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Abstract: The presence of clusters of microcalcifications is a primary sign of breast cancer.
Their identification is still difficult today for radiologists, and the wrong evaluations involve
unnecessary biopsies. In this paper, an automatic tool for characterizing and discriminating clusters of
microcalcifications into benign/malignant in digital mammograms is proposed. A set of 104 digital
mammograms including microcalcification clusters was randomly extracted from a public available
database and manually labeled by our radiologists, obtaining 96 abnormal ROIs. For each so-identified
ROI, a multi-scale image decomposition based on the Haar wavelet transform was performed. On the
decomposition, a textural features extraction step was carried out both on each sub-image and on the
corresponding gray-level co-occurrence matrix. Then, a random forest classifier was employed for
classifying microcalcification clusters into benign and malignant. The study found that the most
discriminant features extracted from the ROIs decomposition by Haar transform were variance and
relative smoothness, whereas as regards the textural features calculated on the GLCMs corresponding
to the Haar-decomposed ROI, it emerged that the relationship between the pixels of the sub-image
in the diagonal direction had high discriminating power for the classification of microcalcification
clusters into benign and malignant. The proposed method was evaluated in cross-validation and
performed highly in the prediction of the benign/malignant ROIs, with a mean AUC value of
97.39± 0.01%.

Keywords: Computer-Aided Diagnosis (CADx); microcalcification clusters; digital mammograms;
Haar wavelet transform; gray-level co-occurrence matrix; random forest
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1. Introduction

Breast cancer is currently the second most common cause of cancer death among women
worldwide, and early detection of breast lesions is the key to increase the chances of survival and
reduce the death rate [1,2]. Although digital mammography is a clinically accepted imaging method
for detecting breast cancer in its early stage, there are some difficulties when radiologists analyze
mammograms to search for signs of cancer. In particular, Microcalcifications (MCs) are often a primary
sign of breast cancer: they are quite tiny calcium deposits and can be distributed in various ways
throughout the breast tissue. When MCs are extremely minute (sometimes, they do not exceed
0.1 mm) and occur in clusters, they often indicate the presence of tumor lesions. The identification
and characterization of clustered microcalcifications is sometimes a difficult and imprecise process.
As a result, missing lesion detection during the routine check or performing many unnecessary breast
biopsies on benign microcalcification clusters may occur. Thus, in the screening phase, independent
double reading of mammograms by two radiologists is one of the solutions to reduce the missed tumor
rate [3]. However, this solution involves a high workload and cost and is time consuming. For these
reasons, an automatic tool supporting the radiologist during the mammographic interpretation of such
lesions might produce more benefits for the health system with more accurate diagnosis and for the
clinics with a lesser radiologist time requirement [4].

Computer technologies and mathematical models can allow increasing the detection rate,
and consequently, they can effectively reduce the mortality rate caused by breast cancer [5,6].

The decision support system known as Computer-Aided Detection/Diagnosis (CAD) may
offer radiologists reliable support to detect abnormalities in mammographic images [7–9]. Indeed,
the detection of breast cancer with digital mammography improves when the radiologists can use an
artificial intelligence system as the supporting diagnostic tool, without requiring additional reading
time [10–12].

Although various models of CAD systems for breast diseases have been developed in the past
two decades, reaching high performances for specific abnormalities, the automatic and accurate
classification of microcalcification clusters in benign/malignant lesion is still difficult due to their
nature. In fact, while the properties of normal tissue are quite different from abnormal ones,
often benign and malignant ROIs may show overlapping characteristics. Some works showed this
difficulty in their analysis: they achieved excellent results in terms of the classification of normal tissue
and abnormal ROIs, while they were not able to provide an equally good accuracy for the benign
and malignant discrimination problem [13,14]. Furthermore, our previous work on the diagnosis of
MC clusters underlined this difference [15]: while the classification of normal and abnormal clusters
reached an accuracy greater than 98%, the distinction between benign and malignant MCs required
further study, focusing on the extraction of features useful for this purpose.

During the last two decades, texture analysis by using a set of local statistical properties of pixel
intensity proved to be a useful technique to detect and classify lesions in digital mammograms.
The benefit of such an approach results in being more effective when the image is analyzed at
different scales: this technique may be performed by decomposing each image into different frequency
sub-bands by means of a wavelet transform and calculating first and second order texture features.
This is confirmed by the several multi-scale texture analysis approaches recently proposed. The work
presented in [16] analyzed a set of features extracted by using wavelet functions based on dual tree
complex transforms in order to capture the correlation between different wavelet coefficients and their
statistical dependencies.

Furthermore, the texture analysis can also take place by considering the spatial relationship
between pixels with different gray levels using the co-occurrence matrices [3,17,18] on original images.
It is a solid method based on the regular changes of gray levels between two neighboring pixels and
how these changes are statistically and spatially correlated.
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Most of the state-of-the-art works use these features together with others of different kinds, such as
shape features [3,17–19], which are often operator dependent because they require the intervention of
the radiologist to segment the lesion manually or define appropriate descriptors.

In previous works, we developed detection and classification models of the microcalcification
clusters on Full-Field Digital Mammograms (FFDMs) [15,20] as support tools for experts radiologists;
indeed, they provided the automated ROIs’ segmentation and characterization into normal/abnormal
with high performing results. In this work, we propose a texture analysis approach based on a
multi-scale decomposition of the ROIs with the aim of characterizing them in benign/malignant tissue.
In particular, to make the lesion classification more objective and operator independent, once the
radiologist has identified the Regions Of Interest (ROIs), the characteristic features are extracted in an
automated manner.

The process is a multi-phase approach composed of a feature extraction step, performed by texture
analysis methods, a features selection step, and a breast region classification in order to categorize
clusters of MCs in digital mammograms. Specifically, as a first step, for each ROI, a multi-scale
decomposition based on the Haar wavelet transform [21,22] is obtained. On such a decomposition,
a set of well known statistical features and a number of attributes able to describe the image texture
using the Gray-Level Co-occurrence Matrix (GLCM) [23] are extracted. Successively, a feature selection
technique is exploited, carried out with embedded methods allowing an optimization between the
interaction of the selected features and the classification algorithm used. Finally, a random forest
classifier is trained on a subset of features selected by means of an embedded method with the aim
of labeling the clustered microcalcifications in benign or malignant ones. The model performance is
tested in cross-validation and evaluated in terms of accuracy and sensitivity; then it is compared with
respect to the state-of-the-art.

Differently from the approaches shown in literature and developed for film scanned/digitized
mammograms, the proposed approach was developed and evaluated on FFDMs, since digital images
have a higher quality than the film scanned ones. In this way, a breast CAD could be implemented on
images obtained from digital devices of various cancer institutes preserving a functional compatibility
for future research activities. In particular, digital mammograms randomly selected from the public
database Breast Cancer Digital Repository (http://bcdr.ceta-ciemat.es) (BCDR) were exploited.

2. Materials And Methods

2.1. Experimental Data

The data used in our analysis consisted of a set of full field digital mammograms extracted from
the open access BCDR [24].

Specifically, 104 digital mammograms containing microcalcifications were randomly downloaded
from BCDR-DM, the Full Field Digital Mammography based Repository of BCDR. Although the BCDR
database provides all the images along with information about the diseases affected by each patient,
only the main lesions, often different from the microcalcifications, were highlighted. For this reason,
a double blind reading by two radiologists of our institute dedicated to senologic diagnostics was
manually performed in order to identify and then classify ROIs containing microcalcification clusters
only. Then, as a result of the comparison between the readings of the two radiologists, the ROIs
for which both radiologists agreed were considered. In so doing, 56 benign and 40 malignant ROIs
with different sizes depending on the extension of each cluster were obtained (see Figure 1 for some
examples of ROIs containing microcalcification clusters).

http://bcdr.ceta-ciemat.es
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Figure 1. Example regions of interest with microcalcification clusters extracted from the BCDR dataset.

2.2. Texture Analysis

Texture is a feature that can be used to segment an image into regions of interest and classify
them [25]. Theoretically, it can be seen as composed of sub-patterns with particular descriptors,
and assuming that such descriptors are uniform within the regions with the same texture, it can
be helpful to identify a number of features able to discriminate different textures. In the literature,
textural analysis is generally based on local statistical measures computed on the pixels’ gray levels
of the image. In accordance with this interpretation, in this work, we extracted and analyzed a set of
statistical features (1) on a wavelet decomposition of the original ROI and (2) on the relatively calculated
GLCMs, on which a classifier was trained with the aim of performing a texture analysis process able to
differentiate benign microcalcifications lesions form malignant ones. Specifically, we exploited a two
level Haar wavelet decomposition of the ROI containing the lesion; successively, on such resulting
images and on the relative calculated GLCM, a set of statistical features was extrapolated as in the
following and is depicted in the schema reported in Figure 2. Finally, a classification model was
embedded to learn a model able to discriminate benign from malignant tissue and to provide useful
information on features’ importance in such a process.

Figure 2. Scheme of feature extraction. For each ROI, a set of some textural features was computed on
a multi-scale decomposition by using the Haar wavelet transform, called the HAAR SFset. Moreover,
GLCMs was calculated on each sub-image decomposed by Haar transform in order to derive a second
set of textural features, called the GLCM SF set. This scheme is shown starting from a low energy
image, but it is also performed for recombined images.
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2.2.1. Multi-Scale Wavelet Decomposition

The first step of the proposed work was mainly based on a multi-scale wavelet analysis,
an appropriate technique for detection and classification of microcalcifications. Indeed, in digital
mammograms, the microcalcifications appear brighter than the neighboring tissue, and represent one
of the main high frequency components of the image spectrum. Consequently, in order to catch this
signal, the wavelet transform can be used to decompose the original image into different frequency
sub-bands. In particular, the Haar wavelet decomposition rescales the high frequency sub-band and
reconstructs the image using such a scaled high frequency sub-band [21,22].

In the 2D Haar wavelet decomposition of the image, the original image is first high-pass filtered,
yielding the three detailed coefficients’ sub-images (Figure 3a–a1; top right: horizontal, bottom
left: vertical, and bottom right: diagonal), then low-pass filtered and down-scaled, yielding an
approximation coefficient sub-image (Figure 3a–a1, top left). To compute the successive level of
decomposition, the process was iterated on the approximation coefficient sub-image (Figure 3b–b1,
top left). All of these coefficients describe the local geometry of the image in terms of scale and
orientation [22,26], allowing suppressing the sub-band of the Haar decomposed image that carries the
lowest frequencies and contains smooth (background) information, before the reconstruction of the
image [26].

Figure 3. Image decomposition schema (a,b) and on the image sample (a1–b1). In the 2D Haar wavelet
decomposition of the image, the original image is first high-pass filtered, yielding the three sub-images
((a–a1); top right: horizontal; bottom left: vertical; bottom right: diagonal), then low-pass filtered
and down-scaled, yielding an approximation coefficient sub-image ((a–a1), top left). To compute the
successive level of decomposition, the process is iterated on the approximation coefficient sub-image
((b–b1) top, left).

In particular, for each image, the 2D Haar transform at two levels of decomposition was
performed, obtaining eight sub-images (LL1, HL1, LH1, HH1, LL2, HL2, LH2, HH2), as shown
in Figure 3b–b1. As for the textural features derived from such a decomposition, for each of the
sub-images were obtained the computed mean, variance, skewness, kurtosis, entropy, and relative
smoothness. The second order moment of the mean, also known as variance, describes the visual
roughness of the image, while the third order and fourth order moment, i.e., skewness and kurtosis,
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respectively, reflect the asymmetry and the uniformity of the histogram of the image. If K denotes the
gray scale, µ the gray average, and h(k), k = 0, 1, 2, ..., K− 1, the histogram of each sub-image, they are
defined as follows:

Variance =
1
N

K−1

∑
k=0

(k− µ)2h(k) (1)

Skewness =
1
N

K−1

∑
k=0

(k− µ)3h(k) (2)

Kurtosis =
1
N

K−1

∑
k=0

(k− µ)4h(k) (3)

Entropy = − 1
N

K−1

∑
k=0

h(k) log[h(k)] (4)

RelativeSmoothness = 1− 1
1 + m2

(5)

This way results in a set of 48 statistical features (in the following HAAR SFset) for each ROI.

2.2.2. Gray-Level Co-Occurrence Matrix

A further step towards the texture analysis was carried out by considering the spatial relationship
of pixels in the ROIs by using the GLCM method [23], a widely used technique to grasp the textural
patterns from the gray-level spatial dependences present in the image [25,27].

After the GLCMs’ generation, several statistical parameters, providing useful information about
the texture of an image, could be derived from them by using different formulas. Specifically, in our
study, for each image obtained from the first level of the Haar decomposition (HL1, LH1, and HH1),
we considered an offset D = 2 along the θ0◦ direction, obtaining two GLCMs, taking into account the
relationship between the pixels from right to left (in the following GLCM dir1) and then from left to
right (in the following GLCM dir2). Supposing that each GLCM is defined as a matrix Gij; statistical
measures are computed as follows:

Energy =
K−1

∑
i=0

K−1

∑
j=0

G2
ij (6)

Entropy = −
K−1

∑
i=0

K−1

∑
j=0

Gij log Gij (7)

Correlation =
∑K−1

i=0 ∑K−1
j=0 (ij)Gij − µxµy

σxσy
(8)

Homogeneity =
K−1

∑
i=0

K−1

∑
j=0

Gij

1 + (i− j)2 (9)

SumAverage =
2K−2

∑
k=0

kGx+y(k) (10)

SumEntropy = −
2K−2

∑
k=0

Gx+y(k) log[Gx+y(k)] (11)

Di f f erenceEntropy = −
K−1

∑
k=0

Gx−y(k) log[Gx−y(k)] (12)
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SumSquares =
K−1

∑
i=0

K−1

∑
j=0

(1− µ)2Gij (13)

InverseDi f f erence =
K−1

∑
i=0

K−1

∑
j=0

Gij
1+|i−j|2

K2

(14)

Dissimilarity =
K−1

∑
i=0

K−1

∑
j=0
|i− j|Gij (15)

Autocorrelation =
K−1

∑
i=0

K−1

∑
j=0

ijGij (16)

Thus as result, a set of 22 (11 for each of the two directions D) statistical features were obtained
for HL1, LH1, and HH1 Haar decomposition, for a totally of 66 features (in the following GLCM SF
set) for each ROI.

2.3. Classification Model

Once the set of statistical features was extracted from different frequency sub-bands of the Haar
wavelet transform calculated on each original image and its relative GLCMs, as described above,
a classification model was trained to discriminate microcalcification clusters into benign and malignant
on a subset of significant features. We used a well known machine learning method, like random forest
(RF) [28].

Moreover, in order to evaluate the minimum number of significant features needed to solve the
classification problem, we developed an embedded feature selection [29,30]. Embedded methods allow
optimization between the interaction of the selected features and the machine learning algorithm used,
because the selection criterion is grafted into it. In particular, the RF classifier processes an analysis
of feature importance with respect to its expected result; therefore, these methods are essentially
fulfilling the goal, i.e., optimizing the classifier performance. At each step of cross-validation, a feature
ranking was calculated with respect to the predictive power assessed with the embedded method on
the training set. Then, a binary classification model was trained by selecting iteratively an increasing
number of features sorted by their discriminating power. In particular, the tree based strategy used by
RF naturally ranks by how well they improve the purity of the node: nodes with the greatest decrease
in impurity are at the start of the trees, while nodes with the least decrease in impurity occur at the
end of trees measured by Gini’s diversity index. Thus, the RF algorithm allows estimating predictor
importance values by permuting out-of-bag observations among the trees. In this work, we adopted a
standard configuration for RF with 100 trees and 20 features (as described in [28]) randomly selected
at each split. More complicated architectures did not give any significant classification improvement.

The performance of the prediction model was evaluated on 100 ten-fold cross-validation rounds
in terms of Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve and
also accuracy, sensitivity, and specificity calculated, identifying the optimal threshold by means of
Youden’s index on ROC curves [31]. Performing 100 rounds of cross-validation allowed having an
estimate of the error on the average value of the performance.

All the analysis algorithms used in this work (images’ pre-processing, feature extraction and,
learning models) were implemented in MATLAB2017a (MathWorks, Inc., Natick, MA, USA) software.

3. Performance Evaluation

The CAD system for classifying ROIs we proposed in [15] was trained on statistical features,
derived from the Haar wavelet based multi-scale decomposition of the image and on the number
of interest points/corners of the ROIs obtained by using two well known algorithms, SURF and
Minimum Eigenvalue Algorithm (MinEigenAlg). The model was evaluated on 96 ROIs (56 benign and
40 malignant) reaching an average AUC value of 94.19% and an accuracy of 88.19% for the benign vs.
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malignant classification problem. Although the experimental outcomes showed high performances
of the model in benign/malignant lesions’ discrimination, it was below the results reported in the
literature. However, the interesting result shown by the study was that by adding the number of
interest points and corners detected by using Speeded Up Robust Feature (SURF) and Minimum
Eigenvalue Algorithm (MinEigenAlg) improved the forecast performance of abnormal ROIs with
respect to the use of statistical features calculated on the Haar wavelet transform only.

Starting from these encouraging results, here we examined the contribution of other features
other than the statistical features calculated on the Haar wavelet transform; moreover, a different
approach for the feature selection task was evaluated. In particular, as reported in Section 2.3, at each
step of cross-validation, a features ranking was calculated by an embedded method on the learning set,
and then, a binary RF classifier was trained by iteratively selecting an increasing number of features.

The experimental results for the discrimination of benign and malignant microcalcification clusters
are summarized in Figure 4. The mean accuracy of the classifier model (%) was calculated on 100 rounds
of 10-fold cross-validation. The experimental outcomes showed that the model reached a higher
performance value exploiting only 16 out of the 114 (48 HAAR SF + 66 GLCM SF) features with a mean
AUC value of 97.39± 0.01% (Figure 5), an accuracy of 92.58± 0.02%, a sensitivity of 93.15± 0.04%,
and a specificity of 89.18± 0.03%. For this classification result, the F1-score was equal to 90.05± 0.05%;
therefore, the classifier showed also good precision. During the study and development of the present
work, we used other classifiers, such as SVM, Bayes, and k-nearest neighbors, different from the
random forest used for the feature selection step. Nevertheless, no significant improvement in the
overall performance for the same task by other evaluated classifiers was observed; this was probably
because embedded methods are techniques that perform the feature selection process as part of the
model construction process. Then, we preferred to report only this best result for the ease of reading
the paper.

Figure 4. Mean accuracy and standard error (%) of each performance values (AUC, accuracy, sensitivity,
specificity) along with the number of features: the average value on 100 rounds of 10-fold cross-validation
for increasing values of the number of features used to train the classification model to recognize
benign/malignant ROIs extracted from the BCDR dataset.
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Figure 5. ROC curves calculated on 100 rounds of 10-fold cross-validation of the classification model
that showed the highest accuracy value. In red, the average ROC curve is shown.

We identified the features whose occurrence in the first 16 positions of the rankings defined by
the feature selection process was significantly different from the case (p-value null model test ≤ 0.05)
(Table 1). Among these, there were only eight features calculated on the Haar decomposition images,
i.e., mean, variance, relative smoothness, and kurtosis. In particular, variance and relative smoothness
calculated on the original high-pass filtered image of the first (LL1) and second (LL2) level of the Haar
decomposition were always selected; therefore, these seemed more informative for the recognition of
the type of microcalcification cluster. The other features had an occurrence of selection below 15%,
which seemed to be attributable exclusively to the case and not to a real discriminating power.

Table 1. Significant features on the BCDR database: the features whose occurrence fell into the first 16
positions of the rankings defined by the embedded method are significantly different from the case
(p-value null model test ≤ 0.05) for the benign vs. malignant classification problems.

Benign/Malignant

Significant Features Frequency (%)

Relative Smoothness Haar LL1 100
Variance Haar LL1 100
Relative Smoothness Haar LL2 100
Variance Haar LL2 100
Sum Variance GLCM HH1 dir2 93.70
Sum Variance GLCM HH1 dir1 90.70
Sum Average GLCM HH1 dir2 72.80
Autocorrelation GLCM HH1 dir2 66.40
Sum Average GLCM HH1 dir1 59.80
Mean Haar HH1 42.20
Autocorrelation GLCM HH1 dir1 39.20
Difference Entropy GLCM HH1 dir1 35.50
Sum Entropy GLCM LH1 dir2 30.10
Sum Entropy GLCM HH1 dir2 28.50
Entropy GLCM HH1 dir1 26.30
Kurtosis Haar HH2 22.20
Difference Entropy GLCM HH1 dir2 20.60
Entropy GLCM HH1 dir2 16.10
Entropy GLCM HH2 dir1 15.70
Mean Haar LL2 15.40
Kurtosis Haar HL2 15.20

Moreover, taking into account the features calculated on the GLCMs of the Haar decomposed ROIs,
an interesting result emerged. Since GLCM is a technique to obtain information on the relationship
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between the pixels of an image in each direction, the features with the most discriminating power
seemed to be the statistic measures calculated on the GLCM corresponding to the sub-images in the
diagonal direction.

4. Discussion

In this paper, we proposed a CAD system for characterizing and discriminating suspicious areas
into benign/malignant as a development of the previous work for the classification of microcalcification
clusters in full field digital mammograms [15]. The analysis was performed on 96 ROIs collected
from 104 digital mammogram images of the BCDR database. For each ROI, firstly, a set of some
textural features was computed on a multi-scale decomposition based on the Haar wavelet transform,
obtaining a first set of statistical features (HAAR SF set). Secondly, the GLCM on the sub-images
decomposed by Haar transform was calculated to derive a different set of textural features, obtaining
a second set of statistical features (GLCM SF set). Therefore, all the features obtained were used
to train an RF classifier with an embedded method for the feature selection able to discriminate
ROIs. The classification performance was evaluated in terms of accuracy, sensitivity, specificity,
and AUC values.

The model developed on the HAAR and GLCM statistical feature set, previously described,
was high performing in the prediction of benign and malignant clustered microcalcifications with
the RF classifier. It was observed that using both textural feature sets led to a median AUC value of
97.39%, an accuracy of 92.58%, a sensitivity of 93.15%, and a specificity of 89.18%.

Table 2 summarizes the results of the proposed method and other state-of-the-art models for
the classification into benign and malignant ROIs. For this comparison, we considered works on
classification of MC clusters that mainly used textural features [16] or a combination of these feature
with other typologies [3,17–19,32]. We considered both works that used the same public database and
others that collected digital mammography images; since all the databases collected heterogeneous
images, often not coming from the same research centers, according to us, this comparison was justified.

Moreover, in [33,34], the authors developed a Convolutional Neural Network (CNN) decision
support system, which was an artificial feed-forward neural network with tens or hundreds of layers.
Each of these layers learned to detect independently the different features of an image: the algorithm
divided each image into topologically compact portions, each of which would be processed by the
filters in order to search for specific patterns, and the output of each image was used as the input for
the next layer. However, this method tended to require more images for training, as the new network
needed numerous examples of the object to understand the variation of the features. Training times
were often longer, and the number of combinations of existing network layers could make configuring
the network from scratch a very complex operation.

In our work, we used only textural features. The extraction of tissue texture features performed
in an automated manner from ROIs did not require any intervention by radiologists and provided
characteristic information about microcalcification clusters that may be helpful to human readers to
improve the discrimination of malignant and benign lesions.

Since these works used different digital databases and classifiers, the comparison was purely
qualitative. However, the performance of our model was high performing in terms of accuracy and
AUC both with respect to works using the same database and to those using the DDSM database.
As highlighted in the table, only [18] showed a higher accuracy, but in this work, additional features
were used, such as shape features, which required a segmentation process that did not seem to justify
the computational effort in terms of performance.
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Table 2. Benign vs. malignant microcalcification cluster classification: accuracy (Acc) and Area Under
the Curve (AUC) performances.

Methods DB No. of ROIs Features Classifier Acc (%) AUC (%)

Ren et al. (2012) [19] DDSM 150 statistical, shape SVM - 94and structural

Khehra et al. (2013) [3] DDSM 380 statistical, shape, LS-SVM 89 -textural

Perez et al. (2015) [17] BCDR 76 shape and textural NB - 79

Hu et al. (2017) [16] DDSM 150 textural Extreme Learning - 92Machine

Hepsağ et al. (2017) [33] BCDR 134 shape and textural CNN 84 -

Singh et al. (2018) [18] DDSM 428 shape and textural SVM 94 93

Alam et al. (2019) [32] DDSM 280 shape, textural, Ensemble 85 82topological learning

Cai et al. (2019) [34] Private database 749 shape and textural CNN 87 94

Proposed approach BCDR 96 textural RF 92 97

5. Conclusions

The diagnosis of microcalcifications is usually based on radiologists’ expertise, sometimes resulting
in an inaccurate lesion detection with unnecessary biopsies and subsequent surgery. Several methods
have been developed for the task of microcalcification diagnosis, in some cases performing well. Indeed,
in the literature, this classification problem was not yet very accurate compared to the normal and
abnormal tissues’ discrimination, despite a high rate of false positives implying unnecessary biopsies.
Nevertheless, the automatic and accurate classification of microcalcification clusters, especially in
differentiating the benign from the malignant ones, remains still complicated due to their nature. In this
paper, we proposed the use of texture analysis methods combined with machine learning techniques in
order to select the optimal subset for characterizing breast regions. In particular, we trained a binary
RF classifier on an increasing number of features sorted by their diagnostic power calculated using the
embedded feature importance method.

Specifically, we developed a completely automated texture analysis approach to characterize benign
and malignant tissues on digital mammograms. Using only textural features, the experimental results
evaluated by cross-validation techniques were quite promising with respect to the state-of-the-art works.

Since the sample of images with microcalcification clusters of BCDR was poor, we considered it
appropriate to evaluate the model performance through the cross-validation technique. Nevertheless,
our future work will include a validation study on a larger population, also considering other public
database, and on an independent test sample. Moreover, we will evaluate the contribution of other
types of features to our model with respect to those used in this work, in order to improve the
diagnostic accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:

AUC Area Under the Curve
BCDR Breast Cancer Digital Repository
BCDR-DM Breast Cancer Digital Repository-Digital Mammography
CAD Computer Automated Detection
CADx Computer Automated Diagnosis
CNN Convolutional Neural Network
dir1 right to left direction in GLCM
dir2 left to right direction in GLCM
FFDM Full-Field Digital Mammography
GLCM Gray-Level Co-occurrence Matrix
GLCM-SF Gray-Level Co-occurrence Matrix Statistical Features
HAAR-SF Haar Statistical Features
HE High-Energy
HH High-High
HL High-Low
LE Low-Energy
LH Low-High
LL Low-Low
LDA Linear Discriminant Analysis
MC >Microcalcification
RF Random Forest
ROC Receiver Operating Characteristic
ROI Region Of Interest
SVM Support Vector Machine
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