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Abstract: We review epitaxial formation, basic properties, and device applications of a novel
type of nanostructures of mixed (0D/2D) dimensionality that we refer to as quantum well-dots
(QWDs). QWDs are formed by metalorganic vapor phase epitaxial deposition of 4–16 monolayers
of InxGa1−xAs of moderate indium composition (0.3 < x < 0.5) on GaAs substrates and represent
dense arrays of carrier localizing indium-rich regions inside In-depleted residual quantum wells.
QWDs are intermediate in properties between 2D quantum wells and 0D quantum dots and show
some advantages of both of those. In particular, they offer high optical gain/absorption coefficients
as well as reduced carrier diffusion in the plane of the active region. Edge-emitting QWD lasers
demonstrate low internal loss of 0.7 cm−1 and high internal quantum efficiency of 87%. as well
as a reasonably high level of continuous wave (CW) power at room temperature. Due to the high
optical gain and suppressed non-radiative recombination at processed sidewalls, QWDs are especially
advantageous for microlasers. Thirty-one µm in diameter microdisk lasers show a high record for
this type of devices output power of 18 mW. The CW lasing is observed up to 110 ◦C. A maximum
3-dB modulation bandwidth of 6.7 GHz is measured in the 23 µm in diameter microdisks operating
uncooled without a heatsink. The open eye diagram is observed up to 12.5 Gbit/s, and error-free
10 Gbit/s data transmission at 30 ◦C without using an external optical amplifier, and temperature
stabilization is demonstrated.
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1. Introduction

InGaAs/GaAs quantum wells (QWs) and In(Ga)As self-organized quantum dots (QDs) are
presently utilized as active areas of various high performance optoelectronic devices such as
edge-emitting lasers [1], microlasers [2–4], solar cells [5–9], etc. The use of the quantum confinement
effect permits tailoring density of states that governs all intrinsic characteristics of semiconductor
material—wavelength of emitted or absorbed light, carrier lateral diffusion and capture, relaxation
mechanisms, radiative lifetime, etc. Modification of the active area properties allows one to control
and optimize the performance of optoelectronic devices (efficiency, threshold, output power, operation
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speed, etc.) as well as to develop devices based on novel principles such as single-photon light sources
or quantum processing devices [9].

Both QWs and QDs possess a number of inherent advantages and disadvantages caused by
their structural properties and energy band diagrams (see Table 1). In QD structures, carrier lateral
transport is suppressed due to the efficient spatial localization in QDs of electrons and holes. In contrast,
in QW structures, carriers can freely diffuse in the plane of QW. As a result, QD-based structures are
less sensitive to epitaxy- or post-growth-related defects compared to their QW-based counterparts.
However, in QD structures, optical gain/absorption is relatively low due to limited QD density
and inhomogeneous broadening of the QD array. In QWs, optical gain/absorption is much higher.
For GaAs-based structures, the emission wavelength of QDs can be much longer than that of QWs
and covers telecommunication O-band (1.26 µm–1.36 µm). The formation of QDs is accompanied
by efficient strain relaxation [1,10] that enables stacking 20 and more QD layers with high crystalline
quality. In contrast, deposition of several InGaAs QWs (> 3 in the optical region around and beyond
1 µm, typical QW width and In compositions are 8–10 nm, and 15%–18%, respectively) results in the
formation of the dislocation due to accumulation of excessive elastic strains in the semiconductor
layers, and the use of complex strain compensation techniques is required [11].

Table 1. Comparison of the characteristics of quantum wells and quantum dots.

Properties InGaAs/GaAs QWs In(Ga)As/GaAs QDs

Carrier localization 2D 0D

Maximal emission wavelength 1100 nm 1350 nm

Optical gain/absorption per layer >20 cm−1 3–8 cm−1

Carrier lateral diffusion length Several microns ~100 nm

Number of stacked layers
(without strain compensation) 3 (for λ ~ 1 µm) 15–20 (for λ 1.1–1.3 µm)

Carrier capture time ~ps or less few ps

Presently, high-quality InGaAs/GaAs QWs and QDs suitable for device applications are formed
by molecular beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD). However
even with the use of these up-to-date technologies, it is very challenging to fabricate a nanostructure
with properties characteristic of an “ideal” 2D or 0D object.

During the growth of GaAs/AlGaAs QWs, monolayer high fluctuations can be formed at the
lower and upper interfaces. At cryogenic temperatures, local thickenings of the QW results in carrier
localization in the lateral direction and plays the role of shallow QDs [12,13]. In the case of InGaAs/GaAs
QWs, there are fluctuations of the In composition that acts as localization potentials for electrons
and holes [14]. Similar effects of QD-like emission from In-rich regions have also been observed in
InAlAs/InP (see, for example [15]). Compositional and thickness fluctuations are much more enhanced
in case of quaternary or quinary QWs, e.g., InGaAsN(Sb).

QD arrays are usually represented by narrow bandgap inclusions (islands) inside a wide bandgap
matrix. However, these “geometrical” QDs do not necessarily show properties that are expected for
“ideal” QDs with delta-function like the density of states. To fulfill this condition, the confinement
energy for electrons and holes in QDs should be high enough to prevent carrier thermal evaporation
from the ground state to excited states and continuum (wetting layer and matrix). In practice, this means
that, on the one hand, the size of a QD should be large enough to provide sufficient localization energy
of electrons and holes at the ground state. On the other hand, the QD size should not be too large to
prevent the formation of a number of closely spaced electron and hole energy levels. For the device
application, these conditions must be satisfied at room temperature, which implies that confinement
energy of electrons and holes with respect to the wetting layer/matrix (and, ideally, first excited
state) should exceed at least 3 kBT (where kB—Boltzmann constant). In addition, homogenous and
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inhomogeneous broadening of QD array also deteriorates its properties as compared to the case of an
ensemble of “ideal 3D emitters”.

Given the above considerations, fabrication and studies of nanostructures, which properties are
intermediate between QWs and QDs, are of special fundamental interest and beneficial for certain
practical applications. Such nanostructures should combine useful properties of both QWs and
QDs and, to some extent, be free of their disadvantages. Starting from the QW side, such InGaAs
nanostructure can represent an InGaAs QW comprising In-rich regions and local thickenings, which are
capable of localizing electrons and holes. Starting from the QD side, it can be implemented as a
dense array of shallow InxGa1−xAs QDs inside the thin InyGa1−yAs layer (x > y). Two-dimensional
QWs and 0D QDs are usually formed when the In content in the depositing InGaAs material is either
low (x < 0.3) or high (x > 0.5), respectively. The growth and investigation of structural and optical
properties of InxGa1−xAs layers with moderate In concentrations (0.3 < x < 0.5) is expected to be useful
for the formation of the aforementioned nanostructures of intermediate 2D-0D dimensionality.

A number of research groups have investigated nanostructures that can be considered as
intermediate cases between QWs and QDs. These structures were referred to as modulated quantum
wells [16,17], as quantum wires [18–24], as ‘Wires-on-Well’ (WoW) [25,26], and as ‘Well-Island’ [27].
One approach is to use a dense array of small-sized QDs [21,28,29]. For instance, in references [28,29],
the structures were grown by submonolayer migration-enhanced epitaxy on vicinal substrates with
the amount of deposited InAs close to the critical value of 1.8 monolayers (ML). A blue shift and
narrowing of the photoluminescence (PL) band with increasing misorientation angle was observed.
The fact that QDs become smaller and more uniform in size was attributed to lateral confinement of
QDs on terraces formed due to step bunching effect. In reference [21], the alignment of InAs QDs on
very regularly formed multiatomic GaAs steps, produced by step bunching on vicinal (100) substrates,
was studied. This approach was used for growing regular arrays of quantum wire (QWR) structures
formed along the step edges.

Another approach to form nanostructures of mixed dimensionality is to apply MOCVD or MBE
growth of InGaAs with low In composition [16,25,30]. Partial strain release results in the appearance
of thickness and compositional modulations. Many groups rely on growth on vicinal substrates and
step-bunching effect at the upper interface of the growing InGaAs layer. For instance, the initial stage
of InGaAs growth by MOVPE on multiatomic-stepped GaAs structures was studied in [22]. It was
found that in the initial stages of InGaAs growth, Ga and In atoms preferentially attach themselves to
the bottom edges of the multiatomic steps. The key issues in the formation of InGaAs QWRs are the
uniformity of the multiatomic steps and the large modulation in the lateral thickness of InGaAs on
multiatomic-stepped GaAs structures.

As early as in 1997, it was demonstrated that the luminescence peak position strongly depends
upon growth parameters and can be tuned in a wide spectral interval even for the same x and average
thickness of the deposited InGaAs [31]. The samples were grown by submonolayer deposition of InAs
and GaAs by MBE and had nominally the same composition (~31%) and thickness (~7 nm). However,
for the sample grown in the alternating mode of group III and group V atoms, the maximum of PL
emission was shifted by 120 meV towards lower energies with respect to the emission from the first
sample grown in the continuous deposition mode.

In reference [30], the impact of substrate misorientation and the number of deposited In0.18Ga0.82As
layers on strain relaxation mechanisms were studied. Multiple In0.18Ga0.82As/GaAs layers were
deposited by MBE on exactly oriented substrates as well as on 2◦ misoriented towards the [0-11]
direction GaAs substrates. In the case of the growth on nominal GaAs(100) surfaces, the strain relaxation
was governed by dislocation formation. In contrast, the additional strain relaxation mechanism was
revealed for vicinal GaAs(100) substrates. If the number of deposited In0.18Ga0.82As layers is less than
8, step bunching provided a mechanism for strain relaxation. In case the number of In0.18Ga0.82As
layers exceeds 10, bunched corners along with two [051] and [0–1–5] directions also contribute to the
strain relaxation in addition to the step bunching.
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Morphology of the strained In0.3Ga0.7As (2–4 nm)/GaAs (2.7 nm)/GaAs0.6P0.4 (3 nm)/GaAs (2.7 nm)
superlattices deposited on GaAs surfaces with different misorientations (0 and 6◦ off) was investigated
in [19,25,26]. For both types of substrates, growth conditions were exactly the same. A significant layer
undulation was observed in the case of a 6◦ misoriented substrate. This corrugation was attributed
to step bunching and non-uniform precursor incorporation between steps and terraces. In contrast,
the growth of the exactly oriented substrate resulted in flat morphology. The undulation effect was the
most pronounced for InGaAs layers. As a result, a periodic array of InGaAs nanowires on planar wells
was formed that was referred to as Wires-on-Well (WoW). Lateral periodicity of layer undulation was
determined by TEM as 66 nm. The total height of the WoW was ~3.1 nm, and the minimum thickness
of the InGaAs, at the boundary between one wire and the next one was ~0.71 nm. The wire width was
about 48.6 nm. The WoW geometry can be tuned by changing equivalent thicknesses of InGaAs and
GaAsP layers. An increase in the equivalent thickness of InGaAs results in the enhancement of the
height of the wires. The wire width also increased with the InGaAs equivalent thickness, but this effect
is less pronounced. Strain-balancing was crucial to maintain the periodicity of the InGaAs WoW array.
The WoW photoluminescence peak shifted according to the size of InGaAs wires in optical region
1.15–1.3 eV, and the intensity was affected by the accumulation of lattice-mismatch stress.

In reference [20], the authors reported on nanostructures that they referred to as QWRs. Samples
with QWRs were based on 40 QW/barrier pairs made of strain balanced In0.2Ga0.8As/GaAs0.85P0.15 on
6◦ misoriented GaAs substrate. Nominal QW thickness was 8 nm, and barrier thickness was 17 nm.
The in-plane periodicity of the QWRs was 121 nm, the total height of the QWR was 13.6 nm, and the
minimum thickness of the layer, at the boundary between one QWR and the next one, was 4.6 nm.
Optical properties of QWRs were compared with a reference QW grown on the exactly oriented surface.
Growth on the misoriented surface resulted in a broadening and a redshift of PL line from 1.26 eV to
1.22 eV. Radiative recombination was found to be less efficient in these QWRs than in reference QW
grown on the exactly oriented surface.

Formation of In0.4Ga0.6As QWRs was demonstrated during the MBE growth on the (311)A
surface [24]. The average height of the wires was found to be 4 nm; the PL maxima were at about
1.34 meV. The enhanced linewidth of the PL lines (>30 meV) was attributed to the size distribution of
the quantum wires and the quality of the InGaAs/GaAs interfaces.

Recently, we have demonstrated a novel type of nanostructures that we refer to as quantum
well-dots (QWDs). The QWDs represent a dense array of carriers localizing indium-rich regions
formed inside In-depleted residual quantum wells by MOCVD deposition of 4–16 monolayers of
InxGa1−xAs (0.3 < x < 0.5) on GaAs substrates (Figure 1). QWDs can be considered as nanostructures of
mixed (0D/2D) dimensionality. The use of QWDs in single-junction GaAs solar cells enabled extending
of long-wavelength edge of the spectrum of internal quantum yield from 860 nm up to 1100 nm,
which resulted in a record high increment in the photocurrent (4.6 mA/cm2 for 20 QWD layers) for
terrestrial spectra [32], which is making QWDs promising for photovoltaic applications.

Despite the rather interesting results obtained for photovoltaic converters based on various
nanostructures of mixed dimensionality, including WoW, QWR, QWDs, etc. [25,26], the reports
on light-emitting devices were scarce [27,31]. In this review article, we mostly focus on the
application of QWDs to light emitting devices, describe their basic properties, and demonstrate
fundamental advantages.
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Figure 1. Schematic representation of InGaAs structures of different dimensionalities—self-organized
Stranski–Krastanow quantum dots, QDs (a); quantum well-dots, QWDs (b); and quantum wells,
QW (c).

2. Growth and Structural Properties

The formation of QWDs takes place during the MOCVD deposition of a lattice-mismatched
InGaAs thin film on the GaAs substrate. Structures have been grown on exact oriented (100) and vicinal
(4–6◦ off) GaAs substrates using an MOCVD installation with a low pressure (100 mbar) horizontal
reactor. Metal alkyls (trimethylgallium, trimethylaluminum, trimethylindium) and arsine were used
as precursors. GaAs and AlGaAs layers were deposited at 700 ◦C, the ratio of molar flows of V to
III group precursors is about 30, and 0.4 nm/s growth rate. InGaAs QWDs are formed at lowered
growth temperatures 500–550 ◦C, the ratio of molar flows of V to III group precursors is about 30 and
0.2 nm/s growth rate. Compositional and thickness modulations appear due to surface migration of
In atoms in the lateral strain fields. In other words, the appearance of In-rich islands is energetically
favorable because of partial strain relaxation. On the one hand, elastic strain should be strong enough
to cause such modulations. On the other hand, it should not be too high in order to avoid the
transition to the Stranski–Krastanow growth mode and formation of conventional self-organized QDs.
The strain energy depends both on the thickness and composition of the lattice-mismatched epitaxial
material (i.e., the In content), and both parameters should be optimized. The most direct method to
study the structural properties of InGaAs nanostructures is transmission electron microscopy (TEM).
The combination of cross-section and plan-view TEM images allows one to determine the size, shape,
and density of in-rich islands.

Let us consider the growth of InxGa1−xAs layer of different In concentrations (x) on GaAs substrate.
Deposition of In0.2Ga0.8As results in the formation of a planar uniform layer. If the indium concentration
exceeds 60%, the growth occurs in Stranski–Krastanow mode via the formation of the wetting layer on
the top of which large-sized pyramid-shaped islands are formed. In both cases of low and high In
contents, QWDs are not observed in TEM images. The window of In composition to grow QWDs is
from 30 to 50%.

Figure 2 illustrates the impact of indium composition on structural properties of InGaAs layers
formed on 6◦ misoriented GaAs (100) substrates. The strain fields caused by variation of indium
composition are visualized as black-and-white contrast. Plan-view TEM images reveal the formation of
islands with a higher In composition as compared to the In concentration in the surrounding InGaAs
layer (residual QW). It is these islands that we refer to as quantum well-dots. The QWDs are aligned
along the [1–10] direction, have a round or oval shape and lateral size (in case of In0.3Ga0.7As) of 10–20 nm.
The islands tend to form nanowire-shaped clusters along the [1–10] direction, which corresponds to the
direction of atomic steps [33,34]. This tendency is weakening with increasing the indium composition.
The nanowire-like objects show periodicity in the [110] direction with a period of 20–40 nm. Note that
the length of monolayer steps for 6◦ misoriented GaAs (100) surface is about 3 nm. The larger value of
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the found periodicity is due to the “step-bunching” effect [35] that occurs during the MOVPE growth
on vicinal substrates [16].

QWD layer formed by deposition of In0.4Ga0.6As represents the larger lateral size of the
islands—20–30 nm (Figure 2b). The tendency for the QWDs to merge into wire-like clusters along
atomic steps is less pronounced as compared to the case of In0.3Ga0.7As. In addition to QWDs, there are
also objects with a larger size, which can be considered as conventional QDs. However, the surface
density of such QDs is much lower compared to that of the QWDs, so they do not significantly affect
the optical properties of the sample, as will be shown below.
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Figure 2. Plan-view (001) TEM images of the samples of the InxGa1−xAs QWD layers with nominal
indium composition x = 0.3 (a), 0.4 (b), and 0.5 (c) (effective vector of diffraction g = (220)). Insets show
a cross-section of images of the same samples in the [1–10] zone.

Lateral sizes of the QWDs and the QDs revealed from cross-section TEM (insets to Figure 2a–c)
are in good agreement with the plan-view TEM data (Figure 2a–c). The average height of the QWDs
for x = 0.4 is 3 nm, that means that the thickness modulation of the QWD layer is not high (about 30%
of its average thickness). The QDs are much bigger in size than QWDs; their average lateral size is
30–40 nm, and the average height is about 6 nm.

Further increase in the In composition up to x = 0.5, i.e., an increase in the lattice mismatch, leads to
significant growth of the density of QDs, whereas the density of QWD decreases. From the viewpoint
of their geometrical dimensions, these QDs resemble conventional QDs formed in Stranski–Krastanow
growth regime. The QDs do not align along with the atomic steps.

QWDs can be formed on the exact (100) oriented substrate as well, but their structural properties are
strongly influenced by substrate orientation (Figure 3). In the case of the vicinal surface, the modulations
of indium composition and layer thickness are much more pronounced; in other words, QWDs are
better developed. Atomic steps existing on the vicinal surface facilitate island growth mode. Note that
the thickness modulations often follow atomic steps (Figure 3a). For the exact oriented surface,
the QWDs have smaller lateral size ~10 nm as compared to QWDs grown on 6◦ misoriented substrate
(20–30 nm). The large-sized QDs are formed only on the misoriented surface, cover many atomic steps,
and likely appear due to coalescence of individual QWDs. The impact of surface misorientation angle
was also studied in [18]. InGaAs/GaAsP multiple quantum wells (MQWs) were grown by MOVPE on
vicinal GaAs (001) substrates with different miscut angles of 0◦, 2◦, and 15◦ towards [110]. Growth on
substrates with 2◦ and 15◦ miscut angles resulted in the formation of quantum wires and quantum
dots as revealed by atomic force microscopy and photoluminescence.

Since the growth of QWDs is accompanied by a partial relaxation of elastic strain, there is no fast
strain accumulation upon the stacking of QWD layers, and misfit dislocation formation is suppressed.
This effect is similar to the case of stacking of the self-organized QDs, and is an advantage of QWDs
as compared to QWs. Figure 4 shows TEM image of the sample with 15 vertically stacked QWD
layers. The structure demonstrates high crystal quality, and no dislocations are observed. In contrast,
vertical stacking of more than 3 InGaAs QWs with composition 15–20% would result in dislocation
formation and drastic deterioration of optical quality. The possibility of dislocation-free stacking,
a large number of QWD sheets is advantageous to obtain high optical gain/absorption in optoelectronic
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devices. In [20,26], 200 and 40 stacks of WoW and QWR with high optical and crystal quality were
demonstrated, respectively. However, in both cases, careful strain balancing was applied.
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3. Optical Properties

3.1. The Impact of Indium Composition and Average Layer Thickness on Photoluminescence Spectra

The existence of two types of quantum-sized objects with different sizes and correspondingly
with different confinement energy (QWDs and QDs) results in a characteristic modification of
photoluminescence (PL) spectra with temperature increase.

At low-temperature thermal escape of carriers from both types of localized states (QWDs and
QDs) to the matrix is suppressed (Figure 5) and random (or non-equilibrium) population of the joint
QWD/QD array is realized. The PL spectrum was taken at 20 K and moderate excitation power density
is composed of ground-state emission from both QWDs and QDs and reflects their size distribution
and density. Temperature raise opens the possibility of carrier transport between localizing objects
resulting in a redistribution of intensities of the corresponding peaks in the PL spectrum. In the
middle-temperature range (~80–150 K), it can be expected that carrier transport is controlled heavily
by the activation energy of confined states (i.e., the energy gap between confined state and matrix)
because carrier escape probability is increasing with decreasing activation energy of the confined
state. This results in one-way carrier transport from QWDs with smaller confinement energy to QDs
providing stronger confinement. Further increase in the temperature (180–300 K) leads to blurring
of differences in the probability of carrier escape from QWD and QDs resulting in two-way carrier
transport, or in other words, establishing of equilibrium population in joint QWD/QD ensemble
according to Fermi–Dirac statistics.

The PL spectra of the samples with QWDs formed by the deposition of InxGa1−xAs with x =

0.3, 0.4, and 0.5 are in good agreement with the results of TEM studies. The structure with QWDs
formed by the deposition of 16 monolayers (ML) of In0.3Ga0.7As demonstrates a narrow single PL peak
(Figure 6a), pointing out that there are no other quantum-sized objects apart of QWDs. The peak is
gradually red-shifted and broadened with temperature increases (Figure 6a–c).
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Figure 6. PL spectra of InGaAs QWDs with 30%, 40%, and 50% In composition measured in the
conditions of random carrier population—20 K (a), one-way carrier transport—100 K (b) and equilibrium
(Fermi) carrier distribution—300 K (c) in joint QWD/QD array.

PL spectra of QWDs formed by the deposition In0.4Ga0.6As show quite different behavior. At 20 K,
the main PL peak is accompanied by a shoulder on the long-wavelength side pointing to the presence
of two kinds of quantum-sized objects in the active area separated by a potential barrier. On the base
of TEM studies, we attribute the shorter- and longer-wavelength peaks to emission from QWDs and
QDs, respectively. The ratio of QWD-to-QD surface densities is estimated as ~10:1, according to the
relative peak intensities in PL at 20 K. Temperature rising up to 100 K leads to gradual PL intensity
redistribution from the QWD peak to the QD one, which is accompanied by a dramatic change in the
PL spectrum shape (Figure 6b). However, further temperature increase results in reverse evolution
of the spectrum—QD shoulder has nearly vanished, and only the main peak, which corresponds to
QWDs, remains in the spectrum. One can conclude that the samples formed by the deposition of
InGaAs with 40% indium concentration comprises QWDs as major quantum-sized objects, and there is
an only small fraction of QDs, which are characterized by deeper localization energies. The PL signal
from QDs state is noticeable only under the one-way carrier transport conditions in the temperature
range 80–150 K.
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In the case of the samples formed by the deposition of In0.5Ga0.5As, the increase in QD density
revealed by TEM (Figure 2c) is confirmed by PL studies. In the low-temperature PL spectrum, one can
see that peaks of QWDs and QDs have comparable intensities. With temperature increase up to 100 K,
the contribution of shorter-wavelength peak (QWD) is vanished almost completely; however, further
temperature increase (up to 300 K) results in recovery of its intensity (Figure 6c). The interpretation of
such behavior, as well as in the previous case, is based on the existence of one-way carrier transport
from QWDs to QDs in a middle-temperature range. However, in the case of 50% indium concentration,
the QD density is higher than that of QWDs, and, correspondingly, the intensity of QWD related PL
peak is relatively weak. Separate peaks due to different kinds of quantum-sized objects were also
revealed in [18]. An extra emission was observed from the 2◦ and 15◦ off samples, and attributed to the
photoluminescence from quantum wires and pyramidal self-controlled quantum-dots, respectively.
These peaks were absent at the PL spectrum on 0◦ surfaces.

Thus, we can conclude that the increase of In composition of deposited InGaAs layer results in a
systematic increase of the QD density in comparison to the density of QWDs, which agrees well with
the data obtained by TEM studies. The impact of the increase in InGaAs thickness on QWD PL spectra
is shown in Figure 7. The spectra were recorded at 100 K when the QD peak is the most pronounced.
If the InGaAs thickness amounts to 7 ML, only the QWD peak is seen in the spectrum. With the
increase in the nominal thickness of deposited InGaAs, the intensity of the QD-related PL peak also
increases that reflect the growth of QD density, which is confirmed by TEM studies [36]. For the 10 ML
thickness, the QD PL peak becomes as intensive as that from QWDs. Our results qualitatively agree
with [37], where In0.15Ga0.85As QWs were grown on a GaAs(001) vicinal substrate with a miscut of
6◦ towards (111)A. Optical and structural investigation revealed the presence of step bunches at the
upper interface of the QWs with thickness 20 nm and 30 nm. As step bunches were not present in
the thinner QW (10 nm), the authors can conclude that the phenomenon is activated above a critical
thickness of the InGaAs layer that depends on the growth parameters and the growth rate.

To conclude this part, tuning the InGaAs layer composition and thickness makes it possible to
control QWD-to-QD density ratio and, correspondingly, optical properties of the samples.
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3.2. Lateral Carrier Diffusion in QWDs

Carrier diffusion plays an important role in understanding the performance and optimization
of parameters of optoelectronic devices, particularly lasers and light-emitting diodes. The diffusion
length sets the ultimate limit on the active device diameter. For this reason, a great effort has been
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dedicated to the development of fabrication technology for nanostructures with a smaller diffusion
length [38–40]. The diffusion process is drastically influenced by the dimensionality of the active
region: while 3D carrier diffusion is possible in a bulk unconfined active region, diffusion is restricted
in a plane for a 2D quantum well, and to a single direction for a quantum wire. Ultimately, carrier
localization in all three spatial directions in an ideal 0D QDs [41] affects different device characteristics,
including the weak sensitivity to dislocations and etched sidewalls. Suppressed carrier diffusion in
QDs has been indirectly proved in various experiments, such as improved scaling characteristics of
ridge narrow stripe lasers [39], increased tolerance to radiation-induced damage [42,43], and improved
performance of ultrasmall devices [44–46]. Recently, room-temperature lasing has been realized in QD
based microdisks as small as 1 µm [47].

As it follows from the above consideration, QWDs are an intermediate case between the 2D and
0D situations. Carriers can be localized in the minima of the potential profile of the QWD layer due
to inhomogeneities in its thickness and composition, even in case the potential profile is not purely
zero-dimensional. Thus, the ability of charge carriers to diffusion is suppressed. As the temperature or
the injection level is increased, more and more carriers are thermally evaporated into higher energy
levels and continuum states. Even in unconfined energy states within the band, the carrier mobility
and, therefore, the diffusion length is strongly reduced by scattering due to spatial inhomogeneities,
as evidenced, e.g., in the AlGaN and InGaNAs material systems [48,49].

Carrier diffusion in different types of quantum sized nanostructures can be studied by using
temperature-dependent PL from mesa arrays of different diameters [50]. The smaller the mesa size,
the easier for the carriers to reach the mesa sidewalls and to recombine non-radiatively. The drop of
the mesa luminescence intensities with a decrease in mesa diameter will reflect the enhancement of the
role of non-radiative recombination at sidewalls.

Figure 8 compares integrated PL intensity measured at 77 K (a) and 290 K (b) for mesas of various
diameters. The mesas arrays were formed by electron beam lithography and etching from three types of
In(Ga)As/Ga(Al)As heterostructures having different active regions: InGaAs/GaAs 2D quantum wells,
InGaAs/GaAs QWDs and InAs/InGaAs/GaAs 0D QDs [51]. Note that the latter QDs emit near 1.3 µm
and; therefore, provide strong confinement of electrons and holes. The intensities for each type of
structure are normalized to their values measured for the largest (10 µm in size) mesas either at 77 K (a)
or at 300 K (b). At 77 K, the intensity of the mesa array with QDs is independent of the mesa diameter.
This is due to the fact that the carries are localized inside the QDs and do not contribute to lateral
diffusion, whereas carrier concentration inside the wetting layer and GaAs matrix is negligible [50].
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3.3. Dynamic Characteristics of QWDs 
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Carrier diffusion and correspondingly surface non-radiative recombination is activated with
temperature increase. At room temperature, the carrier concentration in the continuum states is
enhanced, and the PL intensity of QD structure drops by about two times when the mesa diameter
decreases down to 0.2 µm. In the case of mesas with QWD, the photoluminescence intensity (both at 77
and 290 K) exhibits faster deterioration with decreasing the mesa diameter as compared to QDs. This is
explained by the fact that QWDs provides weaker carrier localization. The smallest mesa size showing
detectable PL was 1 µm (at room temperature) or 0.3 µm (at liquid nitrogen). In the case of mesas with
QW, photoluminescence was observed only in 6–10-µm in diameter mesas, whereas in the mesas with
smaller sizes the luminescence was not detected. We conclude that carrier diffusion lengths in QWD
structures are much shorter than in QW structures, which is in agreement with the suppressed carrier
diffusion in disordered QWs [52]. This makes QWDs very advantageous for their use as an active area
in compact nanophotonic devices (this will be discussed in more detail in Section 3.5).

3.3. Dynamic Characteristics of QWDs

The quantum dimensionality naturally influences carrier relaxation and recombination processes
in low dimensional structures. In this section, we compared results of time-resolved PL studies for 0D
InAs/InGaAs/GaAs quantum dots [51], 2D InGaAs/GaAs quantum wells, and InGaAs/GaAs QWDs
nanostructures of mixed (0D/2D) dimensionality.

The PL spectra at the CW excitation are demonstrated in Figure 9a. The spectrum of the QD sample
contains a dominant peak at 1270 nm due to the emission from the ground-state optical transition as
well as weaker peaks at higher energies due to the emission from the first and second excited-state
transitions. The spectra of QWD- and QW-samples show intense peaks of the ground-state optical
transition and weaker shoulder from the higher energy states. All the samples show high optical
quality: the drop in integrated PL intensity with temperature increase from 78 K to 300 K is 3.2, 1.6,
and 1.3 for QDs, QWDs, and QWs, respectively.
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Figure 9b compares the temporal evolution of PL signal for the QD, QWD, and QW structures [53].
In case of QDs, the PL intensity temporal evolution can be well fitted by bi-exponential expression
PL(t) = A1exp(τ1/t) + A2exp(τ2/t). The decay of PL signal is characterized by the fast component
(τ1 = 1.1 ns) and slow component (τ2 = 7 ns). This agrees with previous estimations of PL decay
time about 1 ns made for self-organized In(Ga)As QDs by several research groups [54,55]. The slow
component is attributed to carrier radiative recombination from the QD ground state. It is generally
believed that at room temperature, the carrier lifetime in semiconductors is limited by non-radiative
recombination [56]. The obtained large value of PL decay time can be explained by carrier recapture in
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QD array [57,58] as well as to the absence of fast non-radiative recombination channels in the sample
under study. The total PL decay time at 1/e level for the QD ground state transition is estimated as 6 ns.

QWD PL intensity temporal dependence can be fitted by a mono-exponential expression, which is
ascribed to the absence of discrete high energy levels involved in carrier relaxation processed to the
ground state. The PL decay time at 1/e level for ground-state transition is about 6 ns.

The QW structure shows the slowest PL decay with a characteristic time of 20 ns. This value is
comparable with carrier radiative lifetime measured for QWs in the temperature range 150–250 K [59].
At higher temperatures, PL decay time is limited by non-radiative lifetime and is decreasing rapidly.
Taking into account extremely high optical quality of the structures under study, which demonstrates
room-temperature PL intensity comparable to the one at 78 K (to compare, in contrast, in [59],
PL intensity degradation in the temperature range 10–250 K is higher than two orders of magnitude),
one can suppose that non-radiative recombination processes are still not significant even at room
temperature, and PL decay time corresponds to radiative recombination time.

Summarizing, the presented data show, that the carrier radiative recombination time is affected
by structure dimensionality. The localization of charge carriers in QWDs results in the attraction of the
carrier of opposite electrical charge and facilitates faster radiative recombination as compared to QWs.

3.4. Edge Emitting Lasers

In this section, we describe properties of edge-emitting lasers based on QWDs.
The active area of semiconductor laser diodes, as well as device design, should be optimized

for certain applications. For instance, high power QW lasers usually contain one or two QWs in the
active area because the devices should have low internal losses. In the case of QD lasers, more QD
layers (typically 5–10) are required to avoid gain saturation and switching to excited state lasing at
high injection currents [60]. QWDs are an intermediate case between QWs and QDs, so the number of
QWDs layers in the active area should be optimized.

The laser wafers with different numbers of QWDs in the active region (from 1 to 10) were grown
by MOCVD on the GaAs substrates misoriented on 6◦ toward [111] direction. Each QWD layer was
formed by the deposition of 8 ML of In0.4Ga0.6As. The QWD sheets were separated with 40 nm thick
undoped GaAs spacers. The laser structures have undoped GaAs waveguides with a thickness of
0.68 µm not exceeding the third mode cut-off. The active region locates in the center of the waveguide,
which ensures lasing on the fundamental transverse mode. The waveguide was sandwiched between
p-type and n-type Al0.4Ga0.6As claddings having the thicknesses of 0.75 µm and 1.5 µm, respectively.
For reducing the internal loss, the claddings doping levels of 2 × 1018 cm−3 were reduced down to
7 × 1017 cm−3 in the vicinity of the waveguide. The wafers were processed into broad-area lasers
with 100-µm-wide shallow-mesa ridges with etching through the p-contact and partly through the
p-cladding layers. The individual laser chips were mounted p-side down on copper heatsinks using an
indium solder. No facet coatings were used.

The dependencies of laser characteristics on stripe length for devices with a different number of
QWD layers are shown in Figure 10a–c. An increase in the number of QWD layers from 1 to 10 leads to
a red-shift of the lasing wavelengths (from 1088 nm to 1117 nm in laser diodes of the longest cavity
length), see Table 2. The red-shift was also observed in the electroluminescence spectra (Figure 11a).
Such effect was not revealed in case of stacking strain balanced QWs [7,61,62], where peak positions
do not depend on the number of the layers. We attribute this effect, at least partly, to the elastic
strain redistribution in the multilayer QWD medium, similar to the case of stacking several layers of
self-organized QDs [63–65].

A decrease in the cavity length leads to a blue-shift of the laser wavelengths. With decreasing
cavity length output loss, increase and higher injection currents are required to achieve lasing. Since the
maximum of gain spectra shifts to shorter wavelength with increasing injection current, the lasing
wavelength also experiences a red-shift. The smaller the number of QWD layers, the larger the shift.
For instance, as the cavity shortens from 4 mm to 0.25 mm, the wavelength changes by 20 nm in the case
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of 10 layers of QWDs, while for the laser based on single QWD layer, the wavelength shift is three times
stronger (60 nm). In the case of the laser based on one QWD layer, the lasing line switches from the
wavelength, which corresponds to the QWD ground state, to the wavelength of GaAs waveguide when
cavity length decreases down to 200 µm. No lasing switching from the ground state to higher-energy
states was observed for the devices with 2, 5, and 10 QWD layers.

Table 2. The characteristics of edge-emitting lasers based on a different number of QWD layers.
The threshold current density and lasing wavelength are indicated for the cavity length 4 mm.

Number
of QWD
Layers

Threshold Current Density, A/cm2 Lasing
Wavelength

(λ), nm

Internal
Quantum

Efficiency (ηi)

Internal
Loss (αi),

cm−1Total (jth) Per QWD Layer (jQWD)

1 100 100 1088 0.79 0.7

2 120 60 1092 0.85 1.0

5 200 40 1108 0.82 1.5

10 375 38 1117 0.78 2.4

The threshold current density (Jth) increased from 100 to 375 Acm−2 with an increase in the number
of QWD layers from 1 to 10 (Figure 10b) that is typical for lasers based on both QWs and QDs [66].
Correspondingly, the threshold current density normalized to the number of the QWD layers (JQWD)
decreased from 100 to 38 Acm−2. The values of threshold current densities for QWD lasers are larger
than those in QD lasers [1,60,67] but smaller than in QW ones [68]. It should be noted that for 5 and
10 QWD layers, JQWD turned out to be almost the same. The dependence of the inverse differential
efficiency (Figure 10c) on the cavity length was used to derive internal quantum efficiency and internal
loss (Figure 10c). The internal losses increase from 0.7 to 2.4 cm−1 with an increase in the number of
QWD layers from 1 to 10, whereas the internal differential quantum efficiency (ηi) weakly depends
on the number of QWD layers of and amounts to about 80%. It should be noted that in the case of
the lasers based on 1 and 2 QWD layers, the differential efficiency dramatically deteriorates when the
cavity becomes shorter than 325 µm. In contrast, the lasers with 5 and 10 QWD layers do not show any
drastic decrease in differential efficiency up to the shortest cavities of 125 µm.
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The dependence of the modal gain on injection current (Figure 12) was calculated from the
experimental dependence of threshold current density on external loss as described in detail in [69].
The maximal modal gain for the laser with 1 QWD layer of about 75 cm−1 is achieved at 1900 Acm−2.
Higher gain values can be reached at higher currents, but the lasing switches to the electronic states
of GaAs waveguide. The laser based on 2 QWD layer shows twice higher maximal modal gain
(about 150 cm−1). For the lasers based on 5 and 10 QWD layers, the maximal modal gain was calculated
to be 150 cm−1 as limited by the minimal cavity length used in the experiments. One can expect higher
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values of the maximal modal gain in multiply stacked QWD samples, even taking into account that the
modal gain does not necessarily increase proportionally to the number of QWD layers.Appl. Sci. 2019, 9, x 15 of 28 
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Figure 13 shows a typical temperature dependence of the threshold current density of a QWD
laser. In the temperature range of 220–320 K, the characteristic temperature T0 is 163 K. Typical
characteristic temperatures of QD lasers with undoped active regions are 50–70 K, whereas the use of
p-type modulation doping of active region allows one to increase it above 1000 K [60]. The characteristic
temperature of the QW lasers typically slightly exceeds 100 K [70]. Note that QWD active region was
undoped. Thus, the temperature stability of QWD lasers is comparable with the best QW lasers and
exceeds that in QD lasers with the undoped active region.

In the temperature range of 120–200 K, the temperature dependence of the threshold current
shows an N-shape [71], which can be explained by the presence of QDs in a joint QWD/QD array in
the laser-active region (Section 3.1), when temperature increases above 100–150 K, the carriers start to
evaporate from QWDs and are captured to QDs having deeper localization potential. In other words,
QDs cause parasitic radiative recombination. Thus, additional current is required to compensate for
this carrier loss, which leads to a “hill” in the temperature dependence of threshold current.



Appl. Sci. 2020, 10, 1038 16 of 27

Appl. Sci. 2019, 9, x 16 of 28 

100 1000
0

50

100

150 1 layer
2 layer
5 layer
10 layer

M
od

al
 g

ai
n,

 G
, c

m
-1

Current density, J, A/cm2

. 

Figure 12. The dependences of modal gain on the injection current density for devices with different 
numbers of QWD layers. 

Figure 13 shows a typical temperature dependence of the threshold current density of a QWD 
laser. In the temperature range of 220–320 K, the characteristic temperature T0 is 163 K. Typical 
characteristic temperatures of QD lasers with undoped active regions are 50–70 K, whereas the use 
of p-type modulation doping of active region allows one to increase it above 1000 K [60].  The 
characteristic temperature of the QW lasers typically slightly exceeds 100 K [70]. Note that QWD 
active region was undoped. Thus, the temperature stability of QWD lasers is comparable with the 
best QW lasers and exceeds that in QD lasers with the undoped active region. 

In the temperature range of 120–200 K, the temperature dependence of the threshold current 
shows an N-shape [71], which can be explained by the presence of QDs in a joint QWD/QD array in 
the laser-active region (Section 3.1), when temperature increases above 100–150 K, the carriers start 
to evaporate from QWDs and are captured to QDs having deeper localization potential. In other 
words, QDs cause parasitic radiative recombination. Thus, additional current is required to 
compensate for this carrier loss, which leads to a “hill” in the temperature dependence of threshold 
current. 

50 100 150 200 250 300 350 400

100

J th
, A

/c
m

2

T, K

2 QWD layers

T0=163K

 
Figure 13. Temperature dependence of the threshold current of QWD-based laser. 

We note that stacking as many as 10 layers of QWD without any strain compensation, does not 
deteriorate the device performance (Table 2) as could be expected for QWs. To estimate the relative 
effect of non-radiative recombination centers on device performance, we studied the dependence of 
integrated electroluminescence intensity on injection current in lasers based on 1 and 10 QWD layers. 
The current component associated with the radiative recombination is characterized by a linear 
dependence of the integrated intensity on the injection current, whereas the non-radiative component 
is characterized by the quadratic dependence (Figure 14). At low injection levels, the non-radiative 

Figure 13. Temperature dependence of the threshold current of QWD-based laser.

We note that stacking as many as 10 layers of QWD without any strain compensation, does not
deteriorate the device performance (Table 2) as could be expected for QWs. To estimate the relative
effect of non-radiative recombination centers on device performance, we studied the dependence
of integrated electroluminescence intensity on injection current in lasers based on 1 and 10 QWD
layers. The current component associated with the radiative recombination is characterized by a linear
dependence of the integrated intensity on the injection current, whereas the non-radiative component
is characterized by the quadratic dependence (Figure 14). At low injection levels, the non-radiative
recombination determines the device characteristics. As the injection current increases, non-radiative
recombination saturates and radiative recombination becomes the dominant one. The injection
current, at which the behavior changes, depends upon the non-radiative centers’ density. In Figure 14,
the crossover point is the intersection of the linear (radiative, P~J) and quadratic (non-radiative, P~J2)
components. In both lasers, this current is quite similar (5 and 7 Acm−2 for the laser based on 1 and 10
QWD layers respectively). Thus, stacking up to 10 QWD layers does not result in a significant increase
in dislocation density, which agrees with low threshold current density in that laser.
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Figure 14. Dependencies of integral electroluminescence intensity on the current density for lasers
based on (a) 1 QWD layer, and (b) 10 QWD layers.

For achieving high-power operation, we have designed QWD lasers based on the CLOC (coupled
large optical cavity) waveguide [72] and the active area based on 2 QWD layers. As seen from Figure 15,
the devices based on 2 QWD layers provide the highest internal quantum efficiency, low internal loss,
and low threshold current. The CLOC structures consist of a single-mode narrow passive waveguide
optically coupled to a broadened active multimode waveguide. Due to the reduced optical confinement
factor and increased optical losses, a selected parasitic transverse mode is eliminated from the lasing,
ensuring transverse single-mode lasing. The active region consisting of two layers of InGaAs QWDs
with 40 nm GaAs spacer was placed in the center of 1.3 µm undoped GaAs waveguide separated
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from the 220 nm GaAs passive waveguide by the 250 nm Al0.25Ga0.75As layer. The waveguide was
designed to provide the elimination of the second-order mode. The thickness of the p-Al0.25Ga0.75As
cladding layer was reduced down to 450 nm in order to improve heat dissipation from the active
region. The laser wafer was grown with MOCVD, processed into 100 µm broad-area lasers in an
abovementioned manner. The laser facets were covered by anti-reflecting (AR) and high-reflecting
(HR) coatings and mounted p-side down on submounts. The broad area lasers with the cavity length
of 4 mm showed CW output power of 14.2 W at room temperature (Figure 15a). Maximal wall-plug
efficiency of 51.8% is achieved at 4.3 A. To the best of our knowledge edge-emitting, 1060 nm QW
lasers demonstrate CW optical power as high as 18 W [73].
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The pulsed output power of 37.5 W is achieved at room temperature (Figure 15b). The injection
current is limited by the supply source. The decrease in differential efficiency at high injection currents
(starting from ~40 A) is likely due to overheating and carrier pile-up in the active region as suggested
by the redshift and broadening of the lasing spectrum, respectively.

To the best of our knowledge apart of the QWDs there are only a few works on light-emitting
devices based on nanostructures with mixed dimensionality. In [31], significant depolarization of the
heavy-hole-related electroluminescence was observed and attributed to in-plane strain fields caused
by modulations of In composition. In reference [27], a special InGaAs-based well-island composite
quantum-confined structure was demonstrated, and both super-wide and very uniform gain and
power distributions were obtained. The spectral flatness of the output power reached 0.1 dB, and the
gain bandwidth was broadened to six-folds broader than FWHM (full width at half the maximum)
of the standard gain spectrum from a classic InGaAs quantum well under the same carrier density.
The formation of the well-island composite quantum-confined structure was associated with the
Indium-rich island effect in the material growth.

To conclude this part, QWD based edge-emitting lasers show a high optical gain, high differential
efficiency, low threshold currents, low internal loss, and good temperature stability. They can find
applications as efficient optical emitters for the spectral range around 1.1 µm. We expect that using
advanced waveguide design (broad waveguides, thin top-emitter and contact layer, etc.), better heat
dissipation, and up-to-date facet coatings will result in enhancement of output power levels.
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3.5. Microdisk Lasers Based on QWDs

3.5.1. CW Performance

Recently semiconductor microlasers have attracted considerable interest as ultrasmall light sources
for photonic integrated circuits and other applications. To meet the requirements of high efficiency,
the major part of the output power should be emitted via lasing whispering gallery modes (WGMs),
whereas the spontaneous emission should be weak. Although ideal microdisk (MD) can exhibit very
high-quality factors [74], the non-ideal shape of actual devices results in an increase in optical loss [75],
and thus, MD can emit practically sufficient optical power. For example, in [76], central electrically
pumped 3 µm in radius microlaser with a single layer of InGaAs QDs as an active medium was
employed for optical excitation of five closely spaced micropillar cavities. The out-coupling of the laser
emission can be significantly enhanced through the use of optical fiber tapers. In reference [77] a laser
differential efficiency as high as 16% and out-coupling efficiency in excess of 28% was measured in
GaAs microdisk based on InAs QDs embedded in In0.15Ga0.85As quantum well after accounting for
losses in the optical fiber system. Maximal power in the lasing line using free-space collection was
estimated as 2.5 nW, whereas it was as high as 60 nW when using fiber taper collection. In reference [78]
output power emitted into free space was directly measured for the first time in MD lasers based on
InAs/InGaAs/GaAs QDs. The device was 31 µm in diameter, and its active region contained ten layers
of InAs/InGaAs QDs in GaAs matrix. Total emitted optical power reached approximately 0.1 mW in
CW regime, while the WGM emission amounted to about 2.8% of the total power.

In this section, we describe static characteristics of microdisk lasers based on QWDs [79].
The typical laser structure consisted of p- and n-type doped Al0.34Ga0.66As cladding layers and

a 0.8 µm-thick undoped GaAs waveguiding layer. An active region represents five sheets of QWDs
separated with 40 nm-thick GaAs spacers. The QWDs were formed by the deposition of eight
monolayers of In0.4Ga0.6As. Microdisks with diameters from 15 to 31 µm were fabricated by standard
post-growth processing. A micrograph of a 31-µm microlaser is shown in the inset of Figure 16.
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Figure 16 compares electroluminescence spectra for a 19 µm in diameter MD lasers based on
InGaAs/GaAs QWDs and 1.3 µm InAs/InGaAs/GaAs self-organized QDs. Both spectra are measured at
injection current four times exceeding the threshold value. In the emission spectrum of QD microlaser,
there are many narrow lines corresponding to WGM modes of different orders superimposed to a
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180 nm wide spontaneous emission spectrum with the well-resolved peaks from the ground state,
first and second excited states. The integrated intensity of all lasing WGMs is 18% of the entire
emitted power.

In contrast, in MDs with QWDs, the width of the spontaneous emission spectrum is much lower
(~70 nm). The peaks due to the excited-state transitions do not emerge up to very high injection
currents. For the QWD MD laser, the share of the lasing WGM to the total emitted power is 95%.
The lasing mode peak intensity is 29.9 dB higher as compared to that of the side (next brightest) mode.

At 60 mA, the total output power emitted into free space reaches 18.5 mW that corresponds to a
wall-plug efficiency of about 15% (Figure 17). The share of all lasing WGMs in the total emitted power
is 96%, whereas the fraction of dominating WGM at 1086 nm is about 75%.
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Figure 18 compares the dependencies of threshold current density on mesa diameter for MD lasers
based on InGaAs/GaAs QWDs and 1.3 µm InAs/InGaAs/GaAs self-organized QDs. The threshold
was determined from the light-current characteristic showing a pronounced knee accompanied by
linewidth narrowing down to 18 ± 2 pm (our spectral resolution limit). A representative dependence
of the dominant mode intensity and linewidth on injection current for a 31 µm in diameter QWD MD
laser is shown in Figure 18b.
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When QWD MD diameter decreases from 31 µm to 15 µm threshold current density grows from
710 A cm−2 up to 2300 A cm−2 (Figure 18a). Such a sufficiently steep threshold current increase can be
explained by the fact that the relative contribution of non-radiative recombination at MD sidewalls
into total threshold current increases with a decrease in MD diameter. In MD lasers based on 1.3 µm
InAs/InGaAs/GaAs QDs threshold current density is nearly independent of MD diameters in the range
of 14–31 µm. These facts are in agreement with the results of mesa arrays studies (Section 3.2), showing
that carrier lateral diffusion lengths in QDs are shorter than in QWDs.

In 31 µm in diameter, QWD MD lasing was observed up to 110 ◦C, and the maximal temperature
was restricted by the available equipment. For 19 µm in diameter MD laser, the maximal lasing
temperature was 90 ◦C, whereas for 10.5 µm in diameter device it was only 40 ◦C. The smaller is the MD
size; the steeper is the growth of threshold current density with temperature increase. The population
of the continuum states in QWDs increases with temperature, and a greater fraction of carriers can
diffuse towards etched sidewalls and experience non-radiative recombination. Thus, the component
of the total threshold current, which corresponds to surface non-radiative recombination, rises with
a decrease in MD size. We expect that passivation of MD sidewalls [80] will allow achieving low
threshold high temperature lasing in QWD MD with diameters down to 10 µm

3.5.2. Dynamic Characteristics and Data Transmission

Presently main anticipated application of MD lasers is associated with ultrasmall light sources
for optical data transmission between individual optical circuits and inside one circuit. Such an
application requires efficient high-frequency modulation. Significant progress has been made in the
development of InP-based microlasers based on QWs. A 7.5 µm in diameter circular MD laser bonded
onto a silicon-on-insulator waveguide showed the 3-dB bandwidth of 3.5 GHz [81]. High-speed
direct-modulation with a 3-dB bandwidth of 11.7 GHz and open eye diagrams at 10 Gbit/s were
demonstrated for a 1550 nm InGaAsP/InP QW microdisk with a diameter of 7.5 µm bonded to
silicon [82]. Small signal modulation (SSM) with a resonance frequency (fR) of 12.5 GHz was realized
for an AlGaInAs/InP circular microlaser with a radius of 10 µm at 290 K. Furthermore, f R = 6.9 GHz,
as well as clear eye diagrams at 12.5 Gbit/s, were observed for a 15-µm radius circular AlGaInAs/InP
microlaser with active region based on six compressively strained QWs [83]. SSM with a 3-dB
bandwidth exceeding 10 GHz was realized for a 30 µm microspiral AlGaInAs/InP disk based on eight
QWs [84]. An open eye diagram at 15 Gbit/s with a bias current of 90 mA at a stage temperature of
15 ◦C was demonstrated [84]. More recently SSM response with 3-dB bandwidth up to 20 GHz was
demonstrated for the AlGaInAs/InP microdisk laser with active region based on 6 QWs with a radius
of 7 µm surrounded by BCB-cladding layer [85]. Eye diagrams at the bit rates of 20, 25, and 30 Gbit/s
were also measured at the temperature of 14 ◦C [85].

In addition to applications in optical integrated circuits, MD lasers may become a cost-effective
alternative for sophisticated and expensive distributed feedback lasers and vertical cavity
surface-emitting laser for data transmission over intermediate and short distances. MD lasers have
the inherent structural advantage of avoidance any kind of reflector either in the form of a cleaved
facet or a diffraction grating. In paper [86] the authors report on the properties of directly modulated
active-passive integrated 1570 nm InP-based microring lasers with an active region comprising six
InGaAs QWs fabricated using full wafer bonding techniques. Bit rates up to 7 Gb/s were achieved for a
50 km singlemode fiber transmission.

The disadvantage of InP-based microlasers is caused by small energy offsets and low thermal
conductivity [87], which results in a significant deterioration of their characteristics with temperature
increase. For instance, in reference [85], it was observed that when the temperature rises from 14 to 40 ◦C,
the resonance frequency value drops from 14.9 to about 8.3 GHz. However, dynamic characteristics of
much more temperature stable GaAs-based MD lasers are poorly studied. 1 Gbit/s data transmission
has been realized using a 6.5 µm in diameter MD laser based on In0.5Ga0.5As QDs [88].
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It should be mentioned that in data transmission experiments by using InP-based microlasers,
spectral filtering, and amplification of the lasing emission was utilized. The use of optical filters and
amplifiers in photonic integrated circuit is obviously not desirable as it significantly increases the
number of elements and fabrication complexity.

In this section, we describe the results on small-signal modulation and data transmission by
MD lasers based on QWDs. These experiments were carried out without amplification of the lasing
emission. Moreover, the microlasers were neither externally cooled nor temperature stabilized.

The microdisk design used for small signal modulation and data transmission experiment was
the same as described in the previous section, but the planarizing layer was used. For high-frequency
experiments, a ground-signal-ground (GSG) radio-frequency probe was used. All measurements were
carried out at 300 K.

The 3-dB bandwidth (f 3dB) is shown versus bias current in Figure 19. Examples of the SSM
responses are depicted in the inset to this figure. The maximal f 3dB of 6.7 GHz was obtained for the
23 µm in diameter microlaser at a bias current of 21 mA. The roll-over of the 3-dB bandwidth at high
currents is attributed to the self-heating of the device.Appl. Sci. 2019, 9, x 22 of 28 
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4. Conclusions 

To conclude, quantum well-dots offer some advantages of both quantum wells and quantum 
dots and do show a combination of unique properties, such as high optical gain, the possibility of 
stacking a large number of layers in the active region, suppressed lateral transport of charge carriers, 
good temperature stability, applicability in the micro-resonators. In addition to previously achieved 

Figure 19. Dependence of 3-dB bandwidth (f3dB) on injection current. Inset: examples of small signal
modulation responses at different bias currents. The line is a guide to the eye.

To study the large signal modulation characteristics, the MD laser emission was coupled to the
lensed fiber. Note that only 2.5% (32 µW at 25 mA) of the entire MD output power was fed into the fiber.
Certain arrangements were undertaken to overcome the effects due to the photodetector noise and to
measure the true dynamic performance of the MD lasers [89]. To obtain the eye diagrams, ten 27–1
pseudo-random bit sequences (PRBSs) were transmitted through the fiber. Figure 20b–e shows the eye
diagrams at 30 ◦C ambient temperature for the optimum pumping regime. The received power was
−15 dBm. The eye stays open up to bitrate Bmax = 12.5 Gbit/s. This result is in good agreement with
the obtained maximal 3-dB bandwidth f 3dB, max = 6.7 GHz (Figure 19) that suggests the estimation of
Bmax ≈ 2f 3dB, max = 13.4 Gbit/s. The dependence of bit error rate (BER) on the received optical power
at 30◦C is depicted in Figure 20a. Thus, the QWD MD lasers are applicable for 10 Gbit/s error-free
data transmission (BER = 10−12). In case the output power of the QWD MD laser is increased by for
instance, coupling to a bus ridge waveguide, e.g., like in Ref. [84], the data transmission speed can be
further enhanced.
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fiber. Certain arrangements were undertaken to overcome the effects due to the photodetector noise 
and to measure the true dynamic performance of the MD lasers [89]. To obtain the eye diagrams, ten 
27–1 pseudo-random bit sequences (PRBSs) were transmitted through the fiber. Figure 20b–e shows 
the eye diagrams at 30 °C ambient temperature for the optimum pumping regime. The received 
power was –15 dBm. The eye stays open up to bitrate Bmax = 12.5 Gbit/s. This result is in good 
agreement with the obtained maximal 3-dB bandwidth f3 dB, max = 6.7 GHz (Figure 19) that suggests the 
estimation of Bmax ≈ 2f3 dB, max = 13.4 Gbit/s. The dependence of bit error rate (BER) on the received 
optical power at 30°C is depicted in Figure 20a. Thus, the QWD MD lasers are applicable for 10 Gbit/s 
error-free data transmission (BER = 10−12). In case the output power of the QWD MD laser is increased 
by for instance, coupling to a bus ridge waveguide, e.g., like in Ref. [84], the data transmission speed 
can be further enhanced. 
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Figure 20. The dependence of BER on the received optical power (a), and eye diagrams for 5 (b), 10 (c),
12.5 (d), and 16 (e) GHz for a 23 µm in diameter microdisk laser at 30 ◦C.

4. Conclusions

To conclude, quantum well-dots offer some advantages of both quantum wells and quantum
dots and do show a combination of unique properties, such as high optical gain, the possibility of
stacking a large number of layers in the active region, suppressed lateral transport of charge carriers,
good temperature stability, applicability in the micro-resonators. In addition to previously achieved
improvement of the performance of light converters, this allowed demonstrating high-performance
edge-emitting lasers and microdisk lasers capable of error-free 10 Gbit/s data transmission at 30 ◦C
without using an external optical amplifier and temperature stabilization. We expect that QWDs
will found further applications in various optoelectronic devices where high optical gain and a large
number of active layers are required, for instance, in vertical-cavity surface-emitting lasers, optical
amplifiers, super-luminescent light-emitting diodes. Small carrier diffusion lengths are advantages for
compact photonic devices where etching is done through the active area. Suppressed carrier lateral
transport can reduce non-radiative recombination at facets of high-power lasers and thus decrease
catastrophic optical mirror damage.
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