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Abstract: In this paper, the important topic of cooperative searches for multi-dynamic targets in
unknown sea areas by unmanned aerial vehicles (UAVs) is studied based on a reinforcement learning
(RL) algorithm. A novel multi-UAV sea area search map is established, in which models of the
environment, UAV dynamics, target dynamics, and sensor detection are involved. Then, the search
map is updated and extended using the concept of the territory awareness information map. Finally,
according to the search efficiency function, a reward and punishment function is designed, and an
RL method is used to generate a multi-UAV cooperative search path online. The simulation results
show that the proposed algorithm could effectively perform the search task in the sea area with no
prior information.
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1. Introduction

With the rapid development of sensors, wireless communication, intelligent control, and other
technologies, the functions and the application fields of unmanned group systems are increasing day
by day. Because of their expansibility, strong cooperation, and low loss, the cooperative theory and
applied research on unmanned group systems received increasing attention in the fields of academia,
industry, and national defense [1]. Multi-unmanned aerial vehicle (UAV) cooperative search systems
can effectively improve the search efficiency, especially for the search of dynamic targets under complex
sea conditions such as uncertainty, strong interference, and so on. Therefore, multi-UAV cooperative
sea area searching is one of the important research directions of unmanned group systems [2].

The multi-UAV area target search problem was widely studied by research groups around the
world. Generally, the target search problem is divided into two categories: static target search and
moving target search. For static targets, the traditional search method is a covering search (e.g., echo
search, traversing search, etc.) [3–6]. This search method generally maximizes the coverage of the
task area to find as many targets as possible. In References [6,7], a search map model was established
according to the existence probability of target, and distributed model predictive control was used
to solve the problem, which effectively reduced the solution scale of the search decision problem.
In Reference [8], considering the limitations of sensing and communication capabilities, coverage
and topology control algorithms were designed for the path planning of mobile agents. For dynamic
targets, a Bayesian method was used to calculate the average detection time and average detection
probability [9,10], but it was only suitable for searching a single target. In Reference [11], a target
motion prediction model based on Markov chain was proposed, and a greedy iterative decision method
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based on distributed model predictive control was designed to solve the problem. For a mobile target
in a closed and bounded region, a receding-horizon cooperative search algorithm was presented [12].
With the goal of minimizing search time, a strategy of “the reward of discount time” was proposed, and
a cross-entropy optimization algorithm was used to find the location where the target has the highest
probability as soon as possible [13]. In Reference [14], the problem of scheduling multiple UAVs to
search for missing tourists was addressed, and a method for estimating tourist location probabilities
which change with topographic features, weather conditions, and time was proposed. In addition, some
intelligent algorithms were also applied to such problems. In Reference [15], a novel objective function
that naturally and coherently integrates the conflicting objectives of target detection, target tracking,
and vehicle survivability into a single scalar index was designed, and a modified particle swarm
optimization algorithm was used to determine which trajectory is the best on average at detecting
and tracking targets. Combined with the traditional Maximum-Q-learning (MAX-Q) algorithm, a
multi-UAV cooperative search strategy was proposed, which effectively completes the search tasks of
independent targets and clustering targets but is limited to static targets [16,17]. In References [18,19],
a reinforcement learning (RL) algorithm was used for path planning without colliding with obstacles
in unknown environments.

In order to solve the above problems, this paper proposes a multi-UAV cooperative search method
based on RL, which fully considers the characteristics of an unknown sea area. It synthesizes a target
probability map and certainty value map to establish a multi-UAV sea area search map, and the concept
of the territory awareness information map is proposed to coordinate the tracks between multiple
UAVs. The search efficiency function is obtained according to the extended search map. A new reward
and punishment function is designed by using the search efficiency function. The multi-UAV search
track can be planned online, according to the efficiency of the reinforcement learning method, and
the search map can be updated with the search results. Finally, the effectiveness of the algorithm is
verified by simulation experiments.

2. Materials and Methods

In this paper, for a specialized sea area E which is built using two-dimensional coordinates,
there are unknown targets

{
Targeti, i = 1, 2, . . . , Nt

}
, unknown no-fly zones {Mencei, i = 1, 2, . . . , Nm},

and known homogenous UAVs {Vi, i = 1, 2, . . . , Nv}, where Nt, Nm, and Nv are the numbers of targets,
no-fly zones, and UAVs, respectively. Airborne UAVs enter the sea area where the mission needs
to be carried out. After that, each UAV uses its own onboard sensor to search the unknown targets
independently. It is expected that multiple UAVs can find as many targets as possible through
cooperative search in the shortest time with the least cost. In this research, we assumed that all UAVs
could communicate through a relay station to ensure that the communication between the UAVs was
normal. Below, we provide detailed descriptions of our environmental model, our collision avoidance
strategy, the aerial vehicle model, and our objective.

2.1. Environmental Model

The environment E is represented as an Lx × Ly sea area, and the information for the search map
can be defined as Pmn(k) = [ pmn(k) χmn(k) ], where pmn(k) ∈ [0, 1] is the existence probability of

the targets on the grid (m, n) with (m ∈ {1, 2, . . . , Lx}, n ∈
{
1, 2, . . . , Ly

}
) at instant k. χmn(k) ∈ [0, 1] is the

certainty value, where χmn(k) = 1 represents that the UAVs fully understand the target information,
and χmn(k) = 0 represents that the UAVs have no information on the target.

Target probability map: Before the search task begins, the search map is given a certain initial value,
which reflects the prior information of the target (obtained by external intelligence reconnaissance).
With the continuous search, the search map information mastered by the UAVs is constantly updated.
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Considering the influence of sensor uncertainty, the updating equation of the target probability was
designed as follows:

pmn(k + 1) =


τpmn(k) + ∆pmn(k) no access

pDpmn(k)
pF+(pD−pF)pmn(k)

access∩ bk = 1
(1−pD)pmn(k)

1−pF+(pF−pD)pmn(k)
access∩ bk = 0

, (1)

where pD and pF are the sensor detection rate and false alarm rate, respectively. τ ∈ [0, 1] denotes a
discount factor, which represents the forgetting factor of the probability map. Since only a few grids
are accessed at the same time, and these grids’ probability change affect other grids, the changing
probability ∆pmn(k) in grid (m, n) is defined as

∆pmn(k) =
∑

(i, j)∈D(k)

[pi j(k) − pi j(k + 1)]/(Lx × Ly −Nv), (2)

where D(k) is a set of all accessed grids at time k. When UAVs access (m, n), the update of pmn(k) is
related to the detection variable bk of the platform sensor. bk = 1 represents that the airborne sensor
detected the target, and bk = 0 represents that the sensor did not detect the target.

Certainty value map: As the search task proceeds, UAVs have a constant understanding of the
search area. The certainty value map reflects the degree of understanding of the whole map. Due to the
probability of sensor detection and false alarm, χmn(k) is used to represent the degree of determination
of the information at the grid (m, n) by UAVs at time k. When the grid is not accessed, the certainty of
the grid decreases. As the number of times the grid is detected increases, the degree of determination
of the information at the grid is increased by the UAVs. The update equation is as follows:

χmn(k + 1) =
{
τcχmn(k), no access
χ+ (1− χ)χmn(k), access

, (3)

where τc is the information factor of certainty; χ ∈ [0, 1] is a constant, and its value is related to sensor
performance. χ = 1 represents that the UAV can fully grasp the information when it carries out
information testing; that is, pD = 1 and pF = 0. χ = 0 represents that the information is not available,
which is equivalent to the complete failure of the sensor.

2.2. Effect of Collision Avoidance on Search Map

When multiple UAVs perform tasks together, security is a top priority. This paper draws lessons
from the idea of hormone information dissemination and diffusion, and the concept of the territory
awareness information map [20] is used to establish a search map. When a UAV moves to the grid
(m, n) at time k, the pheromone information is generated at the corresponding location of the search
map, which affects the generation and updating of other UAVs’ pheromones by diffusion. The diffusion
of existing pheromones inhibits the generation of other kinds of pheromones, which is the role of
the territory awareness information map. A new environmental search information map can be
constructed, which can be used as the basis to solve the collision avoidance problem in multi-UAV
cooperative control.

Hmn(k) is defined as the total pheromone concentration at the grid (m, n). The concentration is
a function of the grid position and time; thus, the environment search map is rewritten as follows:
P∗mn(k) = [ pmn(k) χmn(k) Hmn (k)].

When Vi searches grid (m, n), it produces pheromone Hi(mn)(k), which can diffuse to other grids
in the search map. Taking the grid (a, b) as an example, the diffusion propagation function is

Hi(ab)(k) =
β

ρ2 × e
−

(a−m)2+(b−n)2

2ρ2 , (4)
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where ρ and β are constants.
When Nv UAVs perform search tasks, Nv kinds of pheromones are constantly generated and

diffused. Taking the grid (c, d) as an example, the concentration of a pheromone at the current time is
the sum of the concentration of pheromones left by volatilization at the previous time and the newly
produced pheromone diffusing to the grid. The updating equation is as follows:

Hcd(k) = τHHcd(k− 1) +
Nv∑
i=1

Hi(cd)(k), (5)

where τH ∈ [0, 1] is a volatility factor.
When Vi detects a high concentration of other kinds of pheromones at grid (m, n), it means that

other UAVs’ activities are frequent at grid (m, n). That is, flying Vi into the grid not only reduces
the search efficiency, but also has a high probability of collision. The concentration of other kinds of
pheromones detected by Vi is as follows:

Himn(k) = Hmn(k) −
k∑

j=0

Himn( j). (6)

2.3. Unmanned Aerial Vehicle Model

In this research, the UAVs used in the search task have the same performance and keep flying
at a specific altitude. Under the inertial reference coordinates, the motion model can be described as
follows (see References [4,21] for details): 

.
xi = vi cosφi
.
yi = vi sinφi.
φi = uiηmaxi

, (7)

where pi = (xi, yi) ∈ R2 is the position state of the ith UAV in the search plane, and ϕi and vi are
respectively yaw angle and speed, which needs to satisfy vi ∈ [vmin, vmax]. ui ∈ [−1, 1] is a decision
variable. ηmaxi is the maximum turn angular velocity, and is constrained by the performance of the
ith UAV.

At each decision time k, the UAV can take actions such as left deviation ηmaxi, direct flight,
or right deviation ηmaxi. For simplicity, the control decision variable and state variable can be
written as u(k) = [ui(k), i = 1, 2, . . . , Nv]

T and s(k) = (si(k), i = 1, 2, . . . , Nv), with ui(k) ∈ {−1, 0, 1} and
si(k) = [xi(k), yi(k),ϕi(k)]

T. In the process of multi-UAV cooperative search, in order to avoid collision
between UAVs, D is defined as the minimum safe distance, and the requirement is as follows:

d =

√
(xi(k) − x j(k))

2 + (yi(k) − y j(k))
2
≥ D, (8)

where d is the actual distance between UAVs.
Due to no-fly zones in the mission sea area, the position of UAVs should satisfy

(xi(k), yi(k)) <Mence j, (i = 1, 2, . . . , Nv, j = 1, 2, . . . , Nm). (9)

In this research, the no-fly zones were set to be circular, and the position constraint of UAVs can
be described as √

(xi(k) −X j)
2 + (yi(k) −Y j)

2 > D∗, (10)

where (X j, Y j) is the center coordinate of Mence j, and D∗ is the radius of the no-fly zone.
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2.4. Sensor Model

The range of the airborne sensors is an important factor to measure the instantaneous search area
for the UAV. As shown in Figure 1, a visible light sensor was installed at a fixed angle. Then, in the
relative coordinate, the detection width can be obtained as follows:

du = 2 · hu · tanγu/ sinαu, (11)

where hu is the UAV flight altitude, αu is the installation angle of the sensor, and γu is the sensor’s
horizontal field of view.
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2.5. Multi-Objective Function Establishment

The main goal was to find as many targets as possible, on the premise of ensuring safety. Therefore,
the optimization function J(s(k), u(k)) is composed of the benefit of the target found Jp, the benefit of
searching environment Jχ, the cost of execution C, and the cost of collision I, which are described below.

The benefit of discovering targets: Jp is the possibility of discovering the target by UAVs in flight.
It can be described as the sum of the target probabilities at the area Rn

i occupied by the trajectories. It is
defined as

Jp(k) =
Nv∑
i=1

∑
(m,n)∈Rn

i

[(pD − pF)pmn(k) + pF]. (12)

The benefits of searching the environment: as the task proceeds, the UAVs can obtain information
on the search area, which means the entropy [6] search map is gradually reduced. Thus, Jχ is defined
as the decrement of the entropy of information.

Jχ(k) = H(k) −H(k + 1), (13)

where H(k) = −
∑

(m,n)∈E
(1− χmn(k)) ln(1− χmn(k)) is the entropy of information at instant k.

The cost of execution: The cost C is the consumption of time and fuel during the task, which can
be estimated as

C(k) =
Nv∑
i=1

‖pi(k) − pi(k + 1)‖/vi(k). (14)

The cost of collision: Collision avoidance is the primary consideration of cooperative search
for multiple UAVs in the same plane. Combined with the characteristics of the territory awareness
information map, the concentration of pheromones is high at the locations which are current grid
locations of each UAV or where flight tracks are dense. Therefore, when the ith UAV takes a control
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decision, the direction of flight is where the pheromone is lower. This decision reduces the possibility
of collision with other UAVs, and I is defined as

I(k) =
Nv∑
i=1

Himn(k). (15)

According to the analysis, the overall efficiency function of the UAVs’ cooperative search problem
is as follows:

J(s(k), u(k)) = w1 Jp(k) + w2 Jχ(k) −w3C(k) −w4I(k), (16)

where 0 ≤ wi ≤ 1(i = 1, 2, 3, 4) are weights. Note that the above functions have different dimensions;
thus, it is necessary to normalize them separately before summation.

3. Design of Cooperative Search Strategy

In this section, the Q-Learning method is used to design the yaw angle decision u(k) of UAVs.
When UAV i is at the state si(k) = [xi(k), yi(k),ϕi(k)]

T, the corresponding row of the state in the Q-table
is set as the si(k) row, in which each value represents the effect of a control decision. The decision
corresponding to the maximum value is the optimal decision ui(k), and the optimal decision set u(k)
is acquired.

3.1. Establishment of Q-Value Table

Since the table method is vulnerable to the problem of “dimension disaster”, here, the state and
control input of UAVs are simplified as much as possible when the table is designed. The possible
location of a UAV is determined by the total number of grids. There are n yaw angles at each grid;
thus, the number of rows in the Q-table is Lx × Ly × n, which is the number of UAV states. There are m
optional control inputs for each UAV; thus, the number of columns in the Q table is m, which is the
number of decisions contained in decision set A. Variable Q(si(k), ui(k)) is defined as the value that Vi
selects the decision ui(k) in the state si(k).

In the initial stage of learning, because there is no prior information, the decision in the Q-value
table is made randomly; thus, Q-learning should have more opportunities to explore the unknown
decision space. If only the maximum Q-value is used, the algorithm converges quickly to a poor
u(k). If the random selection strategy is used, although the environmental state information can be
fully explored and the optimal strategy can be found, the algorithm converges too slowly. Therefore,
designing a reasonable decision selection mechanism to achieve balance between exploring information
and Q-value can ensure the fast convergence of the algorithm to a better strategy.

In this paper, the Boltzmann distribution mechanism is used to select the decision in the Q-learning
process. That is, the probability that the policy set u(k) is selected in the state s(k) is determined as
follows:

P(u(k)) =
eQ(s(k),u(k))/T∑

u∈A
eQ(s(k),u)/T

, (17)

where u ∈ A represents that strategy u is an enforceable strategy in decision set A. The value of T
determines the ability of learning to explore unknown spaces, and as T increases, the ability to explore
new decision spaces is improved (if T is infinite, it is a random decision because P(u(k))= 1/m). T is
defined as

T = T0 ·M−1/λ, (18)

where λ > 1, T0 > 0, and M is the number of iterations of the algorithm.
In the initial stage of learning, T is set to be large in order to explore more decision space (T = T0).

Upon increasing the number of learning times, T gradually decreases in Equation (18), increasing the
empirical effect of the Q-value and speeding up the convergence of the algorithm.
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3.2. Q-Value Update Process

When the ith UAV is in state si(k) = [xi(k), yi(k),φi(k)]
T, the policy ui(k) is selected according

to the largest Q-value in the si(k) row in the Q-table. After executing it and arriving at state
si(k + 1), then the immediate reward or penalty value is used to update Q(si(k), ui(k)) in the Q-table.
If the UAV gets a reward, Q(si(k), ui(k)) increases; that is, when the ith UAV is next in the state
si(k) = [xi(k), yi(k),φi(k)]

T, the maximum Q-value corresponding to the decision is selected. On the
contrary, when the penalty value is obtained, the Q-value corresponding to the decision ui(k) becomes
smaller until it is not the maximum Q-value, then the values of other decisions are selected. When the
Q-table finally converges, the optimal decision ui(k) is obtained, from which the updating rule of the
Q-value function can be obtained.

Q(si(k), ui(k)) = (1− α)Q(si(k), ui(k)) + α[r(k) + γmax
u∈A

Q(si(k + 1), u)], (19)

where si(k) is the current state of the ith UAV, ui(k) is the decision of the current choice, which is
the variation of yaw angle, r(k) is the immediate reward value or penalty value, max

u∈A
Q(si(k + 1), u)

represents the maximum Q-value obtained by the policy u in the state si(k + 1), and α ∈ [0, 1] is the
learning rate. When α = 1, the original Q-value has no effect on the new Q-value, and all knowledge
learned is new, but it is easy to cause Q-value instability; when α = 0, the Q-value remains unchanged,
and the learning stops. Therefore, α determines the learning ability of the algorithm. γ is the discount
factor, and γ = 1 means that there is no discount on the delay return; that is, it attaches great importance
to the influence of the current decision on the future. γ = 0 means that the Q-value does not calculate
the delay return (it only calculates the immediate return); thus, γ determines the importance that
the learning algorithm attaches to the delay return. Below, we describe the specific design of r(k) in
Equation (19) and the strategy selection in the learning process.

3.3. Design of Reword and Punishment Function

In this paper, we consider that multiple UAVs perform search tasks in the framework of
reinforcement learning and obtain a higher overall efficiency J(s(k), u(k)). If a UAV gets a higher
efficiency when it executes a search task, it is rewarded immediately. If it gets a lower efficiency, it is
punished immediately. Therefore, the reward and punishment functions are designed as follows:

r(k) =


R , d ≥ D& discover target
a× J(s(k), u(k)), d ≥ D& no target
−R , d < D

, (20)

where a is a constant which influences the generalization ability of the learning process, and a ×
J(s(k), u(k)) ∈ (−R, R), R, and −R are the maximum reward and punishment, respectively. J(s(k), u(k))
is determined by Equation (16). In order to ensure the safe flight of each UAV, d ≥ D needs to be
satisfied. If the no-fly zone is considered, B should be greater than the radius of the no-fly zone D∗

where B is the distance between the UAV and the center of the no-fly zone. At this time, the reward
and punishment functions are rewritten as follows:

r(k) =


R, d ≥ D&B ≥ D∗& discover target
a× J(s(k), u(k)), d ≥ D&B ≥ D∗& no target
−R, d < D‖B < D∗

. (21)

That is, if a UAV may collide or fly into the no-fly zone, the maximum punishment is employed.
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Algorithm 1 Q-Learning of cooperative search

Input:
Initialize unknown Lx × Ly search areas: E
Initialize the Q-table that represents the state-decision model and corresponding parameters n λ.
Initialize the state of multiple UAVs s(k) = (si(k), i = 1, 2, . . . , Nv).
Start:
For episode = 1 to M do

Initialize the state of multiple UAVs, Get the initial state s(k).
For k = 1 to T do

A decision is randomly selected with
P(u(k)) = eQ(s(k),u(k))/T∑

u∈A
eQ(s(k),u)/T as probability. After the decision is executed, the multiple UAVs reach a new

round of state s(k+ 1), and the return r(k) is calculated according to the reward and punishment function:

r(k) =


R , d ≥ D& discover target
a× J(s(k), u(k)), d ≥ D& no target
−R , d < D

.

Update the status of the multiple UAVs s(k) = s(k + 1), and replace r(k) with the update formula of the
Q-value.

Q(si(k), ui(k)) = (1− α)Q(si(k), ui(k))+
α[r(k) + γmax

u∈A
Q(si(k + 1), u)] .

Update the Q-value.
End for

End for
Output: Q-table

The complexity of an iterative Algorithm 1 is about O(‖L‖) + O(Nv ×m × k), where ‖L‖ is the
scale of the problem space. Thus, the time complexity of the completion of all the iterations is
O(M × ‖L‖) + O(M ×Nv ×m × k), where the number of iterations of the algorithm is M. The space
complexity of the algorithm is O(‖L‖) + O(Nv ×m). For a given multi-UAV, the overall computational
cost is determined by M, m, and k.

4. Simulation Results

In order to verify the effectiveness of the algorithm, a multi-UAV cooperative search simulation
environment was established in MATLAB. The information in the search area was completely
unknown, and the purpose of the search was to identify all targets and possible trends in the sea
area. The effectiveness of the algorithm was verified by comparative simulation, which was aimed
at the targets of the independence and the formation, respectively. The relevant parameters in the
simulation were set as follows: the weighted parameters were w1 = 0.25, w2 = 0.15, w3 = 0.1, w4 = 0.5,
the decision-making period was 20 s, and the speed of the UAV was 30 m/s. The speed of the warships
was 9 kn. The sensor parameters were pD = 0.9 and pF = 0.1, and the search map parameters were
τ = 0.98, τc = 0.9, and τH = 0.9.

4.1. Independent Random Distribution of Targets

The nine warship targets were randomly distributed in an unknown sea area with a range of
10 nm × 10 nm, which excludes the already controlled sea area and shallow sea area. Each warship
carried out its mission independently, and four UAVs searched the warships. The initial positions of
UAVs were located at the four corners of the sea area. In the initial stage (k = 1 to 120) of RL, due to
the lack of prior target information, the whole sea area was searched. As shown in Figure 2, the four
curves with different colors are the trajectories of the four UAVs. Because the UAVs did not know the
specific location, shape, or size of the shallow area, they would slip into the shallow area for a search.
However, the targets were unable to enter these areas. With continuous learning, the information
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mastered by the UAVs increased, and the shallow area (represented by ×), the sea area controlled by
the red side (circular sea area), and the position of warships (pentagonal stars and diamonds in the
Figure 2 ) were gradually identified.
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Figure 2. Reinforcement learning (RL) search initial stage.

Figure 3 shows the search trajectories of UAVs over a period of time with the increase in learning
time. UAVs detected shallow water with a size of 1.00 nm× 2.50 nm, and the horizontal and longitudinal
coordinate ranges were respectively 46 to 51 and 25 to 39. Meanwhile, the circular sea area controlled
by the red side with a center coordinate of (10, 35) and a radius of 0.83 nm was also detected. It can be
seen that, after learning and understanding the sea area information, UAVs no longer searched the sea
area where it was impossible for the target ship to appear. Figure 4 shows the sea area information
mastered by the UAVs after the search mission, including the sea area covered by the shallow area,
and the nine warships cruising along a straight line.
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Figure 3. Sea area information learning search.
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Figure 4. Unmanned aerial vehicle (UAV) search result under proposed method.

Case 1—Dynamic targets: Under this condition, the search effect based on the Q-learning algorithm
was compared with random search and traversing search, and the Monte Carlo method was used for
500 experiments. Random search is a non-cooperative search method. When the UAV makes a decision,
it randomly selects a direction to search. The traversing search is a fixed search mode. Full coverage
of the area can be achieved as long as the duration of flight is allowed. The simulation diagrams of
random search and traversing search are shown in Figures 5 and 6. The comparison results are shown
in Table 1. The numbers of targets found by the three search methods were compared, and it is clear
that the efficiency of the RL search was the highest; at each statistical moment, is the value was about
one more than that of the random search. Over time, traversing searches may also find all targets,
but the efficiency is extremely low because the targets are moving. This result is due to the fact that the
random search and traversing search do not update the search map and, thus, search for invalid areas.
At this point, the RL search shows obvious advantages.
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Table 1. Comparison of the number of targets found using dynamic targets.

Method
Time (s) 1000 2000 3000 4000 5000 6000 7000

Random Method 0.396 0.794 1.210 1.702 2.262 2.652 3.050

Traversing Method 0.336 0.638 0.894 1.262 1.626 2.196 2.532

Proposed Method 1.188 1.734 2.154 2.672 3.068 3.660 4.166Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 16 
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Case 2—Static targets: An experiment with the initial probability of targets according to a uniform
distribution was designed to verify the search efficiency of the algorithm for different numbers
of targets.

In total, 500 simulations were carried out to obtain the average number of targets found in various
cases, and the running time of each simulation was 2000 s. The search results of the three methods for
different numbers of targets are compared in Table 2.

In this scene, as long as the search track of the UAVs can completely cover the whole mission
area E, most of the targets can be found in the case of reliable detection by airborne sensors. The
random search is a blind search method, which leads to repeated searches of the already searched sea
area, and reduces the coverage of the sea area during the task time. Therefore, for the random search,
the fewest targets were found. For the probability of static target discovery, the traversing search was
6.333% better than when using dynamic targets. If the whole area of the search is traversed and the
sensor meets the accuracy requirements, all the targets are found. The method proposed in this paper
can better cover the region where the target has a high probability; thus, the number of targets found
was more than that of the random search and traversing search.

Table 2. Comparison of the numbers of targets found using static targets.

Method
Total Number 5 9 14 20 25 30

Random Method 0.442 0.950 1.836 2.534 3.224 3.822

Traversing Method 0.626 1.204 2.128 2.862 3.598 4.074

Proposed Method 1.028 2.122 3.376 5.252 7.326 8.544
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4.2. Formation Targets

The warships traveled in the sea area in a v-shaped formation in this paper. The v-shaped
formation consisted of a main warship at the front end, with four vessels arranged on either side. Four
UAVs were used to search for the blue warships in the unknown sea area. In the initial stage (k = 1
to 120), UAVs did not have any prior information, meaning that there was still a need for a full map
search. Figures 7 and 8 are simulation diagrams of the four red UAVs searching for the blue v-shaped
warship configuration. It can be seen that, with the progress of learning, the multiple UAVs gradually
reduced the search frequency of undiscovered ships in the sea area, and focused on searching the active
area of the warships until all targets were found. Because of the large difference between the speed of
warships and UAVs, warships were found in the same position for a certain period of time, which
continuously increased the reward value and formed a closed loop. As shown in Figure 9, the red
UAVs’ flight path formed a ring.
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Figure 9. Search result under RL.

Figure 9 shows the red UAVs’ search results when nine blue warships cruised in a straight line in
a v-shaped formation.

4.3. Algorithm Parameter Analysis

At the beginning of the algorithm iteration, if the reward value is over utilized, the algorithm
converges quickly, which leads to missing the optimal solution. When different values of λ are taken,
the change curve of T is as shown in Figure 10. The initial temperature T0 was 500. The corresponding
policy selection probability is shown in Figure 11. Each λ corresponded to three curves, which
represented the three strategies. The rise of the curve (short dotted line) was due to the strategy having
the maximum reward. On the contrary, the fastest falling curve (full curve) was due to the minimum
reward. When λ = 1.8, the algorithm converged after about 200 iterations. Under these conditions,
if the decision space is particularly large, several better solutions would be missed. When λ = 5,
the algorithm was too slow to converge, and the efficiency was low.
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5. Discussion

In this paper, a multi-UAV cooperative search algorithm based on RL was proposed to solve the
problem of multi-UAV cooperative dynamic target searching in unknown sea areas. According to the
comprehensive efficiency function, a reward and punishment function was designed. At the same time,
the target probability map and certainty value map were mixed to describe the unknown sea area,
and the territory awareness information map was introduced to coordinate the cooperation between
multiple UAVs. The extended search map can be updated online according to the search situation of
multiple UAVs. The simulation results showed that the algorithm was effective, and the multi-UAV
cooperative dynamic target search was verified by comparative analysis, which was more effective
than the original search method.

This paper did not consider issues induced by the communication network shared by the UAVs.
In practice, the communication networks may have constraints such as transmission delays, packet
dropouts, and bandwidth issues, which may degrade the performance. Exploiting the effect of the
communication constraints to derive effective algorithms for multi-UAV cooperative searches is an
interesting topic worthy of investigation in the next step of research work.
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