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Abstract: With the development of data mining technology, educational data mining (EDM) has
gained increasing amounts of attention. Research on massive open online courses (MOOCs) is an
important area of EDM. Previous studies found that assignment-related behaviors in MOOCs (such
as the completed number of assignments) can affect student achievement. However, these methods
cannot fully reflect students’ learning processes and affect the accuracy of prediction. In the present
paper, we consider the temporal learning behaviors of students to propose a student achievement
prediction method for MOOCs. First, a multi-layer long short-term memory (LSTM) neural network
is employed to reflect students’ learning processes. Second, a discriminative sequential pattern
(DSP) mining-based pattern adapter is proposed to obtain the behavior patterns of students and
enhance the significance of critical information. Third, a framework is constructed with an attention
mechanism that includes data pre-processing, pattern adaptation, and the LSTM neural network
to predict student achievement. In the experiments, we collect data from a C programming course
from the year 2012 and extract assignment-related features. The experimental results reveal that this
method achieves an accuracy rate of 91% and a recall of 94%.

Keywords: smart learning; discriminative sequential pattern; attention mechanism; massive open
online course; data science applications in education

1. Introduction

Recent developments in data mining have led to renewed interest in educational data mining
(EDM). Studies on massive open online courses (MOOCs) are an important part [1–4] of EDM.
Compared to traditional classes, students can obtain optimal learning resources in MOOCs using
the internet, without considering the location and cost of obtainment. Researchers are committed
to improving the effectiveness of learning in many ways. Previous work has tried to predict and
improve student achievement in MOOCs by considering courses [5,6], forums [7], watching behaviors
on video [8,9], quizzes [10], plagiarism [11,12], and so on.

Researchers have found that students’ behaviors [13] can reflect their learning situation and
achievement, and the overall behaviors (such as the number of assignments done, the number of
quizzes passed, and total amount of time spent completing assignments [10]) can be used to predict
student achievement. Since students’ same overall behaviors may have different meanings with
different learning process, the use of overall behaviors, which cannot fully reflect students’ learning
processes, affects the accuracy of predictions. Table 1 shows four students with similar overall behaviors
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that have different achievements, and the data used in Table 1 are from the data set mentioned in
Section 5.1. All students have completed 69 assignments, and their average submission times of all
assignments is 2.42, and their average submission order of all assignments is about 770. However,
everyone’s score varies greatly from 21 to 80, and this means that the overall behaviors cannot fully
reflect students’ learning processes.

Table 1. Some overall behaviors of students.

Student ID Number of
Assignments Done

Average
Submission Order

Average
Submission Times Score

35366 69 767 2.42 78
34692 69 761 2.42 56
34203 69 786 2.42 21
34677 69 784 2.42 80

The students’ learning processes reveal their temporal learning behaviors. Current temporal
algorithms that can analyze students’ temporal learning behaviors mainly include traditional
algorithms [14–17] and deep learning-based algorithms [18–20]. Deep learning-based methods
such as long short-term memory (LSTM) have achieved outstanding performance in processing
temporal issues. However, as the length of a time-series neural network increases, some critical
information will be lost and affect the accuracy of the prediction.

In addition, behavior patterns contain critical behavior information shared by students, and they
are also helpful in revealing students’ learning processes. Researchers have mined students’ behavior
patterns [21,22]. Cerezo [21] analyzed log data and revealed four patterns (non-procrastinators, socially
focused, individually focused, procrastinators) of online behaviors that predict student achievement.
They found that students with procrastination patterns gain low final marks. Kahan [22] identified
seven types of participant behaviors. In these behavior patterns, the same behavior pattern may
exist in different student groups. For example, the behavior pattern of completing assignments with
fewer attempts several times may exist in both the student group with excellent achievements and
that with continuous plagiarism. This pattern is not useful for us to predict students’ achievements.
We need to find discriminative behavior patterns, and these patterns help effectively to predict
student achievement.

In order to solve the problems above, in the present paper, we extract temporal assignment-related
behaviors (e.g., submission order sequence, completion time sequence) from logs in a course on
MOOCs, describe students’ learning processes, and predict students’ achievement by considering
students’ learning processes and discriminative behavior patterns.

Our contributions include the following:

1 We construct an achievement prediction framework with an attention mechanism that fully
leverages student temporal behaviors and behavior patterns.

2 We propose a discriminative sequential pattern (DSP) mining algorithm to mine student behavior
patterns (such as those defined by Quitter, Faineant, and Cheater), which enhances the importance
of critical information and improves the performance of student achievement prediction.

3 The experiments show that the accuracy of predicting student achievement using our approach
produces a better outcome than some other methods. Our approach obtains an accuracy rate of
91% and a recall of 94%.

The rest of the paper is organized as follows: Section 2 presents analyses of the related work in
the field. We present an end-to-end achievement prediction framework in Section 3, and then describe
the methods used in Section 4. The experiments and the analyses of the results are shown in Section 5.
Section 6 summarizes our work and suggests possibilities for future research.
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2. Related Work

2.1. Prediction in MOOCs

Over the past few years, researchers have made substantial progress in mining data from
MOOCs, such as mining texts from discussion forums [7], mining video behaviors [8,9], performance
prediction [10,13,21,23], plagiarism detection [11,12], and dropout detection [18,19]. These data mined
from MOOCs have been widely used for predicting student achievement.

Romero [10] summarized the data mining application for learning with the Moodle system. They
used the attributes of the number of assignments done, the number of quizzes done, the number of
quizzes passed, the number of messages sent to the teacher, the number of messages sent to the forum,
etc., to group the students and predict student performance. Meier et al. [13] proposed a method
to increase students learning efficacy in the traditional classroom as well as in the case of MOOCs.
They suggested that assessments (such as quizzes) in MOOCs can help to perform timely predictions
for each student, allowing the instructor to make appropriate interventions. Cerezo [21] examined
the students learning behaviors using data extracted from MOOCs, such as the total time spent on
the forum and the number of words posted on the forum, and identified four distinct patterns of the
learning process, revealing student groups with different levels of achievement (including the social,
individually focused, procrastinator, and non-procrastinator groups). These outcomes have apparent
significance for increasing student performance in MOOCs. Conijn [23] reported that 65% of specific
course items (e.g., videos started, quizzes finished, resources read) were related to the final exam
grade. Students who passed the course spent more time on these items compared to those who failed.
However, there was little difference in the sequence of activities among diverse students.

These works mainly consider the overall behaviors of students in MOOCs, which cannot fully
reflect students’ learning processes, and thus affect prediction accuracy.

2.2. LSTM Networks

The student learning process is a vital consideration for predicting student achievement. For
sequential data such as a learning process, temporal algorithms, including traditional algorithms and
deep learning-based algorithms, have been widely used. Among these algorithms, recurrent neural
network (RNN) [24] or LSTM [25] networks have outperformed other traditional algorithms.

A RNN is a class of artificial neural network, where connections between nodes form a directed
graph along a temporal sequence. This allows the network to exhibit a temporally dynamic behavior.
Pineda [24] tried to generalize back-propagation to recurrent neural networks, resembling the
master/slave network of Lapedes and Farber. However, excessively long input sequences of RNNs will
cause gradient explosion or gradient disappearance. LSTM [25,26] networks are designed to fix the
shortcomings of a RNN, where it is difficult to process a long sequence. In 2000, Schmidhuber [26]
proposed a novel, adaptive forget gate that enables a LSTM cell to learn and reset itself at an
appropriate time.

Tang [18] extracted raw features from activity logs and used a RNN with LSTM cells to predict
course dropout in MOOCs. Xiong [19] proposed a RNN-LSTM-based prediction model to predict
learners’ learning status and solve the problem of a high dropout rate. Ding [19] trained a modified
auto-encoder combined with a LSTM neural network to select features and predict student performance
in MOOCs. The selected features are discriminative for prediction and reduce the overfitting for the
low-performing student group. Singh et al. [27] presented a multi-stream, bidirectional RNN for
fine-grained action detection. Fei [28] used features such as lecture video watching and forum activities
during the study period to predict student dropout.

These above algorithms can deal with the temporal problems well. However, some critical
information is lost because of the long length of their time-series neural networks, and thus they affect
the accuracy of the prediction.
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2.3. Sequential Patterns

Studying different student behavior patterns can also strengthen teaching outcomes [29].
Kahan [22] identified seven types of participant behaviors and termed them tasters (64.8%), downloaders
(8.5%), disengagers (11.5%), offline engagers (3.6%), online engagers (7.4%), moderately social engagers
(3.7%), and social engagers (0.6%). This study supported the claim that people should evaluate
the impact of MOOCs on both certification rates and learning conduct. Rodrigues, Ramos, Silva,
and Gomes [30] aimed to discern students’ engagement patterns in MOOC courses using EDM
techniques. Their analysis guided the design of adaptive strategies and helped enhance the learning
experience. Brinton [31] explored the relationship between students’ video-watching behavior and
quiz score in MOOCs. They showed that some behaviors (e.g., skipping back and skipping forward)
were significantly correlated with the ability to be ‘correct at first attempt’ (CFA) when answering
quiz questions.

For temporal data, sequential patterns can reflect the critical information of data [32]. Sequential
patterns were first put forth by Agrawal et al. in 1995 [33]. Other sequential pattern algorithms, such
as Aprioriall, AprioriSome, and Dynamicsome [33], were advanced one after another. Subsequently, a
new sequential pattern algorithm, the generalized sequential pattern (GSP) [34], was proposed, which
is effective at creating sequential patterns, but its efficiency is not high, because the whole sequence
must be searched.

Jiang et al. [35] presented a pruning technique and introduced a k-weighted pruning strategy in a
weighted, negative sequential pattern mining algorithm. Experiments have shown that their algorithm
is successful and produces ideal results.

3. Framework and Data Pre-Processing

In this section, we propose an end-to-end achievement-prediction framework that extracts features
from interaction logs in MOOCs and predicts students failing to pass the final exam. As shown in
Figure 1, the framework is illustrated in four parts. Part (a) is the data pre-processing, part (b) is a
multi-layer LSTM neural network, part (c) is a pattern adapter and part (d) is the attention mechanism.
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Figure 1. The student achievement-prediction framework in massive open online courses (MOOCs):
(a) Data pre-processing; (b) multi-layer long short-term memory (LSTM) neural network for predicting
student achievement using temporal behaviors; (c) pattern adapter for mining behavior patterns that
could strengthen critical information; (d) attention mechanism to adjust the weight of parts (b) and (c).

We carry out the data pre-processing in part (a) and extract temporal features that reflect the
students’ learning process. Part (b) uses a multi-layer LSTM neural network to predict student
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achievement, considering students’ temporal features. The temporal algorithm-based LSTM neural
network, using temporal features, can reflect the learning processes of students well. Part (c) finds the
discriminative sequential patterns and constructs pattern adapters according to the sequential patterns.
Sequence patterns can emphasize the critical information that may be forgotten by the LSTM neural
network in part (c). Part (d) adjusts the weights of parts (b) and (c) by using the attention mechanism,
obtaining the final prediction result.

Before extracting temporal features, the data need to be pre-processed. Missing logs or absences of
students’ assignments will affect the effectiveness of features. Each assignment of each student should
have relevant logs, and the logs of each assignment will form a time status with temporal features.
Where we found that there were missing logs, these missing logs were replaced with simulated logs.
We can do this because all the extracted features are numeric, and thus we can replace the missing data
with an adjacent or global value.

There were three approaches used to fill the missing logs: The first approach used was adjacent
replenishment, which means to fill the logs by using the average value of adjacent logs. The usage
of adjacent replenishment indicates that the learning behavior of a student is similar to that of an
upcoming assignment in the process of learning, and the missing behavior data can be filled by the
adjacent learning behavior data. The second technique is global replenishment, which involves filling
the logs by the average value of all logs of the given student. Global replenishment means that
behaviors in the learning processes are similar for the same student, and thus the actual behavior data
can be replaced by the average behavior of all assignments. The third method is 0 replenishment, which
implies the status value is replaced with 0. This means that the value of all the features reflecting the
students’ completion of the assignment are set to 0, regardless of whether the students failed to submit
their assignment, or if the assignment they submitted was lost because of unexpected circumstances.
We provide the experimental outcomes in Section 5.

4. Prediction Method

In this section, we propose an algorithm to predict student achievement, along with the attention
mechanism, using the temporal feature sequences. The algorithm can well reflect students’ learning
processes and can enhance critical information with a DSP-based pattern adapter. By adjusting the
weights of the LSTM neural network and DSP-based pattern adapter, better prediction can be obtained.

4.1. Multi-Layer LSTM Neural Networks

We used a multi-layer LSTM neural network to predict students’ achievement and reflect students’
learning process. The LSTM neural network can remember important information and forget invalid
information. This solves the problem of gradient disappearance and gradient explosion in long
sequences in RNNs. A LSTM unit consists of an input gate, an output gate, and a forget gate. The input
gate inserts the sequential data, and the forget gate selectively forgets the information transmitted by
the previous node. The output gate determines the information that can be passed to the next node.
The structure of the LSTM cell used is shown in Figure 2.

The calculation process of the output results is shown in Equations (1)–(7). The new memory, Ct,
is generated from the output, ht−1 and xt, of the previous unit. Input gate it controls the retention of
new memory, forgetting gate ft controls the retention of Ct−1 before forgetting gate ft, and the output of
final memory is controlled by output gate ot.

ft = σ
(
W f [ht−1, xt] + b f

)
(1)

it = σ(Wi[ht−1, xt] + bi) (2)

Ct = tanh(Wc[ht−1, xt] + bc) (3)

Ct = ft ◦Ct−1 + it ◦Ct (4)
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ot = σ(Wo[ht−1, xt] + bo) (5)

Ct = tanh(Ct) (6)

ht = ot ◦Ct (7)

A multi-layer LSTM network generally consists of three layers: (1) An input layer, (2) a hidden
layer, and (3) an output layer. Our LSTM adopts a five-layer architecture, including three-layer hidden
layers. Part (b) of Figure 1 displays the network.
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4.2. DSP-Based Pattern Adapter

In this part, we use a DSP to mine sequential patterns and construct pattern adapters in order
to highlight the importance of critical behavior data. Since LSTM units use the forget gate to forget
invalid behavior information, some critical behavior information may also be forgotten. However,
sequential patterns contain critical behavior information shared by most sequences and could enhance
the importance of information.

Students who pass the exam and the students who fail the exam have different behavior patterns.
Taking the students who failed the final exam as an example, we should ensure that the sequential
patterns that appear from the students who fail the exam are rarely found in students who pass the
exam. Otherwise, the prediction accuracy of sequential pattern prediction will be greatly reduced. The
traditional GSP algorithm has shortcomings in dealing with multi-classification sequential pattern
prediction. Thus, we propose an improved GSP algorithm, called DSP, to identify students’ behavior
patterns regarding interval temporal features and construct pattern adapters.

We divided 69 assignments into 14 groups, according to the open time of the assignments. For each
student’s behavior, we construct a sequence of 14 lengths. The average students’ assignment-related
behavior in each group was taken as a value of the sequence. We discerned the sequential patterns of
the students who pass the final exam (labelled as Classification 0) and those who fail it (labelled as
Classification 1).

The DSP algorithm is shown in Algorithm 1. We set two thresholds to control the accuracy and
recall of sequential patterns.
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We can use the DSP algorithm to obtain many behavior patterns, which constitute the
corresponding pattern adapters. For sequential patterns, we can construct a n-dimensional vector,
where there are n patterns. A feature sequence will match these sequential patterns separately.
If the matching is successful, the corresponding position of the vector is 1. If the matching fails,
the corresponding position of the vector is 0. A student’s behaviors can be transformed into the
n-dimensional vector through the pattern adapters, which can be trained by a simple neural network
to predict student achievement.

4.3. Attention Mechanism

We used the attention-based student achievement prediction model to evaluate the importance of
the LSTM neural network and sequence patterns adapter. The attention mechanism originates from
the way of thinking of the human brain [36], which automatically pays more attention to vital details
and ignores less important information.

Note that each output of the multi-layer LSTM neural network, such as that from O1 to Ot in part
b, is not normalized, so we need to score each output, as shown in the following equation:

Sib = softmax (Oi) i ∈ (1, 2, ... t) (8)
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Similarly, we normalize output Oc of part c. The formula is displayed in Equation (11).

Sc = softmax (Oc) (9)

The final score in the prediction process is composed of parts b and c. We use the attention
mechanism to adjust the weights of parts b and c. The weight of part b for output Oi is Wi, and that of
part c is Wc. We used the feed forward neural network to train the model. The network was trained
jointly with the multi-layer LSTM neural network in part b and the multi-layer perceptron in part c,
shown in Figure 1. The final loss function (LOSS) is composed of the loss of parts b and c, where L is
the softmax loss function. The LOSS function is presented as follows.

LOSS = L(Sc) ∗Wc + Wb(
t∑

i=0

L(Sib) ∗Vi) (10)

t∑
i=0

Vi = 1 (11)

Wc + Wb = 1 (12)

We performed back propagation to train the parameters via a gradient descent algorithm.

5. Experiments

5.1. Data and Distribution

In this section, we introduce the data set and describe the features extracted from the logs. Finally,
the data distribution is presented.

The data are from a course called ‘C Programming’, from 2012. In total, 1528 students took part in
this course. The course includes 69 programming assignments. Students are supposed to complete
these assignments, and thirty-four features can be extracted from the logs as shown in Table A1. We
have extracted the features of the assignment behaviors and some compiled error information. These
features (including assignment submission order, quick submission times, runtime error (RE) times,
completion time, and compile information, etc.) denote the students’ completion of assignments from
multiple angles, and thus reflect the students’ learning status.

Figure 3 is a programming assignment to be completed by students. As there are many difficult
hidden test cases, it is difficult for students to pass all the test cases at once.

The assignment contains five test cases. The first three are public, and the last two are hidden
test cases that students cannot see. After the student submits the program, the platform compiles
the student’s program, enters the test case, judges whether the output is consistent with the expected
output, and if it is consistent, judges that the student has passed the test case.

A submission order refers to the order of submitting an assignment to the website. For a student, if
he/she is the first to submit the assignment, the submission order for the assignment is 1. If he/she is the
second student, the submission order for the assignment is 2. Among these programming assignments,
students will submit the assignment many times to pass all test cases in order to obtain a high score.

A quick submission is determined to occur when the submission time minus the browsing time is
less than 300 s. The browsing time begins measurement when a student first reads the assignment,
while the submitting time is measured when the student submits it. Since students need to view the
test cases online for specific output formats and adjust the output format of the program by referring
to the test cases, students are less likely to view the assignment elsewhere and remember the output
format to complete the assignment. There is a large probability that a quick submission means the
student copied the assignment from someone else. The following figures demonstrate the correlation
between average quick submission times and academic performance.
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Figure 4. The relationship between the score in the final exam and average quick submission times.

Table 2 reveals the relationship between submission orders and exam scores. For students with
scores under 10, their average submission order of all assignments is 1061, while for students with
scores above 90, their average submission order of all assignments is 393. This finding indicates that
students who submit their assignments early have higher learning enthusiasm and students with
higher learning enthusiasm are likely to receive higher scores.
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Table 2. The relationship between average submission order and exam scores.

Exam Scores of Students Average Submission Order of All Assignments

0–10 1061
10–20 1002
20–30 949
30–40 884
40–50 832
50–60 759
60–70 710
70–80 612
80–90 555

90–100 393

Figure 5 reveals the relationship between the scores of students and their submissions times
during the learning process. Students with a score between 50 and 60 try to submit their assignments
more times in the early 10 assignments, and, in the later phases, students with a score between 90
and 100 try to submit their assignments more times. This indicates that some students with a poor
score try to complete their assignments with more attempts in the early part, showing evidence of
their poor learning ability. However, in the later part, they often submit assignments once and pass
all test cases, as they copy the assignments from other students and have fewer submission times.
Students with a score between 90 and 100 can complete easy assignments with fewer attempts in the
early stage. After the assignments become more complex, they are willing to try more to complete the
assignments independently.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 
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5.2. Baselines

In the experiment, we test the standard multi-layer perceptron (MLP), standard LSTM,
M-F-LSTM [37], NOSEP [38], and our method.

A LSTM-based neural network is appropriate for sequence data. We used LSTM to make
two experiments according to different assignment groups. This course lasts for 14 weeks and has
69 assignments. In the first experiment, we extracted the corresponding features from each assignment
in the unit of assignment and set the unit number of LSTM to 69. In the second experiment, we
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extracted the corresponding features from all the assignments in each week and set the unit number of
LSTM to 14.

M-F-LSTM is a multi-layer LSTM that it is fully connected among layers.
NOSEP is a sequence pattern mining method that can be used to find the students’ behavior

patterns. We can use the behavior patterns to predict student performance.
Our method fully considers the learning process of students and pays attention to

critical information.

5.3. Evaluation Metrics

In this paper, we evaluate the performance of the data pre-processing method, the sequential
pattern mining method, and the students’ overall performance prediction method, respectively.

We use the accuracy and recall rates to compare the performance differences of each algorithm in
the data pre-processing method.

Here, we define two evaluation metrics to evaluate the DSP algorithm: If each value of sequence
pattern f appears in sequence s in turn, we define that sequence s is in accordance with sequence
pattern f. For example, s1 = (a, d, c, c, b, b, e, e, e, e, e, e, e, e) and s2 = (a, b, c, d, b, d, e, e, e, e, e, e, e, e)
are two students’ behavior sequences. For sequential patterns f 1 = (a, c, d) and f 2 = (a, c, b), a, c, and d
in f 1 appear in sequence s2, so s2 is in accordance with f 1. Similarly, s1 and s2 are in accordance with f 2.

Definition 1. The recall of sequential pattern f in classification i (RCCi) equals Mci divided by Ni, where Mci is
the number of students whose behavior sequences are in accordance with pattern f in classification i. Ni is the
overall number of students of classification i. RCCi refers to the probability that the student behaviors sequences
could in accordance with sequential pattern f in classification i. The formula for this is as follows:

RCCi = Mci/Ni (13)

Definition 2. The accuracy of sequential pattern f (ACCi) in classification i equals Mc divided by N, where Mc

is the number of students whose behavior sequences are in accordance with pattern f in all classifications. N is
the number of students in all classifications. ACCi refers to the proportion of the true result when predicting
with sequential pattern f. The formula for this is as follows:

ACCi = Mc/N (14)

We used accuracy and recall to compare the performance differences of each algorithm
and used 5-fold cross validation to verify the stability of the algorithms in the students overall
performance prediction.

5.4. Training Details

We predicted whether the students’ performance in the final exam is greater than 70 points
by examining the students’ behavior. We think that students with more than 70 points have better
performance, and students with less than 70 points have difficulties in learning. We trained neural
networks with 80% of the data and validated with the remaining 20% of data.

We use the Tensor Flow framework to train the data using the GPU. For the LSTM neural network
in our method, we used three hidden layers, each with 69 units. We set ‘learning_rate’ to 0.0001,
‘batch_size’ to 64, ‘n_hidden’ to 64, and conducted 500,000 iterations of training. In the DSP algorithm
for finding students’ behavior patterns, we set ACC to 0.7 and RCC to 0.7, in order to take into account
both the accuracy and recall of the model.
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5.5. Results

5.5.1. Data Pre-Processing

For existing assignment-related behaviors in MOOC logs, we can quickly extract relevant features
and construct behavior sequences. However, for uncommitted or unexpectedly missing assignments,
we need to use algorithms to repair these behaviors and build behavior sequences.

Each of the 1528 students needed to complete 69 assignments. When we use the LSTM network
for prediction, the number of assignments in the logs should be 105,432 (1528 × 69), however, the actual
number of assignments was only 104,194, which equates to a missing feature rate of 1.2%. We tested
three methods to simulate the missing logs, as described earlier.

The outcome in Table 3 reveals that the 0-replenished method leads to the best performance.
In other words, missing features (substituting 0) better reflect the learning state of students who fail to
submit assignments, while global or adjacent feature substitution will make the predicted results less
accurate. The performance of the 0-replenished method shows that a value of zero can better reflect
the learning state of students and implicitly shows that a student has not submitted their assignment.

Table 3. The comparison of three methods that fill missing logs.

Method Accuracy Recall

Adjacent-replenished 89% 94%
0-replenished 90% 94%

Global-replenished 87% 89%

5.5.2. DSP-Based Pattern Adapter

We constructed feature sequences of 14 lengths per week for multiple features. In order to find
behavioral patterns, we need to discretize the values of features. Take the submission order as an
example: Since there are 1528 students, the order of submitting an assignment is 1–1528. The first
submission is 1, and the last submission is 1528. We discretized the value of the submission order,
and the eigenvalue of the first 500 submitting students was set to be value ‘1’. The eigenvalues of the
501–1000th students who submitted assignments were discretized to value ‘2’. The eigenvalues of the
1001–1528th students who submitted assignments were discretized to value ‘3’. Similarly, we discretized
other features. Then, we used the DSP algorithm to find behavior patterns. The experimental results
are as follows.

The sequential patterns selected in the experiment are all behavioral patterns where students fail
the final exam. For students who pass the exam, it is difficult to find sequential patterns, as losers have
the same reasons, while winners have their own strategies for success. Several sequential patterns are
selected in Table 4. In Table 4, (.*) means any number of values, ranging from 0 to infinity.

Table 4. Behavior patterns.

Pattern Name Feature Pattern Accuracy Recall Pattern Type

Quitter 1 Submission times (.*) 1 (.*) 2 (.*) 2
(.*)-2 (.*)-2 (.*) 72.7% 72.1% Failed exam

Quitter 2 Submission times (.*) 2 (.*) 2 (.*) 2
(.*)-2 (.*)-2 (.*) 73.6% 73.9% Failed exam

Faineant Submission order (.*) 3 (.*) 3 (.*) 3 (.*) 73.8% 70.2% Failed exam
Cheater Plagiarism (.*) 2 (.*) 73.49% 85.00% Failed exam

The first two sequential patterns, called Quitter 1 and Quitter 2, respectively, reflect the learning
behavior of students with learning difficulties. In these two patterns, a value of ‘2’ means that the
number of submissions is much larger than the average number of submissions of all people in the
group, and a value of ‘−2’ denotes that the number of submissions is much smaller than the average
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number of submissions. These students have trouble learning in the early stages and need to spend
more time completing their assignments. However, in the late phases of learning, they give up doing
assignments independently and complete them through plagiarism, so their submission times are far
less than the average submission times.

The third sequential pattern, called Faineant, means that students do not study actively and
always submit their assignments at the end. In the submission order, value ‘3’ means that the student
submitted his assignment after 1000 students. The experimental outcomes demonstrate that if three
groups of assignments submission order are after 1000, the probability of failure of these students is
73.8%. This indicates that the order of submission can reflect students’ learning initiative and has an
important impact on the final exam.

The fourth sequential pattern, called Cheater, means that students have serious cheating in their
assignments. This means the student has committed serious fraud for a group of assignments. The
experimental findings show that 73.49% of the students who cheat seriously for a group of assignments
fail the final exam.

5.5.3. Prediction Results

The simulated result of our method is shown in Figure 6. After 500,000 iterations, the loss gradually
converges, and the accuracy approaches 100% in the training data set due to possible overfitting. The
final outcome achieved is an accuracy rate of 91% in the testing data set.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 

 
Figure 6. The iteration process of our method. 

As shown in Table 5, the MLP method with global features achieves an accuracy of 75%. In 
contrast, the LSTM (l = 14) method achieves an accuracy of 80%, while the other LSTM (l = 69) method 
achieves an accuracy of 88%, and the M-F-LSTM method achieves an accuracy of 91%. The results 
reveal that temporal algorithms (such as LSTM and M-F-LSTM) can better reflect the learning 
processes of students and achieve better prediction result. The variable value of the global feature in 
MLP method may be the same for different behaviors. For example, two students completed the first 
30 assignments and the last 30 assignments in 69 assignments, respectively, and the values of the 
assignment completion number in overall features were both 30 for both students. However, the same 
values reflect different behaviors. A student who has completed the first 30 questions gave up 
learning later, while a student who has completed the last 30 questions began to work hard later. As 
there is a deadline for an assignment, the student who has completed the last 30 assignments cannot 
make up for the previous assignments. The results indicate that the MLP method with global features 
cannot distinguish the learning state of these two students, while temporal methods can well reflect 
the learning process of these two students and distinguish the learning state of these two students. 
The LSTM (l = 69) performance was better than the other LSTM (l = 14) method, as more units can 
better reflect students’ learning processes. 

Table 5. Comparisons among our method and other approaches. MLP: Multi-layer perceptron. LSTM: 
Long short-term memory. NOSEP: Nonoverlapping Sequence Pattern Mining. M-F-LSTM: Multi-task 
Fully-connected LSTM. 

Simulation Method Accuracy Recall Cross Validation 
MLP 75% 75% 0.75 

LSTM (l = 14) 80% 92% 0.85 
LSTM (l = 69) 88% 94% 0.91 

NOSEP 86% 85% 0.85 
M-F-LSTM 91% 92% 0.92 

Our Method 91% 94% 0.93 

NOSEP, a sequence pattern algorithm, can find student behavior patterns and predict students’ 
performance. This method pays more attention to students’ critical information. The NOSEP method 
achieved the accuracy of 86% and a recall of 85%. 

Although temporal algorithms can better reflect the learning process of students, some 
information may be forgotten with the LSTM method. We synthesized the LSTM method and 
behavior pattern method to reflect the learning process and enhance the importance of critical 

Figure 6. The iteration process of our method.

As shown in Table 5, the MLP method with global features achieves an accuracy of 75%. In contrast,
the LSTM (l = 14) method achieves an accuracy of 80%, while the other LSTM (l = 69) method achieves
an accuracy of 88%, and the M-F-LSTM method achieves an accuracy of 91%. The results reveal that
temporal algorithms (such as LSTM and M-F-LSTM) can better reflect the learning processes of students
and achieve better prediction result. The variable value of the global feature in MLP method may be the
same for different behaviors. For example, two students completed the first 30 assignments and the last
30 assignments in 69 assignments, respectively, and the values of the assignment completion number
in overall features were both 30 for both students. However, the same values reflect different behaviors.
A student who has completed the first 30 questions gave up learning later, while a student who has
completed the last 30 questions began to work hard later. As there is a deadline for an assignment, the
student who has completed the last 30 assignments cannot make up for the previous assignments. The
results indicate that the MLP method with global features cannot distinguish the learning state of these
two students, while temporal methods can well reflect the learning process of these two students and
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distinguish the learning state of these two students. The LSTM (l = 69) performance was better than
the other LSTM (l = 14) method, as more units can better reflect students’ learning processes.

Table 5. Comparisons among our method and other approaches. MLP: Multi-layer perceptron. LSTM:
Long short-term memory. NOSEP: Nonoverlapping Sequence Pattern Mining. M-F-LSTM: Multi-task
Fully-connected LSTM.

Simulation Method Accuracy Recall Cross Validation

MLP 75% 75% 0.75
LSTM (l = 14) 80% 92% 0.85
LSTM (l = 69) 88% 94% 0.91

NOSEP 86% 85% 0.85
M-F-LSTM 91% 92% 0.92

Our Method 91% 94% 0.93

NOSEP, a sequence pattern algorithm, can find student behavior patterns and predict students’
performance. This method pays more attention to students’ critical information. The NOSEP method
achieved the accuracy of 86% and a recall of 85%.

Although temporal algorithms can better reflect the learning process of students, some information
may be forgotten with the LSTM method. We synthesized the LSTM method and behavior pattern
method to reflect the learning process and enhance the importance of critical information. Our method
achieves an accuracy of 91% and a recall of 94%, which performs better than the other methods.

6. Conclusions

Previous studies have found that assignment-related behavior in MOOCS can influence student
achievement. However, previous studies have not fully considered the pertinent learning process. In
this paper, we aim to explore the influence of the learning process on student achievement. A framework
was constructed with an attention mechanism that includes data pre-processing, a DSP-based adapter,
and a LSTM-based neural network to predict student achievement. We used the LSTM neural network
to reflect the students’ learning processes and the DSP-based adapter to enhance the significance of
critical information. Some sequence patterns were mined such as the Quitter, Faineant and Cheater
patterns. The experimental results also show that students who failed in the exam had common
sequence patterns, while those who passed the exam did not have common sequence patterns. This
means that all roads lead to Rome, but failures are always the same. Our method achieves an accuracy
rate of 91% and a recall rate of 94% when predicting student achievement. Thus, our study makes an
important contribution to the literature on finding the relationship between the learning process and
student achievement.

In future work, we will examine the coding content of programming assignments for higher
student performance and will consider the universality of the research on MOOC courses.
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Appendix A

Table A1. Some of the features.

Feature Meaning

Final Submission Order Order of submitting one assignment to the website for the final time
Quick Submission Times Quick submission times of all assignments

Submission Times Value of submission times for assignments
PE Error Times Presentation error (PE) times in compiled information
RE Error Times Runtime error (RE) times in compiled information

TLE Error Times Time limit exceeded (TLE) times
WA Error Times Wrong answer (WA) times

Pass Number Total number of assignments for which answers are correct
Pass Rate Rate at which assignment answers are correct in all assignments

First Submission Order Order of submitting one assignment to the website for the first-time
Completion Duration Completion duration for assignments

Submission Status Submission status for assignments
One-Time Pass Number Number passing all cases for one submission in all assignments

One-Time Pass Rate Rate at which assignment answers pass all test cases in all assignments
submitted once

Programming Code Lines value of programming code lines
Completion Time The time when a student completed an assignment

Time View Assignment The time when a student viewed an assignment
Time Submit Assignment The time when a student submitted an assignment
Test Case Pass Number The number that how many test cases were passed in on submission

Sum Time Used Sum consumed time by program running
Average Memory Used Average consumed memory by program running
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