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Abstract: Infrared and visible image fusion can obtain combined images with salient hidden objectives
and abundant visible details simultaneously. In this paper, we propose a novel method for infrared
and visible image fusion with a deep learning framework based on a generative adversarial network
(GAN) and a residual network (ResNet). The fusion is accomplished with an adversarial game and
directed by the unique loss functions. The generator with residual blocks and skip connections can
extract deep features of source image pairs and generate an elementary fused image with infrared
thermal radiation information and visible texture information, and more details in visible images are
added to the final images through the discriminator. It is unnecessary to design the activity level
measurements and fusion rules manually, which are now implemented automatically. Also, there are
no complicated multi-scale transforms in this method, so the computational cost and complexity can
be reduced. Experiment results demonstrate that the proposed method eventually gets desirable
images, achieving better performance in objective assessment and visual quality compared with nine
representative infrared and visible image fusion methods.

Keywords: infrared and visible image fusion; deep learning; generative adversarial network; residual
network; structural similarity loss

1. Introduction

The research of image fusion is of great significance, which can composite particular and
complementary information of different sensors to generate the fused results of the same scene [1].
Fused images with compositive information help to deal with image pre-processing, target recognition,
and image classification [2], and improve the stability and robustness of the system. Nowadays, image
fusion has been used in various conditions, including multi-focus image fusion, multi-exposure image
fusion, panchromatic and multi-spectral image fusion, multi-spectral and hyper-spectral image fusion,
medical image fusion, and so on. Infrared and visible image fusion, which belongs to multi-modality
image fusion, has already been used in image enhancement [3], surveillance [4], remote sensing [5],
medical research, etc. The images taken by infrared tensors and visible light tensors focus on different
characteristics. Infrared images reflect the thermal radiation of objects [6] and have strong detective
capability, making it possible to find targets in bad weather or hidden behind obstructions. However,
because of the limits of the imaging principle, infrared images usually have low resolution and few
details. Visible images generally have high resolution, evident contrasts, and abundant textures and
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they are defined in a manner consistent with the human visual system. But it is difficult to get a clear
photograph when environmental conditions are not good. Therefore, many researchers have been
committed to the subject of infrared and visible image fusion techniques to obtain comprehensive
images for further applications.

According to the fusion strategies and theories adopted [6], several representative infrared and
visible image fusion algorithms have been proposed, including multi-scale transform- [7–9], sparse
representation- [10,11], neural network- [12,13], subspace- [14,15], and saliency-based [16,17] methods,
hybrid models [18,19], and other methods [20,21]. These methods are widely used and still studied
by many researchers. Generally, these basic methods are almost conventional image fusion methods
which consist of several critical components: image transform, activity level measurements, fusion
rules, etc. [22]. As far as it goes, although there are many flexible transforms proposed, it is still hard
to find the appropriate activity level measurements and fusion rules to obtain well-fused images.
Meanwhile, all these components are designed in a manual way, and the implementation difficulty and
computational cost have also become troublesome problems. In the last few years, research on deep
learning (DL) has become more and more extensive, especially in the field of image processing. DL has
already been used in image classification, recognition, detection, and fusion tasks. DL-based image
fusion methods can extract deep features automatically to overcome the difficulties caused by manual
measurements and assignments, making the whole fusion process become easier. Liu et al. [23,24]
first proposed the methods to use convolutional neural networks (CNN) of DL for infrared and visible
image fusion. Last year, Li et al. [2,25] presented some other DL frameworks to fuse infrared and
visible images. The above-mentioned DL-based methods are not end-to-end models and they all
need to train on datasets with visible images in advance. No matter whether the network weights are
generated by training or provided by mature feature extraction models, other transforms or operations
are still needed to accomplish the final fusion process. Lately, Ma et al. [26] came up with a novel
infrared and visible image fusion method based on a generative adversarial network (GAN), a kind of
DL-based method which has attracted much attention these two years. The fusion model works just
like an adversarial game, between keeping the infrared thermal radiation information and preserving
the visible appearance texture information [26], and the results are fine. The network of the model is
relatively simple, and the results can be improved by adjusting the network and loss functions.

In this paper, we fully take into account the loss of information of source images during fusion,
and we proposed an innovative DL-based fusion method, combining GAN and residual network
(ResNet) to preserve both thermal radiation information of infrared images and texture information
of visible images. We can flexibly adjust the amounts of residual blocks and skip connections of
the generator model, simultaneously increasing the non-linear capability and depth of the network.
In addition, the adversarial loss and content loss of the generator are all considered in our loss functions.
All these mentioned guarantees the fused images of our method not only highly correlated with the
source images, but also performed better in human perception matching [27].

To summarize, the main contributions of our research can be shown as follows:

(1) In this article, a novel method for infrared and visible image fusion which is based on GAN and
ResNet has been proposed. This is an unsupervised image fusion method without pre-training
on other labeled datasets.

(2) The generator is designed with convolution layers, residual blocks, skip connections,
batch-normalization layers, and activation functions; all these guarantee the fused images
containing more information from source images.

(3) The loss function of the generator consists of the adversarial loss and content loss. The structural
similarity (SSIM) loss is added to the content loss which can help to guide the fusion optimization
and improve the metrics in perceptual image quality assessment.

The rest of this paper is organized as follows. In Section 2, some related work about image fusion
and the networks of GAN and ResNet are introduced. Section 3 presents the fusion framework and loss
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function of our method in detail. Experimental settings, results, fusion evaluations, and discussions
are provided in Section 4. Finally, Section 5 concludes the paper.

2. Related Work

In the following section, the conventional and DL-based methods for infrared and visible image
fusion are introduced at first. Then, the network structure and characteristics of GAN and ResNet are
briefly presented.

2.1. Infrared and Visible Image Fusion

The fusion methods discussed below are divided into two types, conventional ones, and DL-based
methods. The activity level measurements and fusion rules are designed manually in conventional
methods. But in DL-based methods, they are implemented automatically.

2.1.1. Conventional Fusion Methods

The existing conventional infrared and visible image fusion methods mainly include the
multi-scale decomposition (MSD)-based methods, sparse representation (SR)-based methods [22],
neural network-based methods, hybrid models-based methods, and other methods. In MSD-based
methods, the source images are decomposed into different parts with respective scales first and each part
indicates the feature information of sub-image at the corresponding scale. Then, the fusion operations
are carried out at each scale according to the fusion rules. The final fused images are obtained by inverse
transforms. There are several representative transforms for infrared and visible image fusion: pyramid
transforms [28–30], wavelet transforms [31–33], contourlet transforms, and non-subsampled contourlet
transform [12,34,35]. SR [36] is a novel image representation theory that simulates the sparse coding
mechanism of human vision systems [37]. The SR-based fusion methods have a certain constraint that
the activity level of source images should be measured in a sparse domain [22]. Li et al. [38] researched
joint sparse representation to fuse the infrared and visible images. They constructed the over-complete
dictionary with the common features and unique features of the two source images. After that,
some kinds of fusion rules were chosen to improve the fusion effect. The steps and framework
of SR-based infrared and visible image fusion are summarized in detail in [39]. A neural network
generally consists of a number of neurons, which can imitate the perception behavior mechanism of
the human brain to deal with neuron information [6]. Neural networks usually have a strong capacity
for adaptability, fault-tolerance, and resisting disturbance [40]. In previous studies, most neural
network-based image fusion methods mainly use the pulse-coupled neural network (PCNN) [41] or its
variants. Ma et al. [6] summarized the infrared and visible image fusion framework combined with
MSD and PCNN. PCNN can take full advantage of its biological characteristics to extract local detail
information and get better fusion results when gradients and phase information are considered in
advance. Hybrid model-based methods aim to synthetically use the advantages of each independent
method and avoid the effects of the disadvantages as possible. Different MSD hybrid methods [42,43],
hybrid MSD and SR methods [18,44,45], hybrid MSD and neural networks methods [46,47], also hybrid
MSD, neural network, and SR methods [48,49] all make great contributions to the research. Other
fusion methods include, for example, intensity–hue–saturation (IHS) transform methods [50,51],
fuzzy theory method [52], independent component analysis (ICA) method [53], and so on. At present,
the conventional fusion methods are still used in a number of fields, since they have been researched and
applied for years. They have to face the difficulty of dealing with the activity level measurement and
weight assignment in a manual way. However, with the development of DL, the fusion processes have
become more intelligent and concise. The process of feature extraction is implemented automatically,
which can overcome the problem mentioned before.
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2.1.2. DL-Based Fusion Methods

DL learns with multilayered and deep neural networks. The networks can model the complex
relationships between data and all trained parameters are preserved in the connective matrix. Compared
with traditional feature extraction methods, DL techniques can extract features automatically without
manual operations and have got state-of-the-art results in computer vision, pattern recognition,
and related image processing areas. The DL-based infrared and visible image fusion method was first
proposed by Liu et al. [23] in 2016. In the article, the authors proposed a CNN based siamese network for
multi-focus image fusion and extended it for infrared and visible image fusion. Later, considering the
different imaging modalities, they combined the image pyramid decomposition and a local similarity
strategy [24] with the former siamese network to fuse infrared and visible images. The siamese network
consisted of two branches and the weights were constrained to the same. That was unsuitable for
extracting the feature maps of infrared and visible images since they were in two modalities. In order
to reduce the information loss and extract more salient features, Li et al. [2] decomposed the sources
into base parts and detail content. Then they used the fixed VGG-19 [54] to extract deep features of
detail content and reconstruct the detail parts of the final image with the multi-layers’ fusion strategy
while the base parts are dealt with using the average strategy. The decomposition process for the base
part and detail content was complex. They also proposed a novel fusion framework with zero-phase
component analysis (ZCA) and ResNet [25] to avoid performance degradation of fusion methods
using deep features directly. Moreover, another fusion approach proposed by Li et al. [55] called
the “DenseFuse” network, uses dense blocks to preserve more information from the middle layers.
The above-mentioned DL-based methods all have made a breakthrough in infrared and visible image
fusion research. Fusion techniques using the CNN model always have a critical prerequisite that
the ground truth should be available in advance [26] which is unrealistic in the task of infrared and
visible image fusion. Other fusion methods including trained networks, for example, VGG-19 or
ResNet-50, and relevant decompositions were implemented intricately and cost a lot of computing
resources. Therefore, the depth of networks and the computing requirements need to be taken into
account when used in practical fusion applications. Last year, Ma et al. [26] innovatively proposed
the method with GAN which formulated the fusion as an adversarial game between keeping the
infrared thermal radiation information and preserving the visible appearance texture information.
There was no pre-training and the network was trained by cropped infrared and visible image pairs.
This end-to-end model has got commendable results both in qualitative and quantitative comparisons.

2.2. The Framework of GAN and ResNet

The frameworks and characteristics of GAN and ResNet networks are introduced in the following
contents which are the main parts of our networks.

2.2.1. Introduction of Generative Adversarial Network

In 2014, Ian Goodfellow [56] and his colleagues first published the article about GAN which made
a shock in academia on DL research. This work can be seen as an innovative combination of graph and
game theory. The GAN model, in essence, consists of two adversarial models: a generative model
G that captures the data distribution and generates the new samples, and a discriminative model
D that estimates the probability whether a sample came from the training data or generated by G.
The optimization process of GAN corresponds to a minimax two-player game. The goal is to achieve
the Nash equilibrium when G almost reconstructs the data distribution and D cannot distinguish the
two kinds of data. The core principle and adversarial process of GAN shows in Figure 1 and can be
expressed by a mathematical equation as follows:

min
G

max
D

VGAN(G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1)
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In the function VGAN(G, D), the first item represents the entropy of data from real distribution
judged by D. D tries to maximize the result. The second item is the entropy of the data generated by G
from random inputs discriminated by D. D tries to make this item bigger and equivalently minimize
the D(G(z)) to guarantee its ability to distinguish falsehood from truth. In short, D wants to maximize
the function VGAN(G, D). On the other hand, the task of G is completely the opposite which tries
to maximize the D(G(z)) and minimize the function VGAN(G, D). This kind of training of GAN just
meets the minimax two-player game of game theory.
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GAN has many advantages compared with traditional ones. It can be trained only with
backpropagation and there is no need for any Markov chains or unrolled approximate inference
networks during either training or generation of samples [56]. What is more, the parameter updating
of G is not directly from data samples, but also related to the backpropagation of D. However,
the disadvantages are also obviously summarized as poor interpretability and stability. There is no
explicit representation for the distribution of G, and that D must be synchronized well with G during
training [56]. Nowadays, there are some improved models have been proposed to overcome these
disadvantages like DCGAN [57], CGAN [58], InfoGAN [59], WGAN [60], LSGAN [61], EBGAN [62],
and so on.

2.2.2. Advantages of Residual Network

In 2015, ResNet [63] has led to a series of breakthroughs in image classification and
detection-whenever emergence, and became a backbone network in many computer vision tasks for
feature extraction. At that time, researchers wanted to improve the accuracy of networks by deepening
the layers, but the unexpected degradation or gradient vanishing appeared. Then He et al. [63] came
up with the solution that constructing the new layers by identity mapping which just the core idea of
ResNet. Figure 2 shows the residual block with shortcut connections.
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Each residual block contains a few stacked nonlinear layers. The input of the former layer jumps
over some middle layers and is added together with the layer behind to learn an identity mapping.
As we all know, if the residual F(x) = 0, the stacked layers exactly achieve the identity mapping
and the network performance will not degrade at least. Actually, the residual cannot be 0, so the
stacked layers can learn new features anyhow based on input features to make the network achieve
better performance. Another benefit is that the loss can transmit to former layers quickly to update
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the weights. All those advantages will help to promote the accuracy of networks. Some trained
networks like ResNet-50, ResNet-101, ResNet-152, and so on, have been widely applied in image
processing tasks.

3. Proposed Method

In the following content, details of the infrared and visible image fusion method with GAN and
ResNet is be introduced. The formulation and framework will be described first, and then the designed
structures of D and G are discussed, respectively. At last, we analyze the loss functions which guide
the backpropagation of the networks.

3.1. The Overall Fusion Framework

As mentioned earlier, the infrared and visible image fusion is regarded as an adversarial process
between G and D. The training and testing operations are not exactly the same. Only the trained G
is needed when testing. The entire process is described in detail below. The training process mainly
contains 4 steps. First, the infrared image I and visible image V are concatenated in the channel
dimension forming a synthetic 2-channels input retaining the same height and width of the source
images. Then, the input is fed to G to generate the preliminary fused image F. Meanwhile, the size
and dimension of the fused image are consistent with either source image. Next, the F and V are fed
to D respectively to get the discriminant probabilities belonging to (0, 1). Among them, F is the fake
image whereas V is regarded as the label. Finally, the parameters of G and D are updated through
backpropagation according to the loss function which will be given detail description in Section 3.3.
In general, the loss of G guarantees that F contains more considerable intensity information of I and
partial gradient information of V, whereas the loss of D gradually adds more visible detail to F. As to
the testing process, we just need the first two steps of training, using the trained G to get the final fused
image. Figure 3 shows the framework of our fusion process.
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3.2. The Network Structures of G and D

The novel structure and scheme of G and D proposed are introduced in the following contents
which play an important role in the whole realization.

3.2.1. The Structure of G

In our method, G consists of five separate convolution layers with batch-normalization (BN) layers
and activation functions, two residual blocks, and two skip connections. There are two convolution
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layers in each of the residual blocks. These components, combined appropriately, can make the G
network easy to optimize and achieve ideal outputs. The size of all convolution kernels is set to 3 × 3
except the last layer which is set to 1 × 1. All the strides are set to 1 in G to extract image features as
much as possible. Considering the residual blocks in the network, all the convolution operations are
implemented with padding to keep the output of each layer having the same size as the input. However,
the padding will cause some undesirable gray blocks around edges in the fused image and the solution
will be given in the testing process in Section 4.1.2. At the beginning of G, the two-channel concatenated
images are fed to the convolution layer and 64 feature maps are then obtained which become the
inputs of the residual block and the source maps of skip connection. The first convolution layer mainly
extracts the basic feature maps. Inspired by Ledig et al. [64], the block layout is employed twice, and
each residual block is followed by a convolution layer called the transfer layer, whose outputs are
added to the source maps of the skip connection. Then, another two convolution layers are used to
extract features, and at the same time, reduce the output dimensions to a single channel. The residual
blocks and skip connections introduced in the generator play an important role. The network layers
can be deepened by adding residual blocks which help to improve the performance of the network.
The unique structure of identity mapping in the residual block can keep the integrity of its input and
make it easy to learn residual information at the same time. This is important for the fusion task which
can keep the feature maps of the source images extracted by former layers and anyhow learn more
potential internal connections. Also, skip connections are added. The residual block, transfer layer, and
the skip connection can be regarded as another “big residual block”. All of these guarantee that more
useful features are generated and retained before reducing the dimensionality to a single-channel fused
image. In short, the join of residual blocks and skip connections can preserve more deep features and
make use of the former information of extracted maps. Also, the network is easier to optimize although
some layers are added. Meanwhile, the use of BN and Leaky ReLU will help to overcome the problem
of gradient vanishing and difficult training, and then improve the accuracy and the convergence speed
of the model. The schematic structure of G with loss function is shown in Figure 4.
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Figure 4. The network structure of the generator.

In order to make the architecture of the generator look clearer, the details are outlined in Table 1.
Conv suffixed with a specified number denotes the corresponding convolution block which contains
the convolution layer, BN, and Leaky ReLU, except the last convolution block. Net suffixed with a
specified number denotes the output features of the corresponding convolution block. Add suffixed
with a specified number denotes the add operation for residual blocks and skip connections.
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Table 1. The architecture of the generator.

Name Layer Kernel
Size Stride Channel

(Input) Content (Input) Channel
(Output)

Content
(Output) Padding Activation

Input layer Conv1 3 * 3 1 2 Image pair 64 Net1 SAME LReLU

Residual
block1

Conv2 3 * 3 1 64 Net1 64 Net2 SAME LReLU

Conv3 3 * 3 1 64 Net2 64 Net3 SAME /

Add1 / / / Net1/Net3 /
Net1 +
Net3 / LReLU

Transfer
layer1 Conv4 3 * 3 1 64 LReLU (Net1 +

Net3) 64 Net4 SAME LReLU

Skip
connection1 Add2 / / / Net1/Net4 /

Net1 +
Net4 / /

Residual
block2

Conv5 3 * 3 1 64 Net1 + Net4 64 Net5 SAME LReLU

Conv6 3 * 3 1 64 Net5 64 Net6 SAME /

Add3 / / /
Net1 +

Net4/Net6 /
Net1 +
Net4 +
Net6

/ LReLU

Transfer
layer2 Conv7 3 * 3 1 64 LReLU(Net1 +

Net4 + Net6) 64 Net7 SAME LReLU

Skip
connection2 Add4 / / /

Net1 +
Net4/Net7 /

Net1 +
Net4 +
Net7

/ /

Output
layer1 Conv8 3 * 3 1 64 Net1 + Net4 +

Net7 32 Net8 SAME LReLU

Output
layer2 Conv9 1 * 1 1 32 Net8 1 Fused

image SAME tanh

3.2.2. The Structure of D

As to D, we employ the block layout used by Radford et al. [57], which simply consists of
four convolution layers and a linear layer. Some matrix transformations must be done before linear
multiplication. Similar to G, each convolution layer except the first one is followed by a BN layer
and the activation function which is Leaky ReLU. The last layer is a linear layer, which outputs the
probability depending on whether the input is a fused image or a visible label. This time, we use 5 × 5
kernels in the first convolution layer and 3 × 3 kernels in other convolution layers. The strides are set
to 2 without padding since D mainly behaves as a classifier. The first four convolution layers extract
features and the last linear layer classifies them [26], so that the probability values of the fused image
and visible image are obtained, respectively. These two values are used together to calculate the loss of
D. The fusion results are better when the value of the fused image gets closer to the value of the visible
image. The architecture of the discriminator is shown in Figure 5 and the details are outlined in Table 2.
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Table 2. The architecture of the discriminator.

Layer/
Operation

Kernel
Size Stride Channel

(Input)
Content
(Input)

Channel
(Output)

Content
(Output) Padding Activation

Conv1 5 * 5 2 1
(128 * 128)

Fused/
Visible image 64 Net1

(62 * 62 * 64) VALID LReLU

Conv2 3 * 3 2 64 Net1 128 Net2
(30 * 30 * 128) VALID LReLU

Conv3 3 * 3 2 128 Net2 256 Net3
(14 * 14 * 256) VALID LReLU

Conv4 3 * 3 2 256 Net3 512 Net4
(6 * 6 * 512) VALID LReLU

Change to
line / / / Net4 /

Net5
(18432 * 1) / /

Line to value / / / Net5 /
Probability

(1) / /

3.3. Loss Functions

The loss functions of D and G guide the optimization and we make great efforts to minimize the
losses in backpropagation. The loss function of G tries to make the fused images keep the respective
information of original infrared and visible images as much as possible. And the loss function of D
aims to strengthen the ability to distinguish fused images from visible images. In our paper, we refer
to the losses of Ledig et al. [64] and Qi et al. [61], and then design the particular loss for our method.

3.3.1. The Loss Function of G

The loss function of G(LG) consists of two parts which are the adversarial loss (LAdv) and the
content loss (LCon). The calculation equation is illustrated in Equation (2):

LG = LAdv + LCon. (2)

Among them, the LAdv is defined as follows:

LAdv =
1
N

∑N

n=1
(D(F) − a)

2
. (3)

The form of mean square error (MSE) loss is used to calculate the LAdv and the parameter a is set
approaching 1 since G wants to increase the discriminant result D(F) and generate the data which
cannot be distinguished by D. The smaller LAdv means the better-fused images generated by G.

The LCon is used to keep the correlations between source images and fused images, and has an
influence on which kind of information will be merged from the source images in different modalities.
In this paper, the structural similarity (SSIM) [65] LSSIM is introduced which is a kind of perceptual
evaluation metric to restraint the optimization routine of the net. The LSSIM is the main loss since it can
synthetically measure the consistency between fused image and each of input images on structure,
luminance and contrast. The LSSIM accounts for a larger proportion in the equation. Then, the losses
about image specifications are also considered which is called LGrad. As mentioned at the beginning of
the article, the intention of G is to fuse the infrared thermal radiation information of infrared image
which is partly characterized by its pixel intensities [26] and the texture detail information of visible
image which is partly characterized by its gradients [20]. Unlike the LAdv, the LCon calculates with the
image matrix. The calculation equation is illustrated in Equation (4):

LCon = δ1LSSIM + δ2LGrad. (4)

In the LSSIM, the SSIM between the source image and the fused image is calculated, respectively,
and the weight can be adjusted to adapt to different conditions. The LSSIM is calculated as Equation (5):

LSSIM = 1− (ω · SSIM(A, F) + (1−ω) · SSIM(B, F)), (5)
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where ω represents the weight and SSIM(∗) just implement the structural similarity operation in [65].
A and B are source images, and F is the fused image. With the join of LSSIM, visually pleasing fused
images are always obtained, and the values are higher by objective evaluation metrics.

The LGrad calculates the MSE of image intensity and gradient, so the Frobenius norm is introduced
to express the loss simpler. The equation of LGrad is organized as follows:

LGrad =
1

HW
(γ1‖F− I‖2F + γ2‖∇F−∇V‖2F + γ3‖F−V‖2F + γ4‖∇F−∇I‖2F), (6)

where ‖ ∗ ‖F represents the Frobenius norm, ∇ indicates the gradient computation. H and W represent
the height and weight of the input images, respectively. We innovatively employ four parameters
which are γ1, γ2, γ3, and γ4 to adjust the balance of LGrad. The first two items take up a large proportion
to keep more intensity information of infrared images and gradient information of visible images.
However, in a few image pairs, contrary to what we have assumed, the infrared image includes more
details and the visible image has strong intensities in some regions. Therefore, the last two items
are added which can synthetically improve the robustness of the model, of course, γ3 is not more
than γ1, γ4 is smaller than γ2. So, the fused image generated by G will contain much information of
source images.

3.3.2. The Loss Function of D

The loss function of D(LD) is always used to discriminate the fused image generated by G and the
visible image itself. The loss consists of a positive loss and a negative loss shown as Equation (7):

LD =
1
N

∑N

n=1
(D(V) − b)2+

1
N

∑N

n=1
(D(F) − c)

2
. (7)

We all know that the texture information of visible images cannot be totally represented by their
gradients, and other related information will be enriched through D. In the first item of the equation,
the parameter b is set approximately to 1, since we regard V as the label and try to increase D(V)

to 1. On the contrary, c is close to 0. During the operation of optimizing D, we try to minimize
D(F), so that D always have the ability to distinguish the fake data from the true. The smaller LD

means that more details of the visible image are added to the elementary fused image generated by G.
The adversarial game between G and D gradually complete the fusion process that the final fused
images have comprehensive information from source images.

4. Experiments and Results

4.1. Related Pre-Process and Settings

4.1.1. Data Augmentation

In our experiments, the dataset consists of 41 pairs of infrared and visible images that are collected
from [66]. These image pairs mostly have evident pixel intensity in infrared images and abundant
detail information in visible images. These image pairs are divided into two parts: 31 pairs for training
and 10 pairs for testing. If we only use these a few dozen original images for training, it is very hard to
get a stable and compatible model. So we decide to enlarge the training set by cropping source image
pairs into small image blocks with certain stride. Note that, no matter the original images or the image
blocks cropped, the infrared image and visible image must appear in pairs. The size of the image
block is set to 128 × 128 and the stride is set to 11 in the following experiments, in consideration of
the practical effect and the ability of the GPU (Graphics Processing Unit). As a result, 46,209 pairs of
images are combined together as the dataset for training. The testing set consists of 10 pairs of source
images that are not involved in training.
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4.1.2. Training and Testing Details

As mentioned before, for training, cropped image pairs were put into G network whose batch size
was set to 32 and the learning rate was initialized as 10−5. Our model was trained with the ADAM
optimizer whose internal parameters were set as follows: β1 = 0.9, β1 = 0.999, ε = 10−8. The training
of G and D were time-sharing that only one network could update its weights and bias every time.
As to the loss functions, the parameters a and b were vectors whose sizes were equal to the batch and
randomly created within the scope of 0.7 to 1.2. We used the same way to generate the parameter c,
but within the scope of 0 to 0.3. After careful analysis and experiments, the weight ω was set to 0.5,
the δ1 was set to 1000 and the δ2 was set to 5, the parameters γ1, γ2, γ3, and γ4 were separately set to
15, 650, 15, and 300, respectively. The GPU platform is Intel E5-2680 V3 processor with TITAN V GPU
and 64 Gb memory.

During testing, only the trained G was used to generate the fused images. When we described
the structure of G earlier in the article, we have mentioned the problem of gray blocks around edges
caused by convolution with padding. To get rid of these blocks, firstly, we padded the edges of the
source images and the padding values were set to 6. The padding value might change according to the
number of convolution layers and the actual outputs. Then we put the transformed source image pairs
into G and directly got the fused images, of course, whose sizes were the same as the inputs. Then we
cut out the final results from the fused imaged with the size of source images. The schematic diagram
of the testing process is shown in Figure 6.
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4.2. Objective Evaluation Metrics

In the task of infrared and visible image fusion, there is no standard reference image—the so-called
ground-truth image—and it is difficult to conduct the objective evaluation. Nowadays, researchers
always take a reasonable way to apply several fusion metrics to make an overall evaluation [67].
In our experiments, eight objective fusion metrics were used to evaluate the fusion results from three
aspects which were the fused image itself, image correlation, and visual quality. The eight metrics
were entropy (EN), spatial frequency (SF) [68], standard deviation (SD), mean structural similarity
(MSSIM) [65], correlation coefficient (CC), the visual information fidelity for fusion (VIFF) [27], the sum
of the correlation of differences (SCD) [69], and the feature mutual information (FMI) [70] for the
discrete cosine features.

The evaluation that the larger value means the better fusion result is suitable for all eight metrics.
The fused images with lager EN and SF always have more detail information and spatial frequency.
The contrast of the images is reflected in SD which influences the visual attention. The MSSIM measures
the mean structural similarity between the source images and fused image. It is a synthetical metric on
structure, luminance, and contrast. The CC and SCD are two independent indexes for judging the
amount of information transmitted from source images to the fused image. As to VIFF, it is a kind of
perceptive metric based on the human visual system and the fused images are clearer and more natural
with a higher VIFF. The FMI is based on information theory and measures the mutual information
between image features.

All the above metrics were implemented with MATLAB using the codes by the authors or
well-known third-parties. Table 3 gives the detail descriptions of the metrics used.
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Table 3. The metrics for fusion evaluation.

Metrics Formula Description

EN EN = −
255∑
i=0

pi log2 pi
The EN can measure the information contained in the fused image. The

larger EN means the better performance.

SF

SF =

√
(Row_Freq)2 + (Column_Freq)2

RowFreq =
√

1
MN
∑M−1

j=0
∑N−1

k=1 [F( j, k) − F( j, k − 1)]2

ColumnFreq =
√

1
MN
∑N−1

k=0
∑M−1

j=1 [F( j, k) − F( j − 1, k)]2

The SF indicates the overall activity level in an image, including the row
frequency and column frequency. The fused image F will contains more

detail features if the value is larger.

SD SD =
√

1
MN
∑M

j=1
∑N

k=1(F( j, k) − µ)2 µ indicates the mean value of the fused image F. Generally, the larger SD
means that F has high contrast and easily attracts visual attention.

MSSIM
SSIM(X, F) =

(2µXµF + C1)(2σXF + C2)

(µ2
X +µ2

F + C1)(σ2
X + σ2

F + C2)

MSSIM(A, B, F) = 1
2M (
∑M

j=1 SSIM(A j, F j) +
∑M

j=1 SSIM(B j, F j))

The SSIM index is used to measure the structural similarity between source
image (A or B) and fused image F. The final MSSIM uses the mean value to
evaluate the overall image quality. µ denotes the mean value of the image.
σ represents the standard deviation. C1 = (k1L)2 and C2 = (k2L)2, k1 and
k2 are small constants much less than 1. L is the dynamic range of the pixel

values (255). A larger SSIM means better fusion process.

CC
CC =

(rAF + rBF)
2

rXF =

∑M
i=1
∑N

j=1 (X(i, j) − X)(
∑M

i=1
∑N

j=1 (F(i, j) − µ))√∑M
i=1
∑N

j=1 (X(i, j) − X)
2
(
∑M

i=1
∑N

j=1 (F(i, j) − µ)
2)

X and µ represent the mean value of the source image (A or B) and the
fused image F respectively. The larger CC indicates the F gains more

information from the source images and the better fusion effect.

VIFF
VIFF(A, B, F) =

∑
k pk·VIFFk(A, B, F)

VIFFk(A, B, F) =
∑

b FVIDk,b(A,B,F)∑
b FVIDNk,b(A,B,F)

The VIFF is a multi-resolution image fusion metric using visual
information fidelity (VIF) and performs better in human perception

matching. The final result is determined by weighting the VIFF of each
sub-band. The parameters in the Formula are complex and readers can
refer to the original. The VIFF is larger when images have high visual

quality.

SCD

SCD = rD1A + rD2B
D1 = F − B D2 = F − A

rDnX =

∑M
i=1
∑N

j=1(Dn(i, j) − Dn)(
∑M

i=1
∑N

j=1(X(i, j) − X))√∑M
i=1
∑N

j=1(Dn(i, j) − Dn)
2
(
∑M

i=1
∑N

j=1(X(i, j) − X)
2
)

The SCD is based on the supposition that the difference between one of the
input images (A) and the fused image (F) almost discloses the information
transferred from the other input image (B). The opposite is also true. The
value is larger when fused image contains more information from source

images.

FMI
I(A; F) = 2

n
∑n

i=1
Ii(A;F)

Hi(A)+Hi(F)
I(B; F) = 2

n
∑n

i=1
Ii(B;F)

Hi(B)+Hi(F)

FMIAB
F = 1

n
∑n

i=1 (
Ii(A;F)

Hi(A)+Hi(F)
+

Ii(B;F)
Hi(B) + Hi(F)

)

The FMI calculates the mutual information of the image features using a
feature extraction method extracts the feature image of the source (A) and
(B) and fused images (F). Ii(X; F) means the regional mutual information
and Hi(X) are the entropies. The larger FMI means the better achievement.
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4.3. Fusion Results

In this part, nine other fusion methods are recommended to compare the fusion results with
ours, including curvelet transform (CVT) [71], dual-tree complex wavelet transform (DTCWT) [72],
Laplacian pyramid (LP) [73], nonsubsampled contourlet transform (NSCT) [74], two-scale image fusion
based on visual saliency (TSIFVS) [75], guided filtering based fusion (GFF) [76], and convolutional
neural network based fusion (CNN) [24], dense block based fusion [55] which includes Dense-add and
Dense-L1 according to the different fusion strategies, and a GAN based method (FusionGAN) [26].
We used the codes provided by the authors or a well-known toolbox to generate the fused images from
source image pairs except for the last method which cannot get the ideal outputs directly. The first
six methods are conventional fusion methods and the last three methods are the DL-based methods
proposed recently.

4.3.1. Subjective Evaluation

In order to elaborate the fusion effects of different methods clearly and have an intuitional vision
experience, firstly, the fusion results obtained by different methods of six infrared and visible image
pairs from the TNO database are shown in Figure 7. Moreover, two groups of single image comparisons
are given, and we can easily judge the fusion quality by subjective assessment. Figures 8 and 9 show
the fusion results of “Marne_04” and “lake” of the TNO dataset.
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visible images, the results of curvelet transform (CVT), dual-tree complex wavelet transform (DTCWT),
Laplacian pyramid (LP), nonsubsampled contourlet transform (NSCT), two-scale image fusion based
on visual saliency (TSIFVS), guided filtering based fusion (GFF), convolutional neural network based
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Figure 9. Fused images of “lake”.

In Figure 8, the fused images obtained by CVT, DTCWT, LP, NSCT, TSIFVS although contain the
information of two source images, but are not very clear and have low contrast. The images obtained
by GFF and Dense-L1 tend to approximate to just one kind source image. As to the other fused images,
the image obtained by the proposed method looks smoother than the image obtained by CNN which
has some undesirable regions around the eave and the front window of the jeep. The image obtained
by Dense-add is good, but has a lower contrast than the image obtained by the proposed method.
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The gaps of branches and the spot of the jeep can be seen in the colored frames of the image obtained
by the proposed method. In Figure 9, the characteristics of the fused images are similar to Figure 8.
We can easily distinguish the plants, riverbank, and other objects in the colored frames of the image
obtained by the proposed method.

As mentioned above, the fused images obtained by the proposed method always contain more
details, and there is less noise added to the fused image which can guarantee a high correlation with
source images. What is more, the results fused by our method have high visual information fidelity
and look more natural and comfortable.

4.3.2. Objective Evaluation

For quantitative comparisons, we chose ten fused images from the results and evaluated them
through the above-mentioned eight metrics. The results of the eight metrics are plotted in Figure 10
and the average values are listed in Table 4.

Table 4. The average values of the eight metrics on 10 fused images.

Methods EN SF SD MSSIM CC VIFF SCD FMI

CVT 6.73408 11.639 29.6285 0.5494 0.5225 0.3693 1.5916 0.3985
DTCWT 6.69775 11.5691 29.2046 0.5579 0.5265 0.3589 1.5957 0.3876

LP 6.84323 11.8508 32.7525 0.5665 0.5214 0.4518 1.612 0.33449
NSCT 6.72252 11.6472 29.6933 0.5761 0.5312 0.4084 1.614 0.38241

TSIFVS 6.83149 11 32.23 0.5749 0.5286 0.4718 1.6278 0.26754
GFF 7.08199 11.1043 40.147 0.5653 0.42 0.2913 1.3317 0.38956
CNN 7.30549 11.8958 48.1136 0.5673 0.4956 0.5067 1.622 0.32205

Dense-add 6.91024 9.23227 35.66657 0.59713 0.55035 0.49293 1.69591 0.40567
Dense-L1 6.96276 9.31077 38.90169 0.57984 0.51258 0.3619 1.53546 0.36227

FusionGAN 7.3033 6.4600 51.9542 0.3352 0.7646 0.5213 − −

Proposed 7.20581 12.3369 40.18583 0.57658 0.56588 0.6208 1.81625 0.39641

In Table 4, The values in italic of FusionGAN [26] are not calculated by the authors and they are
cited from the original article for reference. Among other values in the table, the best values for each
metric are in bold. The proposed method gets the four best values in SF, CC, VIFF, and SCD, also all
other metrics are in the top three places, respectively. On the whole, we can further summarize that the
proposed fusion method has obvious advantages in getting detailed information from source images
and keeping the correlation with source images. Especially, the VIFF index is more salient than others,
since the generator is designed with ResNet and skip connections. Also, the loss functions proposed
have made appropriate constraints for optimization.

Firstly, we compare the results with the original FusionGAN [26]. Since we cannot get normal
fused results like the images cited in the article from the codes and the trained model provided by
the authors, we just use the average values calculated in their article where the source image pairs
are mainly consistent with the proposed method. The values may be regarded as a reference, but we
cannot make sure whether the source codes of the metrics are the same or not with ours. So we can
make an intuitive observation of the images in the article and the proposed method. It is easy to find
that the fused image of the proposed method looks more natural and clear, mainly because of the
adjustments of the network and loss functions.

Next, the values of other conventional methods and DL-based methods are compared with the
proposed method. From the results shown in Table 4 and Figure 10, we can see that DL-based methods
can get commendable achievements in infrared and visible image fusion. The largest SF indicates
that the images fused by the proposed method contain more detailed textures. The best value of CC
and SCD means that our fused images are highly correlated with the source images. What is more,
the proposed method gets the largest value in VIFF which means that visual information is kept as
much as possible. This revalidates the conclusion drawn by the subjective evaluation that our fused
images look more natural and clearer. The method based on CNN is better than the proposed method
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in the metrics of EN and SD, so the fused images always have higher contrast which can easily attract
people’s attention. The method not only generates the weight maps based on CNN, but also combines
the multi-scale transforms, which helped a lot. The method based on Dense-add gets the best values in
MSSIM and FMI, probably because the network of Dense-add contains dense blocks that can preserve
as much information as possible obtained by each middle layer. The SSIM loss is also used in the
Dense-add when training. The proposed method is a little weak in SD and MSSIM, and we will try our
best to complement the shortages by optimizing the structure and the loss functions hereafter.

Taken together, our fusion model can get the best performance among these methods. At the same
time, there are no complicated transforms and pre-training needed, which can reduce the computational
cost and complexity.
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4.4. Model Analyses

Our fusion method with GAN and ResNet is a DL-based method that is distinct from traditional
ones. Most traditional methods like MSD based, SR based, or others, directly make pixel-level
operations on source images and somehow can establish the correlations between the source image and
fused image easily. However, our DL-based generative model needs to generate the image through
weights and bias of the network which are different to train. The structures of G and D may have a
great influence on fusion results. In addition, the loss functions of G and D together determine the
optimization strategies and what kinds of information will be added to the final image. So the design
of loss functions is another troublesome problem.

In order to solve these difficulties, firstly, we refer to the mature models of [57,64], and construct
the networks of our fusion model with GAN and ResNet. The residual blocks, skip connections,
convolution layers, and BN layers work together for feature extraction and combination. The network
designed for fusion is other than classification and there is no pooling operation, which may cause
the loss of image information. Not only the original residual blocks are introduced, but also the
“big residual blocks” are designed. They work together to guarantee that more useful features are
generated and retained before reducing the dimensionality to a single-channel fused image. Meanwhile,
the ADAM optimizer is adopted with proper settings. Furthermore, the loss function of G in our
method consists of adversarial loss and the content loss, which help to increase the intensities of
infrared image and the texture details of the visible image. The loss function of D which judges the label
image and the image generated by G makes further efforts to add information from visible images.

5. Conclusions

In this paper, we proposed an infrared and visible image fusion method with GAN and ResNet.
This is an end-to-end model and no pre-training is needed. The G network generates the elementary
images with infrared thermal radiation information and visible texture information and D gradually
adds more details of visible image to the final results. The join and combination of residual blocks
and skip connections can extract and reserve more features which are important for the fusion task.
At the same time, they can promote the flexibility and non-linear capability of G and help to optimize
the parameters in backpropagation. The loss functions designed with adversarial loss and content
loss behave well which conduct the fusion tendency and information contained in the fused images.
The results of subjective and objective evaluations indicate that the images fused by the proposed
method contain more details and they are highly correlated with the source images. In particular,
the visual information fidelity of the fused images is more prominent than other methods and makes
the images better for human perception matching.

We believe that the basic framework of our fusion method can be applied to other image fusion
tasks, such as medical image fusion, multi-exposure image fusion, and multi-focus image fusion with
some changes in the loss functions and labels.
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