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Featured Application: The grinding robot and its control system described in this paper can be
used for automatic grinding of free-form surfaces, such as engine blades, aircraft wings, propeller
blades, fan blades, high-speed rail bogies, automotive engine cylinders, etc.

Abstract: The actuator dead zone of free-form surface grinding robots (FFSGRs) is very common in
the grinding process and has a great impact on the grinding quality of a workpiece. In this paper,
an improved trajectory tracking algorithm for an FFSGR with an asymmetric actuator dead zone
was proposed with consideration of friction forces, model uncertainties, and external disturbances.
The presented control algorithm was based on the machine learning and sliding mode control (SMC)
methods. The control compensator used neural networks to estimate the actuator’s dead zone and
eliminate its effects. The robust SMC compensator acted as an auxiliary controller to guarantee the
system’s stability and robustness under circumstances with model uncertainties, approximation
errors, and friction forces. The stability of the closed-loop system and the asymptotic convergence
of tracking errors were evaluated using Lyapunov theory. The simulation results showed that the
dead zone’s non-linearity can be estimated correctly, and satisfactory trajectory tracking performance
can be obtained in this way, since the influences of the actuator’s dead zone were eliminated.
The convergence time of the system was reduced from 1.1 to 0.8 s, and the maximum steady-state
error was reduced from 0.06 to 0.015 rad. In the grinding experiment, the joint steady-state error
decreased by 21%, which proves the feasibility and effectiveness of the proposed control method.

Keywords: free-form surface grinding robots (FFSGRs); dead zone; machine learning; sliding mode
control (SMC); trajectory tracking

1. Introduction

In many manufacturing fields, the processing of free-form surfaces is a challenging problem [1]
(e.g., in aircraft engines, marine propellers, and sanitary equipment). In fact, poor working conditions
have a negative impact on the health of workers. Robot grinding can reduce labor costs, reduce safety
accidents, improve grinding quality, and work efficiency [2]. The free-form surface grinding robot
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(FFSGR) shown in Figure 1 was the result of a research project at the National Engineering Laboratory
for robot visual perception and control. The FFSGR consisted of an industrial robot and its controller,
an abrasive band, workpiece, and pens [3].

Automatic grinding robot systems have been widely studied by researchers [2–6]. In practice,
actuator non-linearities, including dead zones, backlashes, and saturation, are quite common [7].
Especially, actuator dead zones may lead to undesired performance, such as excessive steady-state
errors, poor transient responses, and a large overshoot [8]. Hence, the compensation of actuator
non-linearities is essential for the precise motion and adaptability of the system’s control scheme [9],
and the study of how to deal with actuator dead zones remains an important topic for the design of
FFSGR control.
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Control methods for non-linear systems with dead zones have been extensively studied [10–17].
Early research in this field can be traced back to reference [11], where a general control framework
for a non-linear system with an unknown dead zone was established. In the last two decades,
many control schemes have been developed, such as robust adaptive control [18–22], backstepping
control [23–26], fuzzy logic control [15,16,27–32], and neural network (NN) control [10,14,17,33–39].
As an effective method for non-linear systems, many studies have proven that artificial neural networks
can approximate a wide range of non-linear functions accurately. Compared with other neural network
structures, radial basis function neural network (RBFNN)-based control algorithms usually require
fewer calculation resources and achieve the desired trajectory faster [36]. Because of these advantages,
RBFNNs are widely used for dead zone estimation [10,34–39]. In Reference [35], an approach
for constructing common virtual control functions was proposed for the studied system, and a
backstepping-based adaptive control methodology with low computation burden was systematically
developed. The simulation studies of a ship maneuvering system were used to illustrate the effectiveness
of the proposed method. In Reference [36], the RBFNN was introduced to mitigate the impact of input
dead zones, and an adaptive neural network controller based on the state feedback and output feedback
method was also designed for a non-linear affine system. In Reference [37], an adaptive predictive
control algorithm was employed to control a continuously stirred tank reactor (CSTR) system, and the
unknown functions were approximately obtained via RBFNNs. In Reference [38], RBFNNs were used
to model packaged unknown non-linearities, and an adaptive neural controller was systematically
derived. The study in Reference [39] proposes a dynamic TSK (Takagi–Sugeno–Kang)-type RBF-based
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neural-fuzzy (DTRN) system, in which the learning algorithm can not only generate and prune fuzzy
rules online but also adjust the control parameters. Its effectiveness is also verified for a chaotic system
and an inverted pendulum. In Reference [40], a backstepping sliding mode control algorithm with
fuzzy wavelet neural networks was developed for a non-linear dynamic system. A neural network
was used to identify dead zones, and the robustness of the control system was guaranteed via sliding
mode control. Hence, for systems with dead zones, the most effective method to obtain better control
performance is to synthesize a robust controller using RBFNNs and a non-linear control technique.

Based on the existing literature, this paper further studied the trajectory tracking control problem
of FFSGRs with actuator dead zone non-linearity. Herein, an adaptive robust sliding mode control
algorithm was proposed for the considered system, and RBFNN-based machine learning technology
was also introduced for the estimation and mitigation of an actuator’s dead zone. The parameters of
the RBFNNs were restricted by the Lyapunov functions for system stability. The main contributions
of this paper are: (1) a machine learning method based on RBFNNs was applied to the actuator
non-linear control of FFSGRs; (2) in addition to the actuator dead zone, the model uncertainty, external
disturbance, and joint friction in the grinding process were also taken into account in the design of
the system control; (3) with the presented control method, dead zone non-linearity was not required
to be totally symmetrical, as the dead-band could be a non-linear function. A simulation study was
provided to further demonstrate the effectiveness of the developed control scheme. The experimental
results of the FFSGR showed the superiority of the control scheme.

The rest of this paper is organized as follows: The system model, dead zone non-linearity, RBFNNs,
and necessary assumptions are introduced in Section 2. Section 3 illustrates a robust adaptive control
method based on the dead zone compensation scheme. Section 4 reveals the validity and performance
of the proposed method via simulation and experimental results. The conclusions are presented in
Section 5.

2. System Dynamic Description

2.1. System Model of Free-Form Surface Grinding Robot

The dynamics of an FFSGR can be considered as the dynamics of an n-link robot manipulator,
which are expressed as follows [41]:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + F

( .
q
)
+ τd = uD (1)

where
(
q,

.
q,

..
q
)
∈ Rn×1 are the vectors of joint position, velocity, and acceleration, respectively.

M(q) ∈ Rn×n is the nominal symmetric inertial matrix. C
(
q,

.
q
)
∈ Rn×n are the vectors of the nominal

Coriolis and centripetal forces, respectively. G(q) ∈ Rn×1 expresses the nominal gravity vector.
F
( .
q
)
∈ Rn×1 expresses the friction vector. τd ∈ Rn×1 is the disturbance. uD ∈ Rn×1 is the joint torque

input vector with an actuator dead zone.
In practice, it is hard to establish the exact mathematical model of the FFSGR. Considering the

model uncertainty, one gets: 

M(q) = M0(q) + ∆M(q)

C
(
q,

.
q
)
= C0

(
q,

.
q
)
+ ∆C

(
q,

.
q
)

G(q) = G0(q) + ∆G(q)

F
( .
q
)
= F0

( .
q
)
+ ∆F

( .
q
)

τd = τ0 + ∆τ

. (2)

The purpose is to design a torque controller uD for the FFSGR with an actuator dead zone to make
the real trajectory track the desired one. To achieve this objective, three properties of the dynamics of
the robot model (1) must be satisfied [41]:
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Property 1. M(q) is a positive definite symmetric matrix and uniformly bounded:

m1‖x‖2 ≤ xTM(q)x ≤ m2‖x‖2,∀x ∈ Rn×1

where m1 and m2 are known positive constants and they depend on the mass of the robot manipulators.

Property 2.
.

M(q) − 2C
(
q,

.
q
)

is a skew symmetric matrix for any vector x:

xT
( .
M(q) − 2C

(
q,

.
q
))

x = 0

Property 3. C
(
q,

.
q
) .
q , G(q) , F

( .
q
)
, and τd are bounded as follows:

‖C
(
q,

.
q
) .
q‖ ≤ Ck‖

.
q‖2, ‖G(q)‖ ≤ Gk, ‖F

( .
q
)
‖ ≤ Fk, ‖τd‖ ≤ τk,

where Ck, Fk, Gk, and τk are positive constants.

Remark 1. The abovementioned properties are not very strict, and they are common assumptions in the literature
about robot control [36].

2.2. Dead Zone Non-Linearity Description

The dead zone is usually described as a static non-linear function that indicates the system’s
insensitivity to small signals. For non-linear systems, the dead zone prevents the system from
responding to some small signals and, finally, leads to significant tracking errors.

Generally, a dead zone’s non-symmetric non-linearity can be depicted as in Figure 2, and its
mathematical model can be described as follows [10,36]:

uD = D(uC) =


n(uC) uC ≤ d−

0 d− < uC < d+

m(uC) uC ≥ d+
, (3)

where uC and uD denote the input signal and the dead zone output signal, respectively. m(uC) and
n(uC) are smooth non-linear unknown functions. d+ and d− are also unknown boundaries and
represent most of the dead zone phenomena.
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Assumption 1. m(uC) and n(uC) are all monotonically increasing, smooth, and invertible [10].
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Then, the inverse of D(uC) can be obtained as:

D−1(u) =


n−1(u) u < 0

0 u = 0

m−1(u) u > 0

(4)

and depicted as in Figure 3.
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(
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3. An Adaptive Robust Controller Using SMCs and RBFNNs

The proposed dead zone compensation scheme is shown in Figure 4. O1 is used for dead zone
compensation and O2 is used for dead zone estimation. Where u is the ideal control signal, uc and ud
are unknown vectors and represent the input and the output of the dead zone, respectively [10].
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3.1. Dead Zone Compensation Algorithm

The dead zone inverse can be expressed in the equivalent form as [42]:

D−1(u) = u + uNN (6)
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From Equations (4) and (6), one can get uNN as follows:

uNN =


m−1(u) − u uC < 0

0 uC = 0

n−1(u) − u uC > 0

(7)

According to the approximation theory, the ideal output values of the dead zone estimation and
compensation are calculated as: D(uC) = {WD}

T
· ζD(uC) + δD(uC)

uNN = {WC}
T
· ζC(u) + δC(u)

(8)

where WD and WC are the values of the ideal weights, ζD(uC) and ζC(u) are outputs of the hidden
layer, and δD(uC) and δC(u) are modeling errors.

The actual output can be given as follows: D̂(uC) =
{
ŴD

}T
·
{
ζD(uC)

}
ûNN =

{
ŴC

}T
·
{
ζC(u)

} (9)

where ŴD and ŴC are estimators of the weight values.
To define W̃D and W̃C as the error weights estimators: W̃D = WD − ŴD

W̃C = WC − ŴC
(10)

The purpose of dead zone compensation is to generate an actual control signal with the dead zone
ud, tracking the ideal control law u. The relationship between u and uD is given by

Theorem 1.
uD = u−

{
ŴD

}T
·

{
ζ′D(uc)

}
·

{
W̃C

}T
·
{
ζC(u)

}
+{

W̃D
}T
·

{
ζ′D(uc)

}
·

{
ŴC

}T
·
{
ζC(u)

}
+ d

(11)

d is the modeling mismatch, represented as:

d = −
{
W̃D

}T
·

{
ζ′D(uc)

}
· {WC}

T
·
{
ζC(u)

}
− b + δD(uC) (12)

Here,

b = {WD}
T
·

{(
ζ′D

(
u +

{
ŴC

}T
·
{
ζC(u)

}))
· (δC(u))

}
+ {WD}

T
·

{
R
(
W̃C, u

)}
+ δD(uC) (13)

withR
(
ŴC, u

)
defined in the proof.

Proof. From Equations (3) and (8), the dead zone output of the FFSGR is:

uD = D(uC) = {WD}
T
· ζD(uC) + δD(uC)

= {WD}
T
· ζD(u + ûNN(u)) + δD(u + ûNN(u))

(14)

and from Equations (5) and (6), one has:

u = D
(
D−1(u)

)
= D(u + uNN(u)) (15)
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Substituting Equation (8) into (15):

u = {WD}
T
· ζD(u + uNN(u)) + δD(u + uNN(u))

= {WD}
T
· ζD

(
u + {WC}

T
· ζC(u) + δC(u)

)
+ δD(u + uNN(u))

= {WD}
T
· ζD

(
u +

{
ŴC

}T
· ζC(u) +

{
W̃C

}T
· ζC(u) + δC(u)

)
+ δD(u + uNN(u))

(16)

Let x = u +
{
ŴC

}T
· ζC(u) +

{
W̃C

}T
· ζC(u) + δC(u), x0 = u +

{
ŴC

}T
· ζC(u) Then, x − x0 ={

W̃C
}T
· ζC(u) + δC(u).

Let f (x) = ζD(x), using the Taylor series expansion f (x) = f (x0) + f ′(x0)(x− x0) + R(ξ); where
R(ξ) = 1/2!ζ”

D(ξ0)(x− x0)
2, one has:

R(ξ) = R
(
W̃C, u

)
=

1
2!
ζ”

D(ξ0)
({

W̃C
}T
· ζC(u) + δC(u)

)2
(17)

then Equation (16) becomes

u = {WD}
T
·

(
ζD(x0) + ζ′D(x0)(x− x0) + R(ξ)

)
+ δD(u + uNN(u))

= {WD}
T
· ζD

(
u +

{
ŴC

}T
· ζC(u)

)
+

{WD}
T
· ζ′D

(
u +

{
ŴC

}T
· ζC(u)

)
·

({
W̃C

}T
· ζC(u) + δC(u)

)
+

{WD}
T
·R(ξ) + δD(u + uNN(u))

(18)

Substituting b given by Equation (13) into (18), one has:

u = {WD}
T
· ζD

(
u +

{
ŴC

}T
· ζC(u)

)
+

{WD}
T
· ζ′D

(
u +

{
ŴC

}T
· ζC(u)

)
·

{
W̃C

}T
· ζC(u) + b

(19)

Combining Equations (9) and (19), one has:

u + δD(uC) = {WD}
T
· ζD

(
u +

{
ŴC

}T
· ζC(u)

)
+{

ŴD
}T
· ζ′D

(
u +

{
ŴC

}T
· ζC(u)

)
·

{
W̃C

}T
· ζC(u)+{

W̃D
}T
· ζ′D

(
u +

{
ŴC

}T
· ζC(u)

)
·

{
W̃C

}T
· ζC(u) + b + δD(uC)

= {WD}
T
· ζD(uC) +

{
ŴD

}T
· ζ′D(uC) ·

{
W̃C

}T
· ζC(u)+{

W̃D
}T
· ζ′D(uC) ·

{
W̃C

}T
· ζC(u) + b + δD(uC)

= {WD}
T
· ζD(uC) +

{
ŴD

}T
· ζ′D(uC) ·

{
W̃C

}T
· ζC(u)+{

W̃D
}T
· ζ′D(uC) · {WC}

T
· ζC(u) −

{
W̃D

}T
· ζ′D(uC) ·

{
ŴC

}T
· ζC(u) + b + δD(uC)

(20)

Combining Equations (12), (14), and (20), one gets:

uD = u−
{
ŴD

}T
·

{
ζ′D(uC)

}
·

{
W̃C

}T
·
{
ζC(u)

}
+{

W̃D
}T
·

{
ζ′D(uC)

}
·

{
ŴC

}T
·
{
ζC(u)

}
+ d

(21)

�
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Theorem 2. The norm of modeling mismatch d is bounded, and the upper bound is as follows:

‖d‖ ≤ i1‖W̃D‖F + i2‖W̃C‖
2
F + i3‖W̃C‖F + i4 (22)

where ‖W̃D‖F , ‖W̃C‖F are the Frobenius norm of W̃D, W̃C. i2, i3, and i4 are constants and can be calculated.

Proof. From the definition of d in (12), one has:

‖d‖ ≤ ‖W̃D‖F · ‖ζ
′

D(uC)‖ · ‖WC‖F · ‖ζC(u)‖+ ‖b(t)‖+ ‖δD(uD)‖

≤ ‖W̃D‖F · ‖ζ
′

D(uC)‖ · ‖WCM‖ · ‖ζC(u)‖+ ‖b‖+ δN

= i1‖W̃D‖F + ‖b‖+ δN

(23)

where i1 = ‖ζ′D(uc)‖ · ‖WCM‖ · ‖ζC(u)‖, δN = ‖δD(uC)‖, ‖WCM‖ is the maximum value of ‖WC‖F.
From the definition of b in Equation (13) and the Taylor expansion remainder in Equation (17),

one has:

‖b‖ ≤ ‖WD‖F · ‖ζ
′

D(uC)‖ · ‖δC(u)‖+
1
2
‖WD‖F · ‖ζ

”
D(ξ0)‖ · ‖W̃C‖

2
F · ‖ζC(u)‖

2+

‖WD‖F · ‖ζ
”
D(ξ0)‖ · ‖W̃C‖F · ‖ζC(u)‖ · ‖δC(u)‖+

1
2
‖WD‖F · ‖ζ

”
D(ξ0)‖ · ‖δC(u)‖

2 + ‖δD(uC)‖

≤ WDM · ‖ζ
′

D(uC)‖ · δCN +
1
2

WDM · ‖ζ”
D(ξ0)‖ · ‖W̃C‖

2
F · ‖ζC(u)‖

2+

WDM · ‖ζ”
D(ξ0)‖ · ‖W̃C‖F · ‖ζC(u)‖ · δCN +

1
2

WDM · ‖ζ”
D(ξ0)‖ · δ2

CN + δDN

= i2‖W̃C‖
2
F + i3‖W̃C‖F + i4

(24)

where WDM, δDN, and δCN is the maximum of ‖WD‖F, ‖δD(uD)‖ and ‖δC(u)‖, respectively. Moreover,
i2 = 0.5WDM · ‖ζ”

D(ξ0)‖ · ‖ζC(u)‖
2, i3 = WDM · ‖ζ”

D(ξ0)‖ · ‖ζC(u)‖ · δCN, and i4 = WDM · ‖ζ′D(uC)‖ · δCN +

0.5WDM · ‖ζ”
D(ξ0)‖ · δ2

CN + δDN.
Theorem 2 is proven by Equations (23) and (24). From Theorem 2, one can get the upper bound of

the d(t) in Equation (12), which ensures the stability of the system.
The adaptive machine learning law of RBFNNs can be designed as:

.
ŴD = −S · ζ′D(uC) ·

{
ŴC

}T
· ζC(u) · s−K1 · S · ‖s‖ · ŴD

.
ŴC = T · ζC(u) · s · ŴD · ζ′D(uC) −K1 · T · ‖s‖ · ŴC −K2 · T · ‖s‖ · ‖ŴC‖F · ŴC

(25)

where ŴC and ŴD are the weight value vector of O1 and O2, respectively, as illustrated in Figure 4.
S = ST, T = TT are positive constant symmetric matrices, and K1 > 0, K2 > 0. �

3.2. Controller Design and Stability Analysis

In this study, the proposed dead-zone compensation-based adaptive control method was applied to
improve the trajectory tracking performance of the FFSGR, with the actuator dead zone for non-linearity.

The adaptive tracking control scheme is shown in Figure 5 and mainly consisted of two parts. The
first part was the ideal controller, and the second part was the dead zone estimation and compensation:

uC = u + ûNN(u) (26)

where ûNN(u) is the compensation item for the dead zone introduced in Section 3. u is the ideal control
signal and the design is shown in the following section.
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The trajectory tracking error was defined as:

e(t) = qd(t) − q(t) (27)

Compared to other sliding surfaces, the parameter design of the linear sliding surface was simpler
and can be more easily implemented in engineering, since only the slope of the sliding surface should
be designed. Therefore, the sliding surface is introduced here and designed as follows:

s(t) = ce(t) +
.
e(t) (28)

where c is the gain matrix of the sliding mode’s surface.
Defining the auxiliary error variable qs(t) =

∫
s(t)dt + q(t), from Equations (27) and (28), one

obtains the derivatives: { .
qs = s(t) +

.
q(t)

..
qs = c

.
e(t) +

..
qd(t)

(29)

Combining Equations (1) and (29) yields:

M(q)
.
s(t) = M(q)

..
qs −M(q)

..
q

= M(q)
..
qs + C

(
q,

.
q
) .
q + G(q) + F

( .
q
)
+ τd − uD

= M(q)
..
qs + C

(
q,

.
q
)( .

qs − s(t)
)
+ G(q) + F

( .
q
)
+ τd − uD

= −C
(
q,

.
q
)
s(t) + f − uD

(30)

where f = M(q)
..
qs + C

(
q,

.
q
) .
qs + G(q) + F

( .
q
)
+ τd, which represents the system dynamics.

The ideal adaptive robust control law using RBFNNs and a sliding mode is:

u = f0 + Kgs(t) −Kssgn(s(t)) (31)

where f0 = M0(q)
..
qs + C0

(
q,

.
q
) .
qs + G0(q) + F0

( .
q
)
+ τ0, and the modeling error is

f̃ = f − f0

= ∆M(q)
..
qs + ∆C

(
q,

.
q
) .
qs + ∆G(q) + ∆F

( .
q
)
+ ∆τd

(32)
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‖ f̃ ‖ ≤ fM, fM is the maximum value of f̃ . Kg > 0 and Ks > 0 are often chosen as diagonal matrices.
Substituting ideal control law (31) and the relationship with dead zone output Equations (11) into (30)
yields the closed loop error dynamics:

M(q)
.
s(t) = −C

(
q,

.
q
)
s(t) −Kgs(t) +

{
ŴD

}T
·

{
ζ′D(uc)

}
·

{
W̃C

}T
·
{
ζC(u)

}
−{

W̃D
}T
·

{
ζ′D(uc)

}
·

{
ŴC

}T
·
{
ζC(u)

}
+ f̃ − d−Kssgn(s(t))

(33)

Theorem 3. Given the system in (1), selecting the tracking control law (31) plus the dead zone estimation
and compensation law (9) as well as the adaptive tuning law (25), the closed loop error of the control system is
uniformly bounded. Moreover, the tracking error can be kept as small as desired by increasing the gain Kg.

Proof. To guarantee the stability of the total control system, the Lyapunov function was chosen
as follows:

V =
1
2

sT(t)M(q)s(t) +
1
2

n∑
k=1

{
W̃Dk

}T
S−1

{
W̃Dk

}
+

1
2

n∑
k=1

{
W̃Ck

}T
T−1

{
W̃Ck

}
(34)

and the derivative was:

.
V = sT(t)

(
M(q)

.
s(t) + C

(
q,

.
q
)
s(t)

)
+

n∑
k=1

{
W̃Dk

}T
S−1

{ .

W̃Dk

}
+

n∑
k=1

{
W̃Ck

}T
T−1

{ .

W̃Ck

}
(35)

Substituting Equations (33) into (35), one gets:

.
V = sT(t)


−Kgs(t) +

{
ŴD

}T
·

{
ζ′D(uc)

}
·

{
W̃C

}T
·
{
ζC(u)

}
−{

W̃D
}T
·

{
ζ′D(uc)

}
·

{
ŴC

}T
·
{
ζC(u)

}
+

f̃ − d−Kssgn(s(t))

+
n∑

k=1

{
W̃Dk

}T
S−1

{ .

W̃Dk

}
+

n∑
k=1

{
W̃Ck

}T
T−1

{ .

W̃Ck

}
= −sT(t)Kgs(t) + sT(t)

{
ŴD

}T
·

{
ζ′D(uc)

}
·

{
W̃C

}T
·
{
ζC(u)

}
−

sT(t)
{
W̃D

}T
·

{
ζ′D(uc)

}
·

{
ŴC

}T
·
{
ζC(u)

}
+

sT(t) f̃ − sT(t)d− sT(t)Kssgn(s(t))+
n∑

k=1

{
W̃Dk

}T
S−1

{ .

W̃Dk

}
+

n∑
k=1

{
W̃Ck

}T
T−1

{ .

W̃Ck

}

(36)

Combining adaptive law (25) with (36):

.
V = −sT(t)Kgs(t) + sT(t)

{
ŴD

}T
·

{
ζ′D(uc)

}
·

{
W̃C

}T
·
{
ζC(u)

}
−

sT(t)
{
W̃D

}T
·

{
ζ′D(uc)

}
·

{
ŴC

}T
·
{
ζC(u)

}
+

sT(t) f̃ − sT(t)d− sT(t)Kssgn(s(t))+
n∑

k=1

{
W̃Dk

}T
(
ζ′D(uCk) ·

{
ŴCk

}T
· ζC(uk) · sk + K1 · ‖sk‖ · ŴDk

)
+

n∑
k=1

{
W̃Ck

}T(
−ζC(uk) · sk · ŴDk · ζ

′

D(uCk) + K1 · ‖sk‖ · ŴCk + K2 · ‖sk‖ · ‖ŴC‖F · ŴCk
)

(37)
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Since
sT(t)

{
W̃D

}T
·

{
ζ′D(uc)

}
·

{
ŴC

}T
·
{
ζC(u)

}
=

n∑
k=1

{
W̃Dk

}T
·

{
ζ′Dk(uc)

}
·

{
ŴCk

}T
·
{
ζCk(u)

}
sk(t)

sT(t)
{
ŴD

}T
·

{
ζ′D(uc)

}
·

{
W̃C

}T
·
{
ζC(u)

}
=

n∑
k=1

{
W̃Ck

}T
· ζCk(u) ·

{
ŴDk

}T
·

{
ζ′Dk(uC)

} (38)

then.

.
V = −sT(t)Kgs(t) +

n∑
k=1

{
W̃Dk

}T
K1‖s‖ŴDk+

n∑
k=1

{
W̃Ck

}T(
K1‖s‖ŴCk + K2‖s‖‖ŴC‖FŴCk

)
+

sT(t) f̃ − sT(t)d− sT(t)Kssgn(s(t))

= −sT(t)Kgs(t) + K1‖s‖ tr
(
W̃T

DŴD
)
+ ‖s‖ tr

(
W̃T

CK1ŴC + W̃T
CK2‖ŴC‖FŴC

)
−

−sT(t)d + sT(t)
(

f̃ −Kssgn(s(t))
)

= −sT(t)Kgs(t) + K1‖s‖ tr
(
W̃T

D

(
WD − W̃D

))
− sT(t)d + sT(t)

(
f̃ −Kssgn(s(t))

)
+

‖s‖ tr
(
W̃T

CK1
(
WC − W̃C

))
+ ‖s‖ tr

(
W̃T

CK2‖ŴC‖F

(
WC − W̃C

))
(39)

According to the inequality tr(x̃(x− x̃)) ≤ ‖x̃‖F‖x‖F − ‖x̃‖
2
F, one has:

tr
(
W̃T

D

(
WD − W̃D

))
≤ ‖W̃D‖F‖WD‖F − ‖W̃D‖

2
F ≤ ‖W̃D‖F

(
WDM − ‖W̃D‖F

)
tr
(
W̃T

CK1
(
WC − W̃C

))
≤ K1

(
‖W̃C‖F‖WC‖F − ‖W̃C‖

2
F

)
≤ K1‖W̃C‖F

(
WCM − ‖W̃C‖F

)
tr
(
W̃T

CK2‖ŴC‖F

(
WC − W̃C

))
≤ K2‖W̃C‖FW2

CM + 2K2‖W̃C‖
2
FWCM −K2‖W̃C‖

3
F

(40)

According to Theorem 2, combining Equations (40) and (39):

.
V ≤ −‖s‖

 Kgmin‖s‖ −K2‖W̃C‖FW2
CM − 2K2‖W̃C‖

2
FWCM + K2‖W̃C‖

3
F −K1‖W̃D‖F

(
WDM − ‖W̃D‖F

)
+

−K1‖W̃C‖F

(
WCM − ‖W̃C‖F

)
− i1‖W̃D‖F − i2‖W̃C‖

2
F − i3‖W̃C‖F − i4


= −‖s‖

 Kgmin‖s‖+ K1‖W̃D‖
2
F − (K1WDM + i1)‖W̃D‖F + K2‖W̃C‖

3
F+

+(K1 − 2K2WCM − i2)‖W̃C‖
2
F −

(
K1WCM + K2W2

CM + i3
)
‖W̃C‖F − i4


= −‖s‖


Kgmin‖s‖+ K1

[
‖W̃D‖F −

1
2

(
WDM +

i1
K1

)]2

+

−
1
4

K1

(
WDM +

i1
K1

)2

+ m
(
‖W̃C‖

2
F

)
− i4



(41)

Let m(x) = K2x3 + (K1 − 2K2WCM − a2)x2
−

(
K1WCM + K2W2

CM + a3
)
x, C = inf

{
m(x), x > 0

}
, and

n(x) = m(x) + C.
Then

.
V ≤ −‖s‖


Kgmin‖s‖+ K1

(
‖W̃D‖F −

1
2

(
WDM +

i1
K1

))2

+

−
1
4

K1

(
WDM +

i1
K1

)2

+ h
(
‖W̃C‖F

)
−C− i4

 (42)

Therefore,
.

V is guaranteed to be negative as long as:

‖s‖ ≥

1
4

K1

(
WDM +

i1
K1

)2

+ C + i4

Kgmin
(43)
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or

K1

(
‖W̃D‖F −

1
2

(
WDM +

i1
K1

))2

≥ −
1
4

K1

(
WDM +

i1
K1

)2

+ h
(
‖W̃C‖F

)
−C− i4 (44)

or

h
(
‖W̃C‖F

)
≥ −

1
4

K1

(
WDM +

i1
K1

)2

−C− i4 (45)

Equations (43)–(45) are the system convergence conditions. They can be rewritten as:

‖s‖ ≥

1
4

K1

(
WDM +

i1
K1

)2

+ C + i4

Kgmin

‖W̃D‖F ≥

√
1
4

K1

(
WDM +

i1
K1

)2

+
C + i4

K1
+

1
2

(
WDM +

i1
K1

)
‖W̃C‖F ≥ max

n−1

1
4

K1

(
WDM +

i1
K1

)2

+ C + i4


. (46)

�

4. Simulation and Experimental Results

4.1. Simulation Analysis

To verify the effectiveness of the proposed intelligent control method using machine learning
based on RBFNNs, the two-link robot manipulator model of FFSGR shown in Figure 6 was utilized.
Based on Reference [10], the dynamic equation for the two-link robot manipulators with joint friction
and external disturbance can be described as follows:

M(q) =
[

M11 M12

M21 M22

]
, C(q) =

[
C11 C12

C21 C22

]
, G(q) =

[
G1

G2

]
, F

( .
q
)
=

[
F1

F2

]
, τd =

[
τ1

τ2

]
(47)

and 
M11 = (m1 + m2)l21 + m2l22 + 2m2l1l2 cos(q2)

M22 = m2l22
M12 = M21 = m2l22 + m2l1l2 cos(q2)

,


C11 = −m2l1l2 sin(q2)

.
q2

C12 = −m2l1l2 sin(q2)
( .
q1 +

.
q2

)
C21 = m2l1l2 sin(q2)

.
q1, C22 = 0

G1 = (m1 + m2)l1g cos(q2) + m2l2g cos(q1 + q2)

G2 = m2l2g cos(q1 + q2)
,


F1 = 0.2 sign

( .
q1

)
F2 = 0.2 sign

( .
q2

) ,


τ1 = 0.5 sin(t)

τ2 = 0.5 cos(t)

(48)

here m1 and m2 are the masses of joint 1 and joint 2, respectively; l1 and l2 are the length of joint 1 and
joint 2, respectively; and g is the acceleration of gravity.
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Figure 6. Two-link robotic manipulator model of free form surface grinding robots(FFSGRs).

The parameters of the considered two-link robot manipulators are given as:

m1 = 3kg, m2 = 2kg, l1 = 0.8m, l2 = 1m, g = 10m/s2 (49)

The chosen dead zone parameters are:

d+ = 13, d− = −15, m(uC) = uC − d+, n(uC) = uC + d− (50)

The parameter values used in the adaptive control system are:

c = diag
[

6 6
]
, Kg = diag

[
30 30

]
, Ks = diag

[
1 1

]
(51)

The parameter values used in the RBFNNs are:

S = diag
[

400 400
]
, T = diag

[
500 500

]
, bi = 100, ci =

[
−50 −20 −10 0 10 20 40
−50 −20 −10 0 10 20 40

]
(52)

where the initial values of the weights are all 20.
The control objective was to control the joint angles of the two-link robot manipulators to follow

the desired trajectories. The initial positions of the joints and the initial velocities of the joints
were 0, while the desired position trajectories of the two-link robot manipulators were chosen as

q =
[

2 sin(0.2πt) cos(0.2πt)
]T

(in radians).
As illustrated in Figure 7, due to the existence of dead zone dynamics, there was a large error

between the actual output of the joint driver and the ideal output of the controller. The existence of
this error significantly affected the performance of the controller, so it was necessary to identify and
compensate for the dead zone characteristics.
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Figure 7. Input signal tracking performance of joint 1 (left) and joint 2 (right) without dead
zone compensation.

As shown in Figure 8, the designed identification method based on RBFNNs can converge in
limited time, and the dead zone characteristics can be accurately identified. To eliminate the influence
of a dead zone on system performance, the identification results should be added to the controller as a
compensation term.
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Figure 8. The estimated performance of the dead zone characteristics of joint 1 (left) and joint 2 (right).

The position tracking results are shown in Figure 9. Due to the existence of a dead zone, the control
method without compensation has an obvious steady-state error. All three methods can make the
system stable, namely, PD (proportional differential), SMC (sliding mode control), and RASMC (robust
adaptive sliding mode control). For joint 1, the convergence time of the three methods was 3 s, 1.1 s,
and 0.8 s, respectively. For joint 2, the convergence time of the three methods is 0.9 s, 2.8 s, and 6.4 s,
respectively. The maximum steady-state error was reduced from 0.06 rad to 0.015 rad. It was shown
that the proposed RASMC method was superior to the other two methods in convergence speed, which
is consistent with the theoretical analysis.
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4.2. Experiment Validation 

In order to further verify the effectiveness and practicability of the proposed control method, a 
robot grinding experiment was carried out in the lab. As shown in Figure 11, the experimental setup 
was based on an automatic production line for the intelligent manufacture of high-end equipment, 
which was independently developed by the National Engineering Laboratory for Robot Vision 
Perception and Control Technology. The robot model was the MH-24 of Yaskawa, as shown in 
Figure 11 (left panel). Six drivers were connected to the industrial computer through the Ethercat 
bus, and each joint motor was controlled by an industrial computer. The workpiece for grinding was 
a cylinder block from an automobile engine. The sampling frequency was 100 Hz, and the grinding 
task for the robot was to grind 300 mm along a straight line in 5 s.  

Figure 9. Position tracking performance of joint 1 (left) and joint 2 (right).

According to Figure 10, with the estimation and compensation of the dead zone, the gain of
a robust term in RASMC was greatly reduced compared to that in SMC, and the chattering was
significantly weakened. In this way, the control input was smoother, and the control performance was
improved significantly. The necessity for dead zone identification and feedforward compensation was
further highlighted in the experimental tests described in the following.
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4.2. Experiment Validation

In order to further verify the effectiveness and practicability of the proposed control method, a
robot grinding experiment was carried out in the lab. As shown in Figure 11, the experimental setup was
based on an automatic production line for the intelligent manufacture of high-end equipment, which
was independently developed by the National Engineering Laboratory for Robot Vision Perception and
Control Technology. The robot model was the MH-24 of Yaskawa, as shown in Figure 11 (left panel).
Six drivers were connected to the industrial computer through the Ethercat bus, and each joint motor
was controlled by an industrial computer. The workpiece for grinding was a cylinder block from an
automobile engine. The sampling frequency was 100 Hz, and the grinding task for the robot was to
grind 300 mm along a straight line in 5 s.
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Figure 13 shows that all six joints were stable under the action of the controller. Taking the most 
fluctuating joint (4) as an example, the peak value of the steady-state error was 1.21 rad without 
compensation and 0.96 rad with compensation, which represents a decrease of 21%. The results 
clearly show that the system’s steady-state performance and grinding accuracy were improved with 
the introduction of dead zone compensation. The same conclusion can also be determined from the 
other five joints. The last three joints fluctuated sharply because they were close to the polished end. 
The sixth joint (that is, the last joint) was directly connected with the grinding head. During the 
polishing process, the position of this joint remained basically unchanged, so the range of the joint 
displacement’s change was very small. 

Figure 11. Experimental device diagram of the free form surface grinding robots(FFSGRs) (a) and
engine cylinder block grinded in experiments (b).

In the experiment, a limiter was applied to the output of the first joint controller to simulate the
dead zone. The upper limit was 0.8, and the lower limit was −2. As can be seen from Figure 12, due to
the fact of a certain delay, there was a large identification error at the moment of the upper and lower
limit switching. When the system was in a steady state, the method based on the RBFNNs designed in
this paper could identify the dead zone accurately. The peak value of the absolute value of the steady
state error was 0.08.
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Figure 12. Dead zone non-linearity estimation performance of joint 1 (a) and estimation error (b).

Figure 13 shows that all six joints were stable under the action of the controller. Taking the most
fluctuating joint (4) as an example, the peak value of the steady-state error was 1.21 rad without
compensation and 0.96 rad with compensation, which represents a decrease of 21%. The results clearly
show that the system’s steady-state performance and grinding accuracy were improved with the
introduction of dead zone compensation. The same conclusion can also be determined from the other
five joints. The last three joints fluctuated sharply because they were close to the polished end. The
sixth joint (that is, the last joint) was directly connected with the grinding head. During the polishing
process, the position of this joint remained basically unchanged, so the range of the joint displacement’s
change was very small.
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5. Conclusions

In order to achieve high-precision grinding and polishing operations for robots and improve the
processing accuracy of workpieces, accurate trajectory tracking performance is a key issue that must
be considered. Focusing on non-linearity factors, such as dead zones, backlash, and saturation in
robotic systems, this paper proposed a machine-learning-based non-linear identification method to
identify all kinds of actuator non-linearities online. For accurate identification, an adaptive sliding
mode trajectory tracking control system was designed. Meanwhile, the results of identification were
fed to the controller to compensate the actuator’s non-linearity online, thereby reducing the gain of the
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sliding mode’s switching term. Thanks to the robustness of the sliding mode’s control, the chattering
phenomenon and fluctuation of the control torque were effectively weakened. Thus, the performance
of the control system was significantly improved. The simulation results show that the convergence
time of the system was reduced from 1.1 to 0.8 s, and the maximum steady-state error was reduced from
0.06 to 0.015 rad, which sped up the stabilization rate of the system and reduced steady-state errors.

The results of engine cylinder grinding experiments show that dead zones can be accurately
estimated. This control scheme, based on dead zone compensation, can reduce steady-state errors from
1.21 to 0.96 rad, which represents a decrease of 21%. Hence, this scheme can improve the grinding
accuracy and ensure the smooth completion of grinding.
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