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Abstract: From social networks to complex infrastructures, many systems could be described
by multiplex networks formed by a set of nodes connected via more than one type of links.
Network disintegration, which is the problem of identifying a set of nodes or edges whose removal
would maximize the network collapse, is significant for dismantling harmful networks. In this article,
we consider the optimal disintegration strategy problem in multiplex networks and extend the attack
mode to the layer node-based attack. An optimization model is proposed to search the optimal
strategy of a multiplex network under layer node-based attack with fix attack length. Two types of
strategies based on the information of multiplex nodes and layer nodes, respectively, are also given
for comparison. Through experiments in both model networks and real networks, we found that
the approximate optimal strategies could be identified by solving the model. The properties of the
optimal strategies are also summarized.
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1. Introduction

Recent decades have witnessed a dramatic advance in network sciences [1]. Network robustness,
as an important field of complex networks, aims to improve the resilience of systems and to construct
more efficient architecture [2–4]. However, not all networks are beneficial, some of them are harmful to
human life, for instance, the epidemic or rumor spreading networks [5,6]. For these networks, we need
to break its functionality by removing some nodes or links. This is the focus of this paper, namely,
network disintegration problem, which is also called network dismantling or network attack [7,8].

Over the past few decades, there have been a large variety of works focusing on this problem.
The most traditional solutions are nodes-based methods, where the nodes are removed in decreasing
order of their significance determined by some indices, such as degree centrality [9], betweenness
centrality [10], and others [11,12]. Recent years, many algorithms are presented to identify the
minimal nodes set whose removal would collapse the giant connected component. Examples include
collective influence algorithm [13], CoreHD algorithm [14], Explosive immunization algorithm [15],
Min-sum algorithm [7], GND algorithm [16] and so on. In this article, we consider a more generalized
problem, named the disintegration strategy problem, where we consider limited attack resource and
aim to maximize the disintegration effect under fixed attack length. The methods mentioned above
could also be used to develop disintegration strategies when we remove a specified number of nodes
in the given order. Moreover, for searching the optimal disintegration strategy, there have been
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some combinatorial optimization-based studies in undirected [17] and directed [18] networks. In these
studies, some meta-heuristic algorithms were introduced to identify the optimal disintegration strategy.

Considering that networks rarely exist independently, the research of network science was
extended to a multilayer framework [19]. According to the difference between the types of nodes
in each layer and the links between the nodes in different layers [20], multilayer networks could be
divided into multiplex networks, interdependent networks and so on [21]. Especially, the multiplex
network could be regarded as a set of nodes connected by different types of links. Examples include
the individuals connected through various social relationships [22] and the cities linked by different
transportation networks [23]. The study of multiplex networks has emerged as one of the significant
topics in network science and recent research proved that the co-existence of different interactions in
multiplex networks would strongly affect the properties of the systems [24].

Therefore, the network disintegration problem was also generalized to multiplex networks.
Saeed et al. [25] firstly extended the existing disintegration strategies to multiplex networks,
and pointed out that ignoring the multi-layer structure of the systems will cause the result of
overestimating the robustness of them. G. J. Baxter et al. [26] proposed a heuristic strategy named
Effective Multiplex Degree for dismantling interdependent or multiplex networks. The meta-heuristic
algorithm has also been introduced to determine the optimal disintegration strategy in general
multiplex networks [27].

Nevertheless, an important hypothesis in the above studies is that the nodes in each layer would
fail after being attacked. Actually, in some realistic cases, the targets that are attacked or those which
fail may be just the layer nodes [28]. For instance, in the multiplex social networks, the users are
banned from using one or some, but not all social network sites. Correspondingly, in the multiplex
transport networks, different traffic stations in a city, like airports or highways, may not fail at the
same time. We name this kind of attack as the layer node-based attack.

In this paper, we focus on the disintegration strategy problem in multiplex networks.
The optimization model of disintegration strategy in multiplex networks is improved to adapt the
layer node-based attack. In artificial coupled networks with different degree correlated and many real
networks, we compare our algorithm with some existing methods.

2. Optimization Model of Disintegration Strategy in Multiplex Networks under Layer
Node-Based Attack

In this section, we extend the optimization model of the disintegration strategy in the multiplex
network to different attack modes, multiplex node-based attack and layer node-based attack,
of which we give an example in Figure 1. The removal of individuals means the removal of all
kinds of edges connecting them and is named multiplex node-based attack [28]. Moreover, the network
could also be embedded in the framework of the multiplex network with two layers, which are given in
Figure 1c,d. The layer node-based attack is the attack of nodes in one layer, which means the removal
of all edges connecting the nodes in this layer, and the edges in other layers are not affected.

attack

attack
(a) (c)

1 2 3 4

1 2 3 4

1 2 3 4

attack

(b) (d)

1 2 3 4

1 2 3 4

1 2 3 4

Figure 1. Multiplex node-based attack (a) and layer node-based attack (c) in the illustrative examples
of the multiplex network. The edges in the top and bottom represent different kinds of edges. The two
networks after different attacks are given in (b,d) .
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We consider a multiplex network composed of N individuals (multiplex nodes) and M layers in
which edges are unweighted and undirected. It could be formed as a tuple G = (V, E), where V(G) is
the set of multiplex nodes and E(G) is the set of edges connecting these multiplex nodes in different
layers. Each multiplex node vi, (i = 1, ..., N) in V could be represented by a set of layer nodes
[v1

i , ..., vM
i ]. Each layer α is presented by an adjacency matrix Aα = {aα

ij}N×N , where aα
ij = 1 if layer

nodes vα
i and vα

j are connected through an edge (i.e., multiplex nodes vi and vj are connected through
an edge on layer α). The multiplex network could be completely determined by the vector of the
adjacency matrixes of the M layers

A = {A1, . . . , AM} (1)

We define the degree of a layer node vα
i (or the layer degree of a multiplex node vi on layer α)

as kα
i = ∑j aα

ij, which is the number of adjacent edges of layer node vα
i , and the layer degree of the

multiplex node vi in all M layer is the vector

ki = {k1
i , . . . , kM

i } (2)

Corresponding, we define the multiplex degree of multiplex node vi as ki = ∑α kα
i , which is the

total number of adjacent edges of multiplex node vi in all layers.
Moreover, we define the aggregated topological adjacency matrix A = {aij}N×N of a multiplex

network, where

aij =

{
1, if ∃α : aα

ij = 1
0, otherwise

, i = 1, ..., N; j = 1, ..., N (3)

This is also the adjacency matrix of an unweighted network obtained from the multiplex network,
which is named aggregated network. The nodes vi and vj in the aggregated network are connected
when there are edges between them in at least one layer of the multiplex network.

In this article, the disintegration approaches focus on the layer node removal, and we assume that
if a layer node is removed, the attached edges of it in this layer are removed. Meanwhile, we assume
that all the layers in the multiplex network are coupled in a connective/complementary manner.
That is to say, the removal of edges in one layer does not affect the layer nodes and edges in other
layers and the function of the edges could be replaced by the edges in other layers. Examples include
multiplex transportation networks composed of different modes of transportation and multiplex online
social networks composed of various social media.

Denote by V̂ ⊆ V the set of layer nodes that are removed and denote by Ĝ = (V − V̂, Ê) the
network after the nodes are removed. Denote by n =

∣∣∣V̂∣∣∣ the disintegration strength parameter and
q = n/(N ×M) is the removed ratio of the nodes. We define a disintegration strategy as

X̂ =


x11 x12 · · · x1N
x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN

 (4)

where xαi = 1 if layer node vα
i ∈ V̂, otherwise xαi = 0. It is easy to obtain that

n =
M

∑
α=1

N

∑
i=1

xαi (5)

The goal of the optimization model is to identify the optimal solution X̂∗ that could maximize the
disintegration effect. The optimization model for the disintegration strategy in a multiplex network
under layer node-based attack can be described as follows:
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max Φ(X̂)

s.t.


M

∑
α=1

N

∑
i=1

xαi = n

xαi = 0 or 1, α = 1, ..., M; i = 1, 2, ..., N

(6)

Considering the complementary relationship of different layers in the multiplex network, we use
the size of the giant component C in the aggregated network as the measure function of the network
performance. The Φ(X̂) = C(G)− C(Ĝ) is used to measure the disintegration effect of strategy X̂.
For a network with N multiplex nodes and M layers, there are Cn

NM ways to pick n nodes for removal,
which increases sharply with N and M. Therefore, we consider solving this problem using some
meta-heuristic algorithms. In particular, the tabu search algorithm has been proved to be an effective
method for solving similar problems in single-layer networks [17]. In this article, we similarly use the
tabu search (TS) algorithm to seek the optimal solution of the above optimization model. The details
of the TS algorithm could be found in references [17,29,30]. In the experiments of this article, we set
the maximum of iterations Tmax = 1000, the number of candidates ncan = 100 and the length of the
tabu list L = 50. We could obtain the approximate optimal disintegration strategy by solving the
optimization model in Formula (6) through the TS algorithm.

3. Experimental Analysis

In this section, we will verify the effect of the optimal disintegration strategies in both synthetic
and real networks. For comparison, we introduce some existing disintegration strategies which are
generalized from single-layer disintegration schemes.

3.1. The Existing Disintegration Strategies

There have been many disintegration strategies in monoplex networks. We extend some of them
to the layer node-based attack in multiplex networks. Considering the particularity of multiplex
networks, we divide the strategies into two categories according to the nodes information we used:
multiplex node-based strategies and layer node-based strategies. The high multiplex degree (HMD)
strategy, the high multiplex degree adaptive (HMDA) and the effective multiplex degree (EMD)
strategy are based on the information of the multiplex nodes in networks and are called multiplex
node-based strategies. The high layer degree (HLD) strategy, the high layer degree adaptive (HLDA)
strategy and the collective influence (CI) strategy are based on the information of the layer nodes in
networks and name layer node-based strategies.

3.1.1. Multiplex Node-Based Strategies

For multiplex node-based strategies, we order the multiplex nodes according to the global
information of the multiplex network and remove the layer nodes included by the multiplex nodes in
each layer consecutively. The high degree strategy is the easiest method for disintegrating a network.
We remove the layer nodes successively according to the multiplex degree of the multiplex nodes
they belong to and name this method as high multiplex degree (HMD) strategy. If we recalculate the
multiplex degree after removing all the layer nodes of the multiplex node with the highest multiplex
degree at each step, this is referred to the high multiplex degree adaptive (HMDA) strategy.

Another strategy is a heuristic strategy named effective multiplex degree (EMD) [26], which is
designed for attacking interdependent networks. The weight of the multiplex nodes wi are calculated
iteratively according to the following formula:

w(t+1)
i =

M

∑
l=1

∑
j∈N α

1
Mj

w(t)
j

k(α)j

(7)
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whereN α is the set of neighbors of multiplex node vi in layer α and k(α)j is the layer degree of multiplex
node vj on layer α, Mj is the number of layers in which multiplex node vj participates. We make all the
Mj = M in this paper and the initial value of the wi is the multiplex degree ki of node vi. It is worth
noting that the EMD strategy is also “adaptive”, meaning that we recalculate all the weights of the
remaining multiplex nodes after removing all the layer nodes of a multiplex node. The iterations t in
each calculation is 10.

3.1.2. Layer Node-Based Strategies

In layer node-based strategies, we calculate the scores of layer nodes in each layer respectively
and order all the layer nodes in all layers. Similarly, high layer degree (HLD) is a strategy where
we remove the layer nodes according to their layer degree. The high layer degree adaptive (HLDA)
strategy is also defined by the adaptive computation of the layer degree.

Meanwhile, we introduce collective influence (CI) strategy to the layer node based attack [13].
The CI strength of a layer node vα

i is defined as:

CIl(i) = [kα
i − 1] ∑

j∈∂Ball(i,l)
[kα

j − 1] (8)

where ∂Ball(i, l) denotes the set formed by all the layer nodes in layer α that are at distance l to node
vα

i . The integer l is an adjustable parameter and we set l = 2 in this paper. In each step, we also need to
iteratively calculate the CI length of all the layer nodes and remove the one with the highest CI length.

3.2. Experiments in Synthetic Networks with Different Degree Correlation

Firstly, we consider the synthetic networks obtained from the Erdős-Rényi (ER) model in which
the N nodes are connected randomly with probability p. Meanwhile, previous research has proven
that the interlayer degree correlation has a great impact on the response to the attack [31]. Therefore,
we consider different multiplex networks including two layers coupled with three correlated structure:
maximally negative (MN), uncorrelated (UC), and maximally positive (MP). In the MN case, the degree
of nodes in different layers are maximally anti-correlated in their degree order, while they are maximally
correlated in the MP case. For better understanding, we give a schematic illustration in Figure 2.

(a)

1 2 3 4

1 2 3 4

(b)

1 2 3 4

1 2 3 4

(c)

1 2 3 4

1 2 3 4

UCMN MP

Figure 2. Schematic illustration of three kinds of correlated structure, maximally negative (a),
uncorrelated (b) and maximally positive (c). The nodes and edges that are failure under HLD strategy
are shown in orange.

The results of the optimal disintegration strategy and the six existing strategies are given in
Figure 3. For better demonstration, we use dotted lines and solid lines to represent the multiplex
node-based strategies and layer node-based strategies, respectively. Meanwhile, strategies with the
same principle (like HMD and HLD strategies) are in the same color.

The results in Figure 3 show that for the strategies with the same principle, the layer node-based
strategies generally have better performance than the multiplex node-based strategies. The advantage
decreases as the degree of different layer nodes tend to be positively correlated. Meanwhile, the EMD
strategy has poor performance compared to the general HMD strategy when there is no interdependent
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relation between different layers. In particular, we find that the effect of the HLD and CI strategy
approaches that of optimal disintegration strategy when the network is on the brink of collapse.
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Figure 3. Optimal disintegration strategies in coupled ER networks with different degree correlation
under layer node-based attack. The two layers are obtained independently with probability p = 0.006
and size N = 500. The two layers are coupled with there correlated structure (MN, UC and MP),
in figures (a–c) respectively. We determine the mean value of Φ over 20 independent realizations.

3.3. Experiments in Real Networks

There is a large difference between the model networks and real systems in the edge connection
and interlayer degree correlation. Therefore, in this section, we introduce some real multiplex networks
for experiments.

1. Caenorhabditis elegans connectome, where the multiplex consists of layers corresponding to
different synaptic junctions: electric (Electric), chemical monadic (Chem. Mon), and polyadic
(Chem. Pol). We use different pairs of layers to construct multiplex networks and obtain three
different duplex networks.

2. Drosophila melanogaster genetic and protein interaction network, where the multiplex consists of
layers corresponding to different types of genetic interactions for organisms: direct interaction
(Direct), suppressive genetic interaction (Supp. Gen) and additive genetic interaction (Add. Gen).
We similarly use different pairs of layers to construct multiplex networks.

3. Top Noordin network, where the multiplex consists of three layers corresponding to
different relationships among extremists active in Indonesia: trust (T), operations (O) and
communication (C).

More information about these networks is given in Table 1.

Table 1. The basic information of the real multiplex networks. The first column represents the names
of the different multiplex networks and the second column identifies the names of different layers used
to construct multiplex networks. The other columns contain information about the number of nodes N,
the total number of edges in the aggregated network of each multiplex network E[A] and the number
of edges in each layer (E[1], E[2] and E[3]).

Network Layers N E[A] E[1] E[2] E[3]

Electric - Chem. Mon. 238 1833 1576 887 /
Caenorhabditis Elegans Electric-Chem. Pol 252 1147 485 773 /

Chem. Mon.-Chem. Pol 259 1804 511 1455 /

Direct - Supp. Gen. 676 1946 668 1344 /
Drosophila Melanogaster Direct-Add. Gen. 625 1498 523 1024 /

Supp. Gen.-Add. Gen. 557 2117 1421 1164 /

Top Noordin Extermist T-O-C 79 620 259 437 200

The results of the six duplex networks under different disintegration strategies are given in
Figures 4 and 5.
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Figure 4. Optimal disintegration strategies in multiplex Caenorhabditis Melanogaster neural
networks under layer node-based attack. For the TS algorithm, we use the maximum value of Φ
in 20 independent realizations.
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Figure 5. Optimal disintegration strategies in multiplex Drosophila Melanogaster genetic and protein
interaction networks under layer node-based attack. For the TS algorithm, we use the maximum value
of Φ in 20 independent realizations.

Some conclusions obtained from Figure 3 are also shown in Figures 4 and 5. The performance
of HLDA and CI strategies are generally better than the other strategies and close to that of optimal
strategy when the network is close to collapse. Differently, for multiplex networks with a higher
average degree in Figure 4, the performance of the layer node-based strategies is better than that of
multiplex node-based strategies when the percentage of node removed is small (less than 0.2) and the
optimal strategies have more advantages than other existing strategies. However, for the relatively
sparse multiplex networks in Figure 5, some layer node-based strategies have similar performance
with the optimal strategies and general advantage through multiplex node-based strategies in different
attack length.

We further experiment in the top Noordin extremist multiplex network with three layers. To get
a better disintegration effect, we use the best solution obtained from the last search as the initial
solution for the next search (i.e., we randomly add an extra node in the optimal strategy with attack
length n and use it as the initial solution when searching the optimal strategy with attack length n + 1).
The results of the optimal disintegration strategies and other strategies are presented in Figure 6.
To better display the properties of the optimal strategy, we give the visualization of the nodes included
in the optimal disintegration strategy and the aggregated network of the multiplex network after
nodes removed on the left side of the graph. Meanwhile, on the right side, we give a visualization
of the strategy given by HLDA algorithm with the same removal ratio of nodes where the optimal
disintegration strategy has the greatest advantage over the other strategies.

The results in Figure 6 show that the optimal disintegration strategies outperform the other
existing strategies and the effect of HLDA and CI strategies are also close to that of the optimal
strategy when the network is about to collapse. By the visualization on both sides of Figure 6, we find
that the two strategies have a large overlapping proportion in some layer nodes with high degree.
Differently, the removal of nodes in optimal disintegration strategy divides the aggregated network
into many clusters which disconnect to each other. However, in the layer node-based strategy like
HLDA, though some “hub” layer nodes are removed, the corresponding multiplex nodes could still be
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connected through the backup edges in the other layer, and in the multiplex node-based strategies,
we preferentially remove the layer nodes of the “hub” multiplex nodes in all layers. So the effect of
multiplex node-based strategies is better than that of layer node-based strategies when only a small
percentage of layer nodes are removed. Since backup edges are on different layers, the multiplex
network can only crash if all the layers are crashed. Therefore, some methods based on adaptive layer
nodes, such as CI or HLDA, will be effective and have a similar effect with the optimal strategy when
the network is close to collapse.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

TS

HMD

HMDA

EMD

HLD

HLDA

CI

q

Φ

Trust

Operations

Communication

Aggregated

Operations

Aggregated

Communication

Trust

TS HLDA

The top noordin terrorist network

Figure 6. Optimal disintegration strategies in the three-layer top Noordin extremist network under
layer node-based attack. For the TS algorithm, use the maximum value of Φ in 20 independent
realizations. The left side of the figure shows the layer nodes (the orange nodes in the first three layers)
included in the optimal disintegration strategy when the percentage of node removed is about 0.32
(where Φ = 0.886). The size of the nodes is determined by their layer degree. At the bottom, we give
the aggregated network of the multiplex network after nodes removed in the fourth layer, where four
giant components with size 8 are in different colors. Similarly, we present a visualization of the HLDA
strategy on the right side of the figure (where Φ = 0.316 and the size of the giant component in the
aggregated network is 51).

4. Conclusions and Discussion

In this article, we extend the optimization model of the disintegration strategy in the multiplex
network to layer node-based attack mode. The tabu search algorithm is introduced to solve the
optimization model. Experiments in the model and real multiplex networks prove that the approximate
optimal disintegration strategies obtained from the TS algorithm are superior to other strategies in
different attack length. The optimal strategies divide the aggregated network of the multiplex networks
into several independent clusters by removing some layer nodes from different layers. The advantages
of them are especially obvious in the denser networks and shorter attack length. Meanwhile, we found
that the effect of the optimal disintegration strategy is close to that of some layer node-based strategies
when we need to make the multiplex networks complete collapse.

This article focuses on the general multiplex network where different layers are independent
and share a set of nodes. Actually, there are many other coupling ways between networks in reality,
such as interdependence or collaboration. The same problem in these networks would be the future
research direction.
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