhang, Y.; Zhang, Y.; Zhang, C.; Zhang, K.; Zhang, G.; Zhao, Z. Operation and Scheduling of
Pure Electric Buses under Regular Charging Mode. In Proceedings of the 21st International Conference on
Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018.

22. Wang, G.; Xie, X.; Zhang, F.; Liu, Y.; Zhang, D. bCharge: Data-Driven Real-Time Charging Scheduling for
Large-Scale Electric Bus Fleets. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Nashville,
TN, USA, 11–14 December 2018.

23. Chen, H.; Hu, Z.; Xu, Z.; Li, J.; Zhang, H.; Xia, X.; Ning, K.; Peng, M. Coordinated charging strategies for
electric bus fast charging stations. In Proceedings of the IEEE PES Asia-Pacific Power and Energy Engineering
Conference (APPEEC), Xi’an, China, 25–28 October 2016.

24. Dietmannsberger, M.; Schumann, M.; Meyer, M.; Schulz, D. Modelling the Electrification of Bus Depots using
Real Data: Consequences for the Distribution Grid and Operational Requirements. In Proceedings of the 1st
E-Mobility Power System Integration Symposium, Berlin, Germany, 23 October 2017.

25. Cieliebak, M.; Erlebach, T.; Hennecke, F.; Weber, B.; Widmayer, P. Scheduling with Release Times and
Deadlines on a Minimum Number of Machines. In Exploring New Frontiers of Theoretical Informatics; Levy, J.J.,
Mayr, E.W., Mitchell, J.C., Eds.; Springer: Boston, MA, USA, 2004; Volume 155, pp. 209–222.

http://dx.doi.org/10.1016/j.sbspro.2013.08.306
http://dx.doi.org/10.1109/TPWRS.2015.2487273
http://dx.doi.org/10.3390/app8081212
http://dx.doi.org/10.1109/TITS.2017.2740329
http://dx.doi.org/10.3390/en10040483
http://dx.doi.org/10.3390/en11082060


Appl. Sci. 2019, 9, 1748 16 of 16

26. Yaw, S.; Mumey, B. Scheduling Non-Preemptible Jobs to Minimize Peak Demand. Algorithms 2017, 10, 122.
[CrossRef]

27. Haffner, L.; Schumann, M.; Schulz, D.; Dietmannsberger, M. Evaluation of Modular Infrastructure Concepts
for Large-Scaled Electric Bus Depots. In Proceedings of the 2nd E-Mobility Power System Integration
Symposium, Stockholm, Sweden, 31 August 2018.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/a10040122
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Contribution of the Paper 
	Organization of the Paper 

	Bus Depot Alsterdorf 
	Electrical Infrastructure 
	Electrical Energy Consumption of the Buses 
	Route Assigining 
	Charging and Preconditioning 

	Bus Depot Simulator 
	Methodology and the Proposed Algorithms 
	Methodology 
	Problem Definition 
	Greedy Algorithm 
	Heuristic Algorithm 

	Results 
	Discussion 
	References

