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Abstract: This work proposes a fast face tracking-by-detection (FFTD) algorithm that can perform
tracking, face detection and discrimination tasks. On the basis of using the kernelized correlation
filter (KCF) as the basic tracker, multitask cascade convolutional neural networks (CNNs) are used
to detect the face, and a new tracking update strategy is designed. The update strategy uses the
tracking result modified by detector to update the filter model. When the tracker drifts or fails, the
discriminator module starts the detector to correct the tracking results, which ensures the out-of-view
object can be tracked. Through extensive experiments, the proposed FFTD algorithm is shown to
have good robustness and real-time performance for video monitoring scenes.

Keywords: Internet of Things; secure monitoring; face tracking; tracking-by-detection; correlation
filter; convolution neural network

1. Introduction

In recent years, the Internet of Things (IoT) and big data have grown substantially, and secure
monitoring is one of the most challenging tasks [1–3]. According to data from HIS Markit, in 2017,
98 million new network monitoring cameras and 29 million high-definition (HD) closed-circuit
television (CCTV) monitoring cameras were shipped globally through professional sales channels [4].
According to the “In-Depth Research Report on Digital Surveillance Cameras in the Global and
Chinese Markets in 2018” published by Hangzhou Primus, the total sales volume of the global digital
surveillance cameras market is expected to reach 19,312.19 million USD by 2022 [5]. With the increase
of monitoring cameras, a large quantity of video data will be generated every day, which makes it
impossible to manually process them. Thus, an automated and intelligent video processing system is
urgently needed.

Secure monitoring describes, interprets and predicts the behavior of moving targets by combining
methods from computer vision [6,7], artificial intelligence, image processing and pattern recognition. As
an emerging technology, intelligent video monitoring faces many challenges due to rapid development
and increasingly mature theoretical technologies. Video face tracking is an important technology for
intelligent video monitoring. However, because of factors such as illumination variation, deformation,
and occlusion, long-term tracking of arbitrary objects with high robustness and high real-time
performance remains a challenging problem.

In recent years, correlation filters and deep learning have been used for tracking and have achieved
good results [8,9]. The kernelized correlation filter [10] adopts a cyclic matrix to sample map ridge
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regression in linear space to a multidimensional nonlinear space through the kernel function method
and converts a large number of intermatrix operations into calculations in the Fourier domain, thus
increasing the operation speed. Deep learning has achieved great success in detection and recognition.
Some convolutional neural network (CNN)-based correlation filters tracking methods [11,12] and deep
learning detection methods [13,14] also have high accuracy in tracking. However, a large number of
samples with various types are required for training deep learning methods. Because of lacking data
and the complexity of deep algorithms, deep learning is limited in tracking tasks.

The main contributions of the paper are summarized as follows:

1. A real-time face tracking framework that uses a tracking-by-detection method to combine tracking
and detection is proposed.

2. The kernelized correlation filter is used to quickly track faces. A multitask cascade CNN, as a
detector, is introduced to detect faces and modify the tracker’s result. The cascade CNN detector
ensures accuracy, and improves the speed by not performing frame-by-frame updating.

3. An update strategy is designed, in which detection result is used to correct the inaccurate tracking
result, and the modified result is used to update the tracking filter model. Thus the proposed
method can robustly track drastic occlusion and out-of-view objects.

The experimental results show that the fast face tracking-by-detection (FFTD) algorithm has
high robustness and real-time operation; therefore, high performance and long-term tracking secure
monitoring can be achieved.

The rest of this paper is organized as follows. Section 2 introduces related work on object tracking,
face detection and tracking-by-detection methods. The pipeline of the proposed face tracking algorithm
is introduced in Section 3. In Section 4, the experimental results of the proposed method are reported
and discussed. Finally, Section 5 concludes the paper and presents future work.

2. Related Work

Numerous object detection and tracking algorithms have been proposed over recent
decades. In this section, we discuss related work on object tracking, face detection and the
tracking-by-detection method.

We can divide object tracking methods into two types: generation methods and discrimination
methods. Generation approach is template matching, which searches the most similar candidate region
with the target as the tracking result [15–17]. Mean-shift algorithm [15] describes the object by color
feature and searches the location with the largest color probability distribution through iteration. The
algorithm is simple, but it does not perform well in fast motion. Particle filter algorithm [16] replaces the
posterior probability distribution of state with random particles. Kalman filter algorithm [17] performs
prediction and correction modules for steady tracking, which models an object with motion. Thus, the
object motion is subject to linear Gaussian distribution. Discrimination method trains classifiers to
distinguish between target and background [18–23]. Compressive tracking (CT) algorithm [18] extracts
features by compressed sensing, in which the naive Bayesian classifier is used to predict the target
location. The support vector machine (SVM) is used to classify in the Struck algorithm [19]. Context
tracker (CXT) [20] uses the random forest classifier. Tracking-learning-detection (TLD) algorithm [21]
combines tracking, detection and learning, which is worthy of reference. But, the speed is slow.

Compared with the traditional generation methods, the discriminant methods are more adaptable
to environmental changes and long-term tracking, showing high robustness and high real-time
applicability. In addition, in recent years, correlation filters and methods based on deep learning have
far surpassed other tracking algorithms and achieved excellent results in various competitions [24,25].

2.1. Correlation Filter Tracking

Correlation filter has been used for tracking with excellent tracking accuracy and speed. In recent
years, it has become the mainstream object tracking method. The method trains the correlation filter
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according to the information of the current frame and the previous frame. The introduction of the
Fourier transform speeds up the computation, so the tracking speed of single-target tracking can reach
hundreds of frames.

The Minimum Output Sum of Squared Error (MOSSE) [26] filter, which uses adaptive training
strategy, was the first to employ the correlation filter method for tracking. Because of MOSSE’s robust
and fast results, many MOSSE-based algorithms have been proposed. For instance, in the Circulant
Structure with Kernal (CSK) algorithm [27], target samples generated by a circulant structure are used
to train classifiers. Meanwhile, calculating in the Fourier transform domain reduces the complexity
and greatly improves the speed. The KCF [10] algorithm adopts multichannel features and uses
kernel correlation filtering. However, this algorithm is insensitive to scale changes. When the target
is removed from view or blocked for a long time, the correlation filter often performs poorly. On
the other hand, combining deep learning and correlation filtering, Martin proposed the C-COT [12]
and ECO [11] algorithms, which achieve high accuracy. Among them, C-COT won the VOT2016
competition. However, the C-COT and ECO cannot be real-time, which is an important aspect in target
tracking. Deep learning also imposes high requirements on the platform, which often requires a highly
configured personal computer (PC) for operation.

2.2. Face Detection

Viola and Jones proposed the method of combining the AdaBoost algorithm and Harr features
for face detection [28], which greatly improved the detection speed and accuracy. After that, many
methods for improving the algorithm were proposed [29,30]. In recent years, computational power
has greatly improved, and CNNs have been applied for face detection. For example, regional CNN
(R_CNN) [31], Fast R_CNN [32], Faster R_CNN [33] and others [34] have adopted two subnetworks
to extract and classify candidate boxes; these methods achieve high performance but are slow. You
only look once (YOLO) [35], single-shot detector (SSD) [36], focal loss [37] and other algorithms [38]
use a single network, thus they are faster but less accurate than the aforementioned algorithms. In
addition, cascade CNN [39], multitask CNN (MTCNN) [40] and others [41] use multiple CNNs for
face detection, further improving the performance.

2.3. Tracking-by-Detection

When the target is obscured or removed from sight, algorithms only based on tracking algorithm
or detection tend to fail. The TLD algorithm, which combines detection and tracking technology,
adds an online learning process. If the target is removed from the field of vision and then reappears,
the detector can restart the tracker after detecting the target so that the tracker can continue to track.
Inspired by this idea, tracking-by-detection has been adopted by many algorithms and has achieved
good results [42–44].

Different from existing correlation filter trackers, we introduce the CNN face detection to the KCF
algorithm, following the tracking-by-detection framework. Under the supervision and correction of
face detection module, the proposed method can improve the face tracker’s precision with fast speed.

3. Proposed Algorithm

In this section, we elaborate the FFTD method. First, we overview the FFTD method and give
the whole framework. Moreover, we review the KCF algorithm which is the basic tracker of FFTD
algorithm, and then a tracking update strategy is introduced. Finally, we construct the multitask CNN
method for the face detection. In addition, we design a detection strategy to obtain the exact object.

To obtain a robust, fast face tracking algorithm in secure monitoring, the FFTD tracking algorithm
framework is proposed in this paper. FFTD consists of three parts, i.e., tracking, face detection and
discrimination, as shown in Figure 1.
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Figure 2. Tracking module flowchart. 

Figure 1. The fast face tracking-by-detection (FFTD) framework. A tracker based on a correlation filter
finds the best position of the target in each frame. The face detector, which can correct and restart the
tracker, detects and locates the faces in images. The discrimination determines when to perform the
detector and update the tracking model.

3.1. Tracking

FFTD uses the KCF algorithm for tracking. Figure 2 shows the tracking module flow and update
strategy in a block diagram. If the object is removed from the camera view, the KCF tracker usually
fails and never recovers. To overcome the challenge, the detector is introduced. The detection result is
used to correct the tracking result of the previous frame, and then the corrected result is used to update
the filter model with a certain learning rate in current frame.
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In the first frame, to get the training samples, KCF uses the window (2.5 times larger than the
given object) to cycle shift, and saves the samples into the filter model after extracting. Then, the
training samples are labeled with Gaussian distribution. The regression coefficient of each sample is
generated and stored through ridge regression.

In later frames, the windows (2.5 times larger than the best result) are cyclic-shifted to obtain
the samples. We calculate the similarity between the samples and the target in the filter model. The
current result is the largest response sample. Then, the filter model is updated by the result.

Next, the ridge regression method and update strategy are described in detail.
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3.1.1. KCF Tracking Principle

The KCF algorithm adopts the ridge regression method to train the detector. Ridge regression is
an improvement on least squares regression, and it is more reliable and practical. Assume the training
sample set is (xi, yi), i = 1, 2, . . . , n, where xi is the training samples, yi is the corresponding sample
labels and yi obeys the Gaussian distribution.

Under the linear condition, the regression function is f (xi) = ωTxi, and ω is the weight function
of the column vectors, which can be solved by the least squares method:

min
ω

n∑
i=0

[ f (xi) − yi]
2 + λ‖ ω ‖2 (1)

where λ is the regularization parameter and the embodiment of ridge regression’s supplement to
least squares regression. The process of training the classifier is to find the optimal ω to minimize the
residual error of the regression function.

We set the derivative of (1) to be zero, solving ω, and rewriting it into frequency domain form:

ω = (XHX + λI)
−1

XH y (2)

where XH is the conjugate transpose of X.
Training samples xi in the KCF algorithm are obtained by the cyclic shift of target sample x.

According to the properties of the cyclic matrix and Fourier transform, the formula for calculating the
final linear regression coefficient is obtained:

ω̂ =
x̂� ŷ

x̂� x̂∗ + λ
(3)

where x̂ is the result of the fast Fourier transform (FFT) of x, and � is the operation of multiplying the
corresponding elements of the matrix.

In practice, most problems are nonlinear, and the conversion of nonlinear problems into linear
solution methods is expressed as:

ω =
∑

i

αiϕ(xi). (4)

So in the nonlinear regression, solving the coefficient ω turns to solving αi and the mapping
relationship ϕ(xi). k is a Gaussian kernel function, and the nuclear correlation of two samples can be
expressed as:

Ki j = ϕT(xi)ϕ(x j) = k(xi, x j)

= exp
(
−

1
σ2 [‖xi‖

2 + ‖x j‖
2
− 2F−1(x̂∗i � x̂ j)]

) (5)

Obtain the solution of the ridge regression of the kernel space:

α = (K + λI)−1y. (6)

Using the same method to calculate the nonlinear regression coefficient α̂,

α̂ =
ŷ

k̂xx + λ
. (7)

Finally, a nonlinear regression function is obtained as follows:

f (z) = ωTz = F−1(k̂xz
� α̂). (8)

The maximum value of f (z) is the maximum response value and the position of the predicted target.
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3.1.2. Update Strategy

In tracking, the filter model should not be constant. It needs to be updated when the target is
scale variation or deformation. The samples of object xi and coefficient αi should be mainly updated:{

xi = (1− θ)xi−1 + θxi
αi = (1− θ)αi−1 + θαi

(9)

where xi and αi represent the samples and coefficient in frame i, xi−1 and αi−1 are the samples model
and coefficient model in frame i − 1, θ is the learning rate of the update model.

To improve this defect, the update strategy is summarized as follows:

1. When the face detector and tracker are working, t_Sc (the similarity between the tracking result
image and the initial object image) and d_Sc (the similarity between the detection result image
and the initial object image) are calculated. When d_Sc > t_Sc, we set the detection result as the
final output. When d_Sc

≤ t_Sc, we set the tracking result as the output. The output is used to
update the tracking model with a certain learning rate using Equation (9).

2. When the target is subjected to long-term or large-scale occlusion without tracking results, the
results of the face detector are directly assigned to the tracker.

3.2. Face Detection

A multitask cascade CNN (MTCNN) [40] is used in the face detection module to accurately detect
faces and return the rectangular boxes. Face detection is binary classification, which does not need
many filters in each layer. MTCNN provides a lightweight CNN model for face detection and location,
which has less filters per layer but more depth of the whole network. Compared with other cascaded
CNN detection algorithms [45], the 3 × 3 filters are introduced to MTCNN, which is faster in calculation
and has good real-time performance.

MTCNN processes tasks from coarse to fine through a third-stage cascaded framework. The block
diagram is shown in Figure 3. We build an image pyramid by resizing the test image to different scales
and then input the different-scale images to the third-stage cascaded CNN.

3.2.1. The Coarse-to-Fine CNN

The coarse-to-fine CNN includes three networks: P-Net, R-Net and O-Net. The CNN architectures
are shown in Figure 4.

1. P-Net

P-Net, a fully convolutional network, is the first layer, which roughly filters out nonface regions.
The main task of P-Net is to obtain the bounding box regression vectors, calibrate the position of the
face candidate regions, and then merge the overlapping face candidate regions with the nonmaximum
suppression (NMS) method.

2. R-Net

The results of P-Net are resized to 24 × 24, which are the inputs of R-Net. R-Net is not a fully
convolutional network, whose final layer has two full connection layers. Compared with P-Net, R-Net
outputs more precise face classification and bounding box regression.

3. O-Net

O-Net will further screen candidate regions to obtain more accurate results. The outputs of R-Net
are inputted to the final stage with the size of 48 × 48. O-Net processes images more accurately because
it has an extra convolutional layer. O-Net obtains the final face position.

From P-Net to O-Net, the network has increasingly larger input image sizes and deeper structures,
and the features extracted from the network become more expressive.
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3.2.2. Face Detection Strategy

When MTCNN processes multiple faces, we select the candidate box that is the most similar object
to the initial object as the result using the match template method, as shown in Figure 5. The initial
object box given in the first frame and multiple MTCNN results are passed into the template matching
module in subsequent frames. The normalization cross-correlation (NCC) method is introduced in the
template matching.
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3.3. Main Loop

In Algorithm 1 the main loop of the proposed method is given. When the initial object is selected,
the KCF tracking model M is initialized. KCF tracker runs in all frames of the sequence. When tracking
result is none or with large error, the MTCNN detector is started in the next frame. Discrimination
fuses the tracking result Tr and detecting result Dr into a final result R.

The main works of discrimination as follows: (1) When Tr = 0 and Dr , 0, we set R = Dr; (2) when
Tr , 0 and Dr , 0, R equals to the maximum one of two similarities (t_Sc and d_Sc), then R is used to
update M; (3) when Tr = 0 and Dr = 0, the tracker is failure, we set R(i) = R(i − 1).

At this stage, we get the result in frame i. After printing the result, the next image is processed.
In frame i + 1, whether the detector is performed is decided by the parameter of EnableDetect in

frame i. If the EnableDetect is set as True in frame i, we start to detect. In two cases the EnableDetect is
True: (1) no tracking result; (2) RNet.score(R, I(i)) < 0.99. To avoid tracking other objects that are not
faces, we test the result every k frames (we used three in the experiment). The result is sent to R-Net
to calculate the score of face classification. If the score is less than 0.99, we set EnableDetect to True.
Compared to the complex O-Net, we chose R-Net which can achieve good accuracy and faster speed.

Then, we proceed to the next frame until the last one. In a word, the whole tracking process
is completed.
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Algorithm 1 Overall Process of the Proposed Algorithm.

Input: image I, EnableTrack = false, EnableDetect = True, the frequency of judge whether tracker’s result is
correct k.
Output: the final result R.
1 for i = 1:n do
2 if EnableDetect || EnableTrack then
3 Detecting;
4 EnableDetect = False;
5 end if
6 if i = 1 then
7 given the initial object: initobj;
8 initialize tracking filter model M;
9 else
10 if (EnableTrack || Dr(i) ! = 0) then
11 Tracking;
12 if Tr(i) ! = 0 then
13 EnableTrack = True;
14 R(i) = Tr(i);
15 if Dr(i) ! = 0 then
16 R(i) = max(matchTemplate(initobj, Tr(i)), matchTemplate(initobj, Dr(i)));
17 M = update(I(i), R(i));
18 end if
19 else if Dr(i) ! = 0 then
20 R(i) = Dr(i);
21 M = update(I(i), R(i));
22 EnableDetect = True;
23 else
24 EnableTrack = False; EnableDetect = True;
25 R(i) = R(i-1);
26 end if
27 if k > 3 && RNet.score(R, I(i)) < 0.99 then
28 EnableDetect = True;
29 k = 1;
30 end if
31 k++;
32 end if
33 end if
34 show(R(i));
35 end for

4. Experimental Results

In this section, we introduce the details and methods of the experiments. To verify the validity of
the algorithm, we selected 14 groups of face test videos from OTB2015 (object tracking benchmark) [46]
and nine videos from the YouTube Face Database [47]. Qualitative and quantitative evaluation are
introduced to discuss the results.

4.1. Parameters and Details

The experimental platforms used to verify algorithm performance were Visual Studio 2015,
OpenCV3.1.0 and MATLAB 2016a, and the hardware environment was an Intel i5-6500U (Intel
Corporation, Santa Clara, CA, USA) 3.20-GHz CPU with 8 GB RAM.

The KCF and FFTD algorithms adopted the histogram of oriented gradients (HOG) feature; the
cell size was 4 × 4 using a Gaussian kernel in the experiment. MTCNN used CelebA [48] and WIDER
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FACE [49] to train the CNNs. The WIDER FACE dataset was mainly used to train the detection model,
and the CelebA dataset was used to train regression facial landmarks.

4.2. Experimental Metrics

In the experiment, the two basic parameters used to measure target tracking accuracy were the
precision and success rate, which were calculated from the center location error (CLE) and overlap
score. The CLE is the average Euclidean distance between the center locations of the tracking bounding
box and the ground truth. The unit of CLE is pixels, and 20 pixels is usually used in experiments as a
threshold. The overlap rate is defined as the ratio of the intersection to the union between the estimated
bounding box and given ground truth box. The threshold for the overlap rate varies between 0 and 1;
0.5 is often used for performance evaluation. For the OTB2015 dataset, we used one-pass evaluation
(OPE) to test the precision and success rate of all trackers.

4.3. Qualitative Evaluation

4.3.1. Evaluation on OTB2015

In this work, we would like to present the results of 33 trackers in 14 group sequences, in order
to clearly visualize the results, besides those of the FFTD and KCF [10] algorithms; we selected the
top four trackers (context tracker (CXT) [20], collaborative correlation tracker (CCT) [50], Struck [19],
TLD [21]) from the whole 31.

Figure 6 shows the results of the FFTD and KCF algorithms and the other four trackers. We
present the main results for four challenging sequences from the OTB2015 dataset.

1. Occlusion and out-of-view. In the dragonBaby sequence, when the object moves out of camera
view, the KCF and CXT trackers failed. In the girl sequence, the girl was completely occluded by
the man. The KCF method did not perform well.

2. Out-of-plane rotation. In frame 119 of the girl sequence, the girl turned her head such that we
could not see her face clearly; TLD and Struck did not perform well.

3. Illumination. In the trellis sequence, TLD and CXT drifted off the object, while FFTD achieved
the highest precision.

4. Fast motion and motion blur. In dragonBaby, only FFTD could track the fast-moving face. In the
jumping sequence, KCF could not follow a blurred face.

Overall, the proposed FFTD algorithm performed well in most sequences.

4.3.2. Evaluation on YouTube

We also evaluated FFTD, KCF and TLD on the YouTube Face dataset. The dataset, downloaded
from YouTube, has 3425 videos of 1595 people. Figure 7 shows some sequences of the testing sequences.
In fact, most faces in the YouTube dataset had distinct features and little movement, which reduces the
difficulty of tracking tasks. Although three trackers performed well in most videos, we can observe
that FFTD exhibits higher precision.
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4.4. Quantitative Evaluation

This work evaluates the FFTD and KCF algorithms with 31 trackers using OTB2015. Figure 8
shows the one-pass evaluation results in terms of the success rate and precision. The proposed
FFTD performed well, with a precision of 88.1% and an overlap success rate of 86.2%. The CCT and
Struck were the top two methods among the 31 trackers [43], with 84.6%/83.1% and 77.6%/78.2%
for the precision score (PS)/success rate (SR) metrics. Compared with other trackers, FFTD was
an improvement.
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The KCF method performed well, with a precision of 82.7% and an overlap success rate of 81.6%.
However, it usually failed when an object moves out of view, which is a fatal problem. Figure 9 shows
the tracking performance in the out-of-view tracking problem. Compared with KCF, the proposed
FFTD method performed better by 20.9/20.5 in terms of PS/SR. The face detection module and new
tracking strategy of the FFTD algorithm solved this problem. Overall, the FFTD algorithm performed
well on the OTB2015 dataset.
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Table 1 reports the success rate and precision data of the FFTD and KCF algorithms and the other
four trackers (CXT, CCT, Struck, TLD) for some challenging tracking attributes. The attributes were scale
variation (SV), out-of-view (OV), out-of-plane rotation (OPR), low resolution (LR), in-plane rotation
(IPR), illumination (IV), motion blur (MB), background clutter (BC), occlusion (OCC), deformation
(DEF), and fast motion (FM). They are helpful to test the performance of the algorithms in terms of
different aspects.

Table 1. The precision and success rate of six algorithms on eight attributes.

OPR SV OCC MB FM IPR OV BC

FFTD
0.849 1 0.784 0.8 0.765 0.863 0.848 0.816 0.971
0.838 2 0.772 0.791 0.712 0.838 0.816 0.843 0.994

KCF
0.851 0.791 0.796 0.689 0.669 0.851 0.607 0.959
0.814 0.734 0.773 0.644 0.703 0.814 0.638 0.939

CXT
0.864 0.806 0.751 0.847 0.817 0.864 0.699 0.931
0.814 0.65 0.719 0.577 0.592 0.749 0.559 0.911

CCT
0.817 0.777 0.722 0.874 0.859 0.817 0.774 0.935
0.771 0.712 0.74 0.866 0.873 0.771 0.819 0.864

Struck
0.785 0.693 0.651 0.585 0.68 0.728 0.502 0.925
0.771 0.673 0.714 0.533 0.657 0.715 0.534 0.921

TLD
0.764 0.687 0.638 0.794 0.727 0.766 0.427 0.323
0.748 0.687 0.749 0.763 0.741 0.759 0.549 0.736

1 For each attribute of the algorithm, the top is precision and the bottom is success rate. 2 Bold represents the best.

The FFTD algorithm performed well in terms of the attributes of scale variation, out-of-view,
out-of-plane rotation, in-plane rotation, background clutter, occlusion and fast motion. According to the
experimental results, the FFTD algorithm did not perform well in motion blur. In motion blur, the target
region is blurred due to the motion of target or camera. The fuzzy face features lead to the inaccurate
detection result. In the future work, we will improve the performance in the challenging attributes.
The CXT method had the highest success rate in terms of scale variation, out-of-plane rotation and
in-plane rotation. However, in most cases, FFTD algorithm performed better than other algorithms.

2. Real-Time Evaluation

We also evaluated frame rates of the six algorithms. The frame rate FR is defined as, FR = N/T,
where N is the total frames in the sequences, T is the time of a tracker to pass through the sequences.

Table 2 reports the frame per second (fps) rate of the six trackers over 14 sequences in the OTB2015
dataset. The average frame rate of KCF was the highest, reaching 92.2 fps. The FFTD algorithm was
next, at 59.4 fps. The TLD algorithm obtained 19.5 fps. CCT had the worst real-time performance. The
speed of FFTD is more than double that of the classic tracking-by-detection algorithm TLD. Compared
with KCF, FFTD had reduced speed, but it still met the requirements of real-time applications.
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Table 2. Frame rates (fps) of the six algorithms.

KCF FFTD TLD CXT Struck CCT

Blurface (493 frames) 1 88.9 62.4 13.0 10.9 14.2 6.2
Boy (602 frames) 121.3 50.4 13.4 5.1 13.1 7.2

David (770 frames) 55.7 52.8 17.2 9.5 6.1 7.4
david2 (537 frames) 137.5 61.4 26.7 21.3 6.9 8.3
Dudek (1145 frames) 43.6 64.6 7.1 5.7 10.5 4.6

dragonBaby (113 frames) 87.2 40.8 18.5 8.6 8.3 7.5
faceocc1 (892 frames) 75.5 64.0 17.9 8.5 9.7 6.0
faceocc2 (812 frames) 35.8 60.8 21.9 6.9 7.3 7.0
Fleetface (707 frames) 67.0 42.1 7.9 6.8 10.2 5.7

Girl (500 frames) 139.2 64.9 20.1 33.5 9.0 7.8
Man (134 frames) 176.0 80.1 52.9 32.0 14.8 7.6

Mhyang (1490 frames) 62.3 80.3 17.1 10.5 6.8 7.0
Jumping (313 frames) 153.6 42.5 15.0 7.3 10.7 7.5

Trellis (569 frames) 46.7 63.7 24.8 12.4 6.3 6.7
average 92.2 59.4 19.5 12.4 9.6 6.9

1 Frame length of sequence.

5. Conclusions

To improve the robustness and real-time performance of the tracking algorithm in intelligent
video monitoring, this work proposes the FFTD algorithm, which is based on the tracking-by-detection
framework. First, the KCF algorithm is adopted in FFTD, with an updating strategy that incorporates
the tracking result modified by the detector into the filter model. In addition, the MTCNN face detector
enhances the overall robustness performance of the algorithm. The experimental results show that the
FFTD algorithm has good precision and accuracy, even under challenging conditions. In conclusion,
the FFTD algorithm satisfies the requirements of fast and long-term secure monitoring.

In future work, we will improve the performance at tracking challenges involving motion blur,
scale variation and rotation. Moreover, this work will be extended to track other objects, requiring us
to design more-robust neural networks.
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