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Abstract: Laser metal deposition (LMD) is one of the most important laser additive manufacturing
processes. It can be used to produce functional coatings, to repair damaged parts and to manufacture
metal components. Ti6Al4V is one of the most commonly used titanium alloys, since it features
a good balance of the mechanical properties of strength and ductility. The LMD of Ti6Al4V is
attracting more and more attention from both science and engineering. The interest in processing
Ti6Al4V with LMD in industry, especially in aerospace and medical branches, has been increasing
in the last few years. In this paper, the state of the art for LMD of Ti6Al4V is reviewed. In the
first part, the basics for Ti6Al4V, including, for example, the development history, the material
properties, the applications, the crystal structure, the heat treatment and the mechanical properties,
are introduced. In the second part, the main emphasis is on state of the art for LMD of Ti6Al4V.
Initially, the process parameters of the current state of the art in the last years and their effects are
summarized. After that, the typical microstructure after LMD is discussed. Then, the conducted
heat treatment methods and the achievable mechanical properties are presented. In the end, some of
the existing, current challenges are mentioned, and the possible research directions for the future
are proposed.
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1. Introduction

Laser metal deposition (LMD) is an additive manufacturing process, by which a laser beam is
used as the energy source to form a melt pool on the surface of a metallic substrate into which metal
powder is injected by a gas stream and melted. The main applications of LMD are repairing damaged
parts, cladding functional layers and the additive manufacturing of metal components. It is a free-form
fabrication method that allows to manufacture metal components directly from three-dimensional
CAD files by adding materials layer by layer. The metal powder is in most cases co-axially fed by an
insert carrier gas into a melt pool [1]. In order to avoid oxidation, the melt pool must be protected from
the atmosphere. Thus, LMD is normally conducted in a process chamber filled with inert gas, or under
local shielding by an inert gas stream [2].

LMD has a variety of advantages over other deposition processes; for example, the lower heat
input and the related smaller heat affected zone, by which the deformation can be significantly reduced
and the heat influence on the surface of the substrate can be minimized. Another advantage is the
higher cooling rate, which leads to a finer microstructure, and this is generally positive for the material
performance [3].
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Titanium alloys have found their applications in various areas, including automobile, aerospace
and petrochemical industries, and offshore equipment and medical implements, because of their
excellent properties, such as high strength-to-weight ratio, high corrosion resistance and bio
compatibility [4]. Ti6Al4V is one of the most commonly used titanium alloys thanks to its good
balance of material properties [5]. Ti6Al4V has the same strength as steel with a density of less
than approximately 40% of steel’s, offering weight saving, replacement costs and life cycle costs
benefits; meanwhile, a stable, protective and strong adherent oxide film provides an excellent corrosion
resistance to Ti6Al4V, which can, thereby, serve in seawater 15 times longer than steel [6,7]. As a
result, there has been a significant increase in the usage of Ti6Al4V in the industries in the past two
decades [8].

Therefore, LMD of Ti6Al4V is attracting more and more attention from both science and
engineering. An increasing number of applications for laser metal deposited Ti6Al4V are in industry,
especially in aerospace and medical branches. In this work, the state of the art for LMD of Ti6Al4V
will be based on the reviewing of the scientific work conducted in the last few years. In this regard,
the process parameters, macrostructure and microstructure, heat treatment methods and the achievable
mechanical properties, are the focal points.

2. Ti6Al4V

2.1. General Information

Titanium is the fourth-most abundant structural metal in the earth’s crust [9]. However,
titanium rarely exists in a concentrated form. As a result, titanium has a relatively short production
history. The element titanium was discovered in England by the Reverend William Gregor in 1790, and
was first purified in the United State by M. A. Hunter at the General Electric Company in 1906 [10,11].
In the 1950s, numbers of companies managed to meet the challenge to produce titanium. The value of
aluminum and vanadium as alloy additions was established in the “Workhorse alloy” Ti6Al4V, which
was patented by Crucible Steel in 1954 [12]. Since then, Ti6Al4V has been widely used for lightweight
parts in variety of industrial products [13].

The chemical composition of Ti6Al4V is shown in Table 1.

Table 1. Chemical composition of Ti6Al4V.

Chem. Element wt.% Al V Fe O N C H Ti Others (Each) Others (Total)

Min. 5.50 3.50 0 0 0 0 0 balance 0 0
Max. 6.75 4.50 0.40 0.20 0.05 0.08 0.015 balance 0.10 0.40

Ti6Al4V is designed for a good balance of strength, ductility, fatigue and fracture properties.
Ti6Al4V has been used as an important structural material in advanced aircraft since the 1960s [14].
Nippon Steel and the Sumitomo Metal Corporation acquired qualifications in 1985 from Rolls-Royce
and started commercial production of titanium alloys for aircraft engines. Furthermore, the company
concluded a long-term agreement with Airbus in 2002 and has been consistently supplying titanium
for Airbus’s airframes [5].

In aerospace, Ti6Al4V is mainly used for airframe and engine parts. An expansion of the demand
on the market is expected due to the requirement of low fuel consumption by aircraft. In airframes,
it is used for structural materials, such as bolts and seat rails; in engines, due to the relatively low
allowable temperature of about 300 ◦C of the material, it is used for fan blades, fan cases and engine
suspension, where the working temperatures are lower than 300 ◦C [5]. Additive manufactured parts,
such as cabin brackets and bleed pipes, are already being applied in test aircraft of new models, such as
Airbus A320neo and A350 XWB parts. The current knowledge can already allow the parts produced
by additive manufacturing to replace those which were produced by conventional process [15].
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2.2. Crystal Structure

Titanium is known to exist in two different crystal structures: a close packed hexagonal α phase
and a body-centered-cubic β phase [16].

Alloying elements in titanium can be categorized into α-stabilizers, β-stabilizers or neutral
additions, depending on which phase the elements tend to stabilize, or whether they effectively
increase or decrease the solid-state α-β transus temperature of titanium [14]. α-stabilizers, including
the substitutional element (aluminum) and the interstitial elements (oxygen, nitrogen and carbon),
strongly increase the threshold temperature at which the α phase is stable, even if the solute content
increases. β-stabilizers, including isomorphous elements (vanadium, molybdenum, niobium and
tantalum) and eutectoid elements (ferrous, manganese, chromium and nickel), stabilize the β phase
at lower temperatures. In addition, some neutral elements (zirconium, hafnium and tin) have no
significant influence on the β transus temperature [14,17].

α+β alloys, such as Ti6Al4V, have a high–strength and formability and contain 4–6 wt.%
β-stabilizers, which allow substantial amounts of β phases to be retained from the α+β phase fields
after quenching. Al reduces the density of the alloy and stabilizes the α phase, while vanadium
provides a greater amount of the more ductile β phase for hot–working [18].

As an α+β alloy, Ti6Al4V contains both an α-stabilizer (aluminum) and a β-stabilizer (vanadium),
and thus has a moderate strength and weldability. Ti6Al4V by far is the best adopted titanium alloy
for additive manufacturing. The lowest temperature at which a 100% β phase can exist is called the
beta transus. The addition of alloying elements to Ti leads to an increase of the β transus temperature
from 882 ◦C of pure titanium to 980 ◦C, and approximately 9 ± 2 wt.% of the β phase is retained at
room temperature. The majority of the diffusion transformation occurs within the temperature range
between 850 and 950 ◦C at a transformation cooling rate between 5 and 50 ◦C/s [14]

2.3. Heat Treatment and Mechanical Properties

Heat treatments are performed on Ti6Al4V in order to modify its microstructure, to increase
strength or ductility, to reduce the residual stress and/or to optimize the fatigue strength or
high-temperature strength [19].

The first commonly used heat treatment is the solution treatment followed by quenching
and aging, through which the strength of Ti6Al4V is increased by turning β phases into α

martensite phases [13]. Another typical heat treatment is annealing to get equiaxed microstructure,
which is isotropic.

The specifications (ASTM F1108 for casted and ASTM F1472 for annealed material) for the
mechanical properties for Ti6Al4V are presented in Table 2. ASTM is short for American Society for
Testing and Materials.

Table 2. Specifications for the mechanical properties for Ti6Al4V.

Cast Material Annealed Material

ASTM F1108 ASTM F1472
Yield Strength (Rp0.2) 758 MPa 860 MPa

Ultimate Tensile Strength (Rm) 860 MPa 930 MPa
Elongation at break (%) >8 >10
Reduction of Area (%) >14 >25

3. LMD of Ti6Al4V

3.1. Process Parameters

Literature for the research work regarding LMD of Ti6Al4V in the last five years has been
reviewed. The process parameters (powder feeding rate, laser power, scanning speed and laser beam
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diameter), the dimensions of the samples built and the manufacturing processes of the powders (GA:
gas atomization; PREP: plasma rotating electrode process) have been summarized in Table 3.

Table 3. Process windows of laser metal deposition (LMD) of Ti6Al4V.

Powder Laser Scanning Laser Spot Geometry Powder Type/
Feeding Rate Power Speed Diameter of Samples Particle Size

mP (kg/h) PL (W) v (mm/min) d (mm) (mm) dp (µm)

Kelbassa [20] 0.036–0.096 250–500 500 1.3 50 × 10 × 10 GA/45–71
Mahamood 0.12–0.24 1500–3000 3000 3 6 layers GA/150–200[21–24]

Erinosho [25] – 600–1800 300 4 Single tracks –/150–200
Heigel [26] 0.18 410–415 510 3 38.1 × 12.7 × 3 –/44–149

Yan [27] – 3500 120–2400 0.5–4.1 250 × 250 × 400 –/10–200
Li [28] 0.9–1.8 7000 600–900 6 80 × 53 × 60 –/40–100

Qiu [29] 0.36–0.96 800–1500 600–1000 0.2–6 Thin walls –/75–105
Carroll [30] 0.48 2000 636 4 Thin walls PREP/89
Sterling [31] 0.576 350 1015.8 1.1 5 layers PREP/45–150
Paydas [32] 0.1 2000 400 1.4 39 × 20 × 5 PREP/45–78

0.019 300 600 0.036
Wang [33] 0.36–3.54 6000 1000 6 Thin walls PREP/80–250

Nassar [34] 0.18 500 634.8 1.24 24 × 38 × 9 –/126.8
Raju [35] 0.24 1500 500-700 2 20 × 4.5 × 2 GA/45–100
Ravi [36] – 480–1800 700–1000 – 22 × 22 × 16 PREP/45–150
Yan [37] – 550–750 200–400 3 12.7 × 6.4 × 50.8 –/106–175

Wolff [38] 0.432 710–940 600 1.83 40 × 40 × 40 –/45–150
Zhai [39] 0.06/0.12 330/780 600/800 – 102 × 51 × 8 GA/–

64 × 13 × 43
51 × 13 × 38

Sridharan [40] 0.126 400 635 – 4 layers PREP/44–120
Reichardt [41] 0.042–0.18 600 762 – Thin walls –/44–177

Keist [42] 0.72 2000 600 4 Thin walls PREP/58–156
Marshall [43] 0.468 350 1014 2.9 6.6 × 6.6 × 78.2 PREP/45–150
Ogunlana [44] 0.4 800–2400 1000 4 Single tracks –/45–90

In I. Kelbassa’s doctoral thesis, the experiments of LMD with Ti6Al4V were carried out in the open
atmosphere in Fraunhofer ILT in 2006 [20]. To the authors’ knowledge, all other experiments were
carried out in process chambers. Compared with deposition in the process chamber, LMD in the open
atmosphere is characterized by many advantages: the dimensions of the part deposited are not limited
by the chamber size; the time to establish the shielding gas atmosphere can be saved; the flexibility of
the process can be improved. However, there are also advantages of LMD in process chambers: the
melt pool is protected from oxidation and the users are not exposed to the metal powders so that the
metal powders are less likely to be inhaled.

GA and PREP are two main methods for the production of metallic powders for LMD. GA is the
most common method of powder production, during which a molten feedstock is atomized by inert
gas jets into fine metal droplets which cool down and solidified during the falling. Another process
for the titanium powder production is the PREP in which plasma arc is utilized for a centrifugal
atomization process [45]. Laser additive manufactured specimens formed by gas-atomized powders
have a higher porosity, a higher surface roughness and a larger dilution zone, than those in specimens
formed by PREP powder [46]. Nevertheless, the prise of the PREP powder is higher.

According to Table 3, the powder feeding rate lies in the range of 0.06–3.54 kg/h. With the
assumption of a powder deposition efficiency of around 70%, the deposition rate for LMD of Ti6Al4V
is normally lower than 0.5 kg/h. The laser’s power for the majority research is between 300 and
3000 W, and the scanning speed is 300–1000 mm/min. A laser beam with a diameter of 1–4 mm is
typically used.
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Many researches are focused on effects of main process parameters on surface roughness,
microstructures, deposition efficiency, corrosion resistance and wear resistance. The effects of these
parameters can be summarized as follows:

• Powder flow rate: an increase in powder flow rate can lead to an increase in microhardness and
surface roughness [23].

• Laser power: A lower surface roughness can be achieved by using a higher laser power [24];
the porosity is inversely proportional to the laser power [25,44]. However, with increased laser
power, the corrosion rate and the microhardness are reduced [21,47]. Laser power has significant
effects on deposition efficiency and wear resistance as well; and strong interactions with scanning
speed and the powder flow rate [4,22]. Moreover, laser power shows a significant influence on
the grain size and the phase structure—increased laser power leading generally to coarser grains
and microstructures [36,48].

• Scanning speed: an increase in scanning speed causes generally an increase in solidification rate,
microhardness and surface roughness [21,23]. Mahamood has, in his work, observed that the
wear resistance performance of samples rises first and then decreases with increasing scanning
speed, with the turning point at 0.065 m/s [23,49].

3.2. Macrostructure and Microstructure

In α+β alloy, the room-temperature equilibrium microstructure consists mainly of α phases
(hexagonal close packed) with some retained β phases (body center cubic). The β phases are fully
or partly transformed into α with a martensitic type, which has two different forms; namely, the
hexagonal α (α′) and the orthorhombic α (α′′) [50]. The phase transformation strongly depends on
the temperature history and the cooling rate during deposition [51]. α′ martensite forms within a
specific cooling rate range between 20 and 410 ◦C/s [52]. The formation of α prime (α′) martensite
phase is beneficially produced by the rapid cooling through diffusionless transformation, while α + β

transformation is a diffusional process [53]. The α platelets are thicker and shorter when the cooling
rate decreases, and even transformed into a global type with very low cooling rates. The four typical
microstructures in α + β alloys are shown in Figure 1.

Figure 1. Typical microstructures of α + β titanium alloys: (a) Widmanstätten; (b) duplex microstructure;
(c) basket-weave microstructure; (d) equiaxed structure (adapted from [54]).
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There are numerous choices of etchants for revealing Ti6Al4V’s microstructures: Kroll’s reagent,
oxalic reagent, ammonium bifluoride and so on [17]. Among those, Kroll’s reagent is most widely used,
as it can easily meet almost all the demands in the laboratory. Chemical etching by Kroll’s reagent for
Ti6Al4V is listed in ASTM E407 as etchant number 192. Kroll’s Reagent is a solution mixture of 75 mL
H2O, 22 mL HNO3 and 3 mL HF. The metallurgical samples are dipped into the solution and stirred
gently for 20–30 s. These typical microstructures can be summarized as follows:

• Widmanstätten: Primary β grains are coarse and complete. Continuous α particles grow on the
grain boundary. The colonies of α lamellae are thick and parallel. After slow cooling (furnace
cooling) from β phase zone, Widmanstätten structure with a low ductility and a high fatigue
performance could be seen.

• Duplex microstructure: No more than 50% of the discontinuous equiaxed α particles distribute
in transformed β matrix. When alloy is heated or deformed in the upper part of α + β phase
zone, a duplex microstructure with a comprehensive performance of mechanical properties can
be achieved.

• Basket-weave microstructure: primary β grain boundaries are destroyed and the α lamellae
become shorter in multiple orientations. When a large deformation is performed near β transus
temperature, basket-weave structure with enhanced ductility is formed.

• Equiaxed structure: More than 50% of the primary α grains and a certain amount of the
transformed β grains display an irregular polygon shape. With a higher deformation rate,
higher temperature, longer time of temperature holding, the equiaxial level is lifted, with a
result of an excellent overall performance.

An increase in cooling rate leads to a refinement of the microstructure—both α colony size and
α-lamellae thickness reduce. New colonies tend to nucleate not only on β-phase boundaries but also
on boundaries of other colonies and grow perpendicularly to the existing lamellae [55].

In the case of fabrication of large structures by LMD of titanium alloys, the heat is found mainly
dissipated away through the conduction along Z-direction by conduction through the previously
deposited material during the deposition process. The typical macrostructure and microstructure of
laser metal deposited Ti6Al4V are illustrated in Figure 2.

Figure 2. Typical macrostructure and microstructure of as-deposited sample of Ti6Al4V: (a) grain
structure in as-deposited sample; (b) x-sectional micrograph; (c) z-sectional micrograph (adapted
from [56]).

As shown in Figure 2, primary β grains decorated with fine α phases grow approximately in the
build direction and through the deposition layers [57,58]. The size, shape and distribution of parent β

grains definitely affects the morphology of α/α′ phases [33]. The growth direction of the majority of



Appl. Sci. 2020, 10, 764 7 of 12

the α plates shows an inclination towards the build direction (as shown with arrow with red color).
Macrostructure is columnar with the longitudinal axis parallel to the build direction in deposited
specimens of Ti6Al4V. The grain size tends to decrease with an increase of the cooling rate. It has been
observed that fine-grained microstructures in which fine equiaxed particles distribute are both inside
every grain and along the grain boundaries [56].

3.3. Heat Treatment and Mechanical Properties

The heat treatment that includes solution treatment and aging is a prefered method to get favorable
properties, balanced strength and ductility. The temperature for solution treatment is most significant
for getting the expected microstructures and properties, and is, therefore, set 40–100 ◦C lower than β

transus temperature, in order to get a certain proportion between primary α and primary β phases
through a following rapid cooling (air cooling) [54]. Oversaturated, metastable βm phases can also be
generated, which enable the growth of primary α phases and the participation of secondary α phases
during aging.

Stress-relief annealing is another typical treatment for enhancing the ductility. The stress-relief
annealing weakens the β–α phase transformation and facilitates, thereby, the precipitation and growth
of α phases, leaving the type of the microstructure unchanged. Primary α become coarse after
annealing [7].

In the heat treatment, the cooling rate is another important factor which has an impact on the
microstructure and the mechanical properties besides the temperature. The relationship between the
cooling rate and the microstructure is shown in Figure 3.

Figure 3. Continuous Cooling Transformation (CCT) diagram for Ti6Al4V. The three colorful curves
represent the thermal profiles of water, air and furnace cooling(adapted from [59]).

The cooling method used after the higher-temperature annealing can affect tensile properties [19].
The thermal profile of heat treatment influences the final microstructure [60]. As shown in Figure 3,
after the fast cooling, such as water cooling with a rate around 1000 ◦C/s, the microstructure can be
fully transformed into α′ martensite. The air cooling rate is as estimated at around 20 ◦C/s from 1100 ◦C
to 500 ◦C [59]. In the case of cooling with an intermediate rate of about 3.5 ◦C/s, the martensitic
transformation is accompanied by diffusional transformation, and hence, the volume fraction of
martensitic phases decreases to the benefit of the stabilization of the α and β phases [55]. The cooling
rate of a furnace cooling condition is around 2 ◦C/s [61]. With an extremely slow cooling rate, a fully
lamellar or a duplex microstructure could even be achieved [62].
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Based on the literature review, the mechanical properties (yield strength, tensile strength and
elongation at break) of Ti6Al4V fabricated by LMD with and without heat treatment have been
summarized in Table 4.

Table 4. Mechanical properties of specimens of Ti6Al4V fabricated by LMD.

Powder Laser Scanning Tensile Yield Tensile Elongation
Feeding Rate Power Speed Axis Strength Strength A5

mP PL v Orientation Rp0.2 Rm (%)
(kg/h) (W) (mm/min) (MPa) (MPa)

Kelbassa [20] 0.036 450 500 vertical 984.37 1094.2 4.2
horizontal 1040.8 1151.7 2.2

955 ◦C, 1 h, helium quenching vertical 922.2 1038.3 11.49
+700 ◦C, 2 h, argon cooling horizontal 933.9 1035.6 7.11

640 ◦C, 1 h, vacuum oven cooling vertical 1008.9 1112 9.5
horizontal 1050.5 1147.3 7.07

Qiu [29] 0.39–0.45 1100–1200 750–850 vertical 950 ± 2 1025 ± 2 5 ± 1
horizontal 950 ± 2 1025 ± 10 12 ± 1

920 ◦C, 100 MPa, 4 h, furnace cooling – 850 ± 2 920 ± 1 17 ± 2

Carroll [30] 0.48 2000 636 vertical (top) 945 ± 13 1041 ± 12 14.5 ± 1.2
vertical (bottom) 970 ± 17 1087 ± 8 13.6 ± 0.5

horizontal 960 ± 26 1063 ± 20 10.9 ± 1.4

Sterling [31] 0.576 350 1015.8 horizontal 908 1038 3.8
704 ◦C, 1 h, furnace cooling 959 1049 3.7
1050 ◦C, 2 h, furnace cooling 957 1097 3.4

Zhai [39] 0.06 330 600 horizontal 1005 1103 4
760 ± 4 ◦C, 1 h, air cooling 1000 1073 9

0.12 780 800 990 1042 7
760 ± 4 ◦C, 1 h, air cooling 991 1044 10

Keist [42] 0.72 2000 600 vertical 916 ± 34 1032 ± 31 19 ± 4
horizontal 961 ± 40 1072 ± 33 17 ± 4

As shown in Table 4, the tensile strength and the yield strength are strongly influenced by
the parameters and the experimental systems. The strengths and observed elongation in the work
of Carroll et al. meet the specification of annealed material, while the results from others are of
higher strengths and lower ductilities. Some studies are focused on the anisotropic tensile behavior:
the ductility along the build direction is significantly higher than that along the scanning direction.
After heat treatment, the elongations can be strongly increased with lightly decreased strengths.

4. Summary and Outlook

LMD of Ti6Al4V is becoming a well established process for producing parts with complex
structures. The microstructure and mechanical properties have been relatively well studied. Direct after
LMD, the material features a columnar grains with α martensite inside. Laser metal deposited Ti6Al4V
presents higher strength, but lower ductility. By applying post heat treatment, a strength–ductility
balance can be achieved. After appropriate heat treatment, the specifications for the static mechanical
properties, such as the ultimate strength, the yield strength and the elongation, can be met.

For further research, the heat treatment methods should be further developed to modify the
microstructure, since the previous results show that the laser metal deposited Ti6Al4V presents
generally lower ductility, even after the heat treatment documented in the literature.

Additionally, in order to increase the productivity, the deposition rate should be further
improved. Currently, the deposition rates for the typical processes are generally smaller than 0.5 kg/h.
In comparison to LMD, other materials such as Inconel 625, can achieve a deposition rate of more than
5 kg/h; the achievable deposition rate with Ti6Al4V is quite low. For the increase of the deposition
rate, the plant and system technologies must be adapted. For example, the powder feeding nozzle for
higher powder feeding rate should be developed and laser source with high power should be applied.
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Last but not least, it would be interesting for both research and industry, if the process could
be conducted under an open atmosphere. As shown in the state of the art, it is difficult to process
Ti6Al4V by local shielding because of the high sensitivity to oxidation of the material. Nevertheless,
by adapting the system technology, it should be possible, which has been shown by the work from
Kelbassa [20]. If the process can be carried out by local shielding, the complex systems for controlling
gas atmosphere are no longer necessary. In addition, the processing time and the resources can be
essentially reduced.
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