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Abstract: Despite the vast usage of machine learning techniques to solve engineering problems, a
very limited number of studies on the rock brittleness index (BI) have used these techniques to
analyze issues in this field. The present study developed five well-known machine learning
techniques and compared their performance to predict the brittleness index of the rock samples. The
comparison of the models’ performance was conducted through a ranking system. These techniques
included Chi-square automatic interaction detector (CHAID), random forest (RF), support vector
machine (SVM), K-nearest neighbors (KNN), and artificial neural network (ANN). This study used
a dataset from a water transfer tunneling project in Malaysia. Results of simple rock index tests i.e.,
Schmidt hammer, p-wave velocity, point load, and density were considered as model inputs. The
results of this study indicated that while the RF model had the best performance for training
(ranking = 25), the ANN outperformed other models for testing (ranking = 22). However, the KNN
model achieved the highest cumulative ranking, which was 37. The KNN model showed desirable
stability for both training and testing. However, the results of validation stage indicated that RF
model with coefficient of determination (R?) of 0.971 provides higher performance capacity for
prediction of the rock BI compared to KNN model with R? of 0.807 and ANN model with R? of 0.860.
The results of this study suggest a practical use of the machine learning models in solving problems
related to rock mechanics specially rock brittleness index.

Keywords: rock brittleness index; machine learning techniques; artificial neural networks; random
forest; K-nearest neighbors; support vector machine

Appl. Sci. 2020, 10, 1691; doi:10.3390/app10051691 www.mdpi.com/journal/applsci



Appl. Sci. 2020, 10, 1691 2 of 18

1. Introduction

In underground space and excavation related projects, brittleness of the rock is considered as
one of the most important properties of the rock mass. Having an appropriate insight on rock
brittleness in other fields of engineering also help engineers alleviate the issues related to brittleness.
For example, the acquisition of sufficient knowledge on the rock brittleness by oil and gas engineers
could help them to evaluate the wellbore stability as well as appraise the performance of a hydraulic
fracturing job [1]. Moreover, the brittleness regulates the properties of the shale rocks mechanic. At
the same time, by employing several parameters such as the carbonates, volumetric fraction of strong
minerals, weak elements and pores, Young modulus and strength of these properties can be defined
[2]. In deep underground engineering, brittleness is a critical factor to assess the stability of the
surrounding rock mass [3].

Besides, many disasters related to rock mechanics like rock-bursts may stem from brittleness [4-
6]. Several studies showed that brittleness is also an important factor to estimate the tunnel boring
machine (TBM) and road-harder cutting performance [7]. In addition, it defines the excavation
efficiency of drilling, which considerably influences coal mining [8]. Hence, the assessment of rock
brittleness is necessary for geotechnical and rock mechanics projects [5]. However, despite the fact
that the brittleness is an important parameter for designing civil and mining engineering projects,
but according to Altindag [9], there is still no consensus on definition and measurement standards of
this phenomenon. Hence, according to Yagiz [10], various rock properties influence rock brittleness.
Some studies have related brittleness to the lack of ductility or ductility inversion [11]. Ramsey [12]
also defined the brittleness as breaking of inter-particle cohesion of a rock. In addition, Obert and
Duvall [13] pointed out that brittleness is the inclination of a material, such as cast iron or many types
of rocks, to be split following pressure equivalent or higher than the material yield stress. A highly
brittle rock typically has the following features: (a) failure without a considerable force, (b) generation
of small particles, (c) great ratio of compressive to tensile strength, (d) great firmness, (e) great interior
friction angle, and (f) production of fully developed fractures following hardness lab experiments
[14]. It seems that the majority of studies that were conducted on rock brittleness index (BI) were
based on relationship between tensile and uniaxial compressive strengths of the rock samples [15-
17]. However, a few studies have presented and suggested a relationship between BI with other rock
properties such elasticity modulus, hardness, Poisson’s ratio, internal friction angle, and quartz
content [18]. The performance of these models have reported not capable enough to predict the BI.
This is because of the fact that most of them used one or two dependent parameters [8,17]. It seems
that the use of multi-inputs predictive systems in estimating BI of the rock would be great to receive
a higher degree of accuracy compared to simple regression models.

Recently a large number of studies used soft computing (SC), machine learning (ML) and
artificial intelligence (AI) techniques to solve problems related to science and engineering fields [19-
39]. However, a limited number of studies relevant to these methods have been conducted to predict
the rock BI in literature. Kaunda and Asbury [40] employed an artificial neural network (ANN)
technique to predict the rock Bl using system inputs such as the velocity of the S and P waves,
Poisson’s ratio, elastic modulus and unit weight. Yagiz and Gokceoglu [8] estimated the rock Bl by
constructing fuzzy inference system (FIS) and non-linear regression analysis. The inputs that were
used to develop these models were the unit weight, uniaxial compressive strength (UCS) and
Brazilian tensile strength (BTS) of the rock. They concluded that the FIS model is an applicable
technique in order to be used in the same field for further studies. Koopialipoor et al. [16] proposed
predictive equations for calculation of rock BI as a function of intact rock properties including rock
density, Schmidt hammer rebound number and p-wave velocity. They used a hybrid approach and
combined the firefly algorithm and ANN models to develop the equitation. Khandelwal et al. [17]
examined the feasibility of genetic programming model for predicting the brittleness of intact rocks.
Their study used multiple input variables including UCS, BTS and unit weight to forecast the BI of
the rock mass.

While several previous studies acknowledged the suitability of ML techniques for solving the
engineering problems, several ML techniques remained unused or barely applied to predict the rock
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BI. To the authors best of knowledge, no study is available which examined the feasibility of well-
known ML techniques such as chi-square automatic interaction detector (CHAID), random forest
(RF), support vector machine (SVM), and K-nearest neighbors (KNN) for predicting the BI. Thus, in
this study the abovementioned ML techniques plus ANN technique (as a benchmark one in field of
ML) were employed for Bl prediction purpose. The performance of each model was evaluated
through five performance indices and a gain chart. Additionally, three best models of this study are
discussed in more details.

2. Methodology

2.1. Models Developed

The models that were developed in this study are CHAID, RF, SVM, KNN, and ANN. The
CHAID is from decision tree family which produce non-binary tree structure. This technique that
was developed by Kass [41] employs a chi-square test to produce multiple sequential combinations
and splits, and finally a single decision tree. Typically, the decision tree techniques are susceptible to
overfitting. However, the CHAID automatically prunes the tree to alleviate the overfitting
phenomenon. Moreover, the CHAID generates a number of rule sets and each of these rule sets has
a confidence level and accuracy.

While the single-based decision trees are easy to implement and understand, these techniques
are prone to result in different generalization behaviour with small changes to the training data [42].
Indeed, these techniques are viewed as unstable and high variance. The RF technique is extensively
efficient to remedy the abovementioned shortcomings of single-based decision trees. This technique
was developed by Breiman [43] and is an ensemble-based approach (Figure 1). The RF generates
more accurate prediction results compared to single-based trees since it combines a huge number of
single trees. It is worth pointing out that the RF enjoys a bagging approach to create each number of
an ensemble from diverse datasets. This approach randomly chooses from the space of single decision
trees and generates almost identical (low diversity) predictions.

Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

Majority voting

|

Output

Figure 1. RF structure.
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Other ML techniques such as KNN, SVM, and ANN are also powerful tools for classification
and regression analysis in civil and mining problems [35]. KNN is an easy to implement, simple and
effective data mining algorithm [44]. The basic theory behind the KNN is discovering a group of “k”
samples (e.g., employing the distance functions) which has the nearest distance from unknown
samples in the calibration dataset. Moreover, the KNN identifies the class of unknown samples
among the “k” samples by calculating the average of the response variables [45]. Thus, the “k” plays
an important role in the KNN performance [46].

Concerning the SVM, this technique is capable to handle the high dimensional and linearly non-
separable datasets [47,48]. In addition, it can reduce the error for training and testing datasets, as well
as the model complexity [49]. According to Cortes and Vapnik [50], statistical learning theory is the
basic theory behind the SVM. In addition, the performance of SVM is influenced by Kernel functions,
such as linear, radial basis function, sigmoid and polynomial [51]. It is noteworthy to mention that
the SVM aims to determine a perfect separation hyper plane that can distinguish the two classes [51].
The SVM regression aims to discover the largest margin. Figure 2 shows a typical structure of SVM.

Non-linear Kernel
function function

Input layer Output layer

Figure 2. Typical structure of SVM.

In terms of ANN, this technique is a kind of artificial intelligence which emulates some functions
of an individual’s mind. Typically, the ANN is tended to sort experiential knowledge [52]. This
technique includes a series of layers, and each layer includes a sequence of neurons. These neurons
in every layer are connected thorough weighted links to all neurons on the previous and following
layers [52-55].

Feed forward——»

Input layer Hidden layer Output layer

»

<«+—— Frror propagation:

Figure 3. Typical three-layer neural network.
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A positive weight reveals an excitatory association, whereas a negative weight reveals an
inhibitory association. A typical ANN includes three layers, i.e., input layer, hidden layer, and an
output layer [56-60]. This structure is shown in Figure 3 for more illustration.

2.2. Data and Case Study

The data of this study was acquired from the Pahang-Selangor tunnel, Malaysia (Figure 4). The
main aim of constructing this tunnel was to provide a flow path of fresh water. The tunnel
specifications are as follow: (1) diameter: 5.2 m; length: 44.6 km; and longitudinal gradient: 1/1900. In
addition, under free-flow conditions, the maximum allowable discharge of the tunnel is 27.6 m?/s. In
order to excavate the tunnel, three different TBMs were used for about 35 km of the tunnel. The
remainder of the tunnel was excavated using the drilling and blasting method. The geological units
include granite, metamorphic and some sedimentary rocks; though, most of the rocks excavated with
the abovementioned method is comprised of granite. Many geotechnical and geological
investigations were conducted in the tunnel to collect rock block samples for testing. Finally, in
multiple locations of TBMs site, more than 100 granite block samples were obtained from the tunnel
face. A robust procedure from the International Society for Rock Mechanics [61] was followed for
preparing the samples to test. Several lab tests were conducted on the samples, including density (in
dry condition), Schmidt hammer rebound number (Rx), uniaxial compression strength (o), tensile
strength (o:), point load index (Iss0), and p-wave velocity (Vp). In this study, the BI values were
calculated according to the following equation [62]:

O-C
BI = O_—t 1)
where, oc and ot are the uniaxial compression strength and tensile strength, respectively.

Thus, considering and selecting BI values as model output, four parameters of density, Schmidt
hammer rebound number, point load index and p-wave velocity were set as inputs in the form of a
database with 110 datasets. The range, mean, unit and symbols of inputs and output parameters in
this study are tabulated in Table 1. According to this table, average values of 5491.6 m/s, 2.59 g/cm?,
40.5, 3.6 MPa, and 15.5 were obtained for Vi, D, Ry, Isso and B, respectively. In the next section,
modeling procedure in approximating Bl as a function form of f (V}, D, Rx, and Iss0) and the obtained
results will be presented in detail.

Table 1. The Range, Mean, Unit, Category and Symbol of Inputs and Output Parameters in Predicting

BI of the Rock Samples.
Parameter Symbol Unit Category Min Max Mean
P-wave velocity Vp m/s Input 2870 7702 5491.6
Density D g/cm? Input 237 279 2.59
Schmidt hammer rebound number Rx - Input 20 61 40.5
Point load strength Iss0 MPa Input 089 71 3.6
Brittleness index BI - Output 890 24.01 155

3. Modelling Process and Results

The present study developed five ML models to predict BI of the rock material. To develop the
models, a database contained 110 datasets was used. These data were split into the train and test with
the ratio of train to test being 70%: 30%. Thus, 77 samples for training and 33 samples were used for
testing. As pointed out earlier, five ML models including, RF, CHAID, SVM, KNN and ANN were
developed to estimate BI of the rock. Each of these models were evaluated using a simple ranking
system and a gains chart. The three best models are discussed in more detail.
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3.1. Evaluation of the Developed Models

Once the models have been developed, the accuracy performance of each model was evaluated
using five well-known indices i.e., coefficient of determination (R?), root mean square error (RMSE),
mean absolute error (MAE), variance account for (VAF), and a20-index. The formula that was used for
calculating the mentioned performance indices are presented in Equations (2)—(6). This study also
employed an easy to understand ranking system which ranked each model developed using the
above-mentioned performance criteria for both training and testing stages. For each criteria, the
ranking system first sorted the models based on their obtained values, then assigned the highest rank
(5) to the best value and the lowest rank (1) to the worst value. Final rank of each model was
calculated through summing the ranking values for both training and testing stages (Equation (6)):

2 _ g 20— f) ’
AR e @
var = |1 2O = 100 ®3)
var (y)
1 N
MAE =NZ|yi _— @)
Jj=1
1 N
RMSE = NZ(y —y')? ©)
20 — index = m20
az( —index = —— (6)

where y denotes the measured values, y and y” indicate mean and predicted of the y, respectively, N
denotes the total number of data, m20 shows number of samples with value of experimental
value/predicted value between 0.8 and 1.20:

1sjs2
Final rank of model = Z R @)

1<is5
where i denotes the indices, j shows the dataset, the R shows model’s ranking.

The values and ranks of the performance indices and models are presented in Table 2. The results
of this evaluation showed that the KNN model achieved the highest final rank (37). This model was
followed by RF (34) and ANN (33), respectively. For the training dataset, the RF obtained the highest
rank (25) while the SVM obtained the lowest rank (5). For the testing dataset, the ANN achieved the
highest rank (22) while the CHAID achieved the lowest rank (6). Turning to the performance indices,
the RF outperformed other models developed for the training dataset. However, for the testing
dataset, the ANN achieved the best ranks for three indices including R?, RMSE, and a20-index. The
ANN also achieved the second-best rank for VAF. Based on these discussions and rank values, three
models of RF, KNN, and ANN were selected to be discussed in more details in the following sections.

The authors also used a gain chart (Figure 5) to compare the performance of the models
proposed for both training and testing datasets. Gains are estimated as (number of hits in
quantile/total number of hits) x 100%. Here, it is necessary to mention that “hit” refers to the success
of a model to predict the values greater than the midpoint of the fields range (BI > 16.458). In this
chart, the blue line denotes the perfect model which has perfect confidence (where hits = 100% of
cases), the diagonal red line denotes the at-chance model, and the other five lines in the middle
represent the models developed in this study.
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Table 2. Evaluation of Models Developed Using Five Performance Indices.

Performance RF CHAID KNN SVM ANN
Index TR TE TR TE TR TE TR TE TR TE
s £ 5 4 5 £ 2 4 & £ 2 £ 2 £ B £ B £ B
S 2 S & £ £ £ £ £ & £ 2 £ g€ £ € £ 2 5 £
R2 0.89 5 075 2 0.77 3 074 1 0.81 4 084 4 0.73 1 084 3 0.75 2 08 5
RMSE 1.08 5 175 2 139 3 18 1 133 4 144 3 157 1 142 4 150 2 139 5
VAF (%) 8684 5 8.5 2 7831 3 751 1 8062 4 8.1 3 7262 1 875 5 7460 2 87 4
MAE 0.91 5 136 1 114 4 135 2 116 3 115 4 132 1 106 5 129 2 116 3
a20-index 1.00 5 091 2 09 2 08 1 099 4 097 4 091 1 09 3 097 3 097 5
Sum of the ranks TR 25 TE 9 TR 15 TE 6 TR 19 TE 18 TR 5 TE 20 TR 11 TE 22
Final rank 34 21 37 25 33

Perfect R? = 1; Perfect RMSE = 0; Perfect VAF = 100%; Perfect MAE = 0; a20-index = 1. Training dataset = TR; Testing dataset = TE
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Typically, the higher lines show better models, particularly on the left side of the chart. To
compare a model developed and the at-chance model, the area between a model and the red line can
be used. In fact, this area identifies how much better a proposed model is compared to the at-chance
model. Additionally, the area between a model proposed and the perfect model identifies where a
proposed model can be improved.

For training stage, it is shown that the perfect model has correctly identified 100% of the samples,
which had the BI of greater than 16.458, at the percentile of 40%. The RF model was the closest
follower of the perfect model and correctly identified 100% of the samples, which had the BI greater
than 16.458, at the percentile of 50%. The weakest model was the CHAID which identified the hit at
the percentile of 84%. For testing dataset, it can be seen that that the perfect model has correctly
identified 100% of the samples, which had the BI of greater than 16.458, at the percentile of 35%. The
perfect model was followed by the RF and ANN models which had correctly identified 100% of the
samples, which had the BI of greater than 16.458, at the percentile of 41%. The KNN and ANN had
the weakest performance and identified the hit at the percentile of 47%.

BEST MODEL M RF M CHAID M KNN © SVM [ ANN

& s

% Gain

0 20 40 60 80 100 0 20 40 60 80 100

Percentile Percentile
Training Testing
Partition
'BI' >16.458

Figure 5. Evaluation of the models proposed using a gain chart.
3.2. Conqueror Models

3.2.1. Random Forest Model

The RF model was developed using four input variables, including V3, D, R», and Isso to predict
the rock BI. The present study employed several parameters to develop the RF model. After trial and
error procedure, the number of models to build was set as 100, the sample size was set as 0.95, the
maximum number of nodes was set as 10,000, and maximum tree depth and minimum child node
size were set as 10 and 2, respectively. Predicted BI values by RF, along with their actual values for
training and testing datasets, are displayed in Figure 6. The obtained R? values of 0.89 and 0.75 for
train and test stages of RF model, respectively revealed a high and suitable accuracy level of train
and test stages. In addition, the RF model identified the importance of the input variables (Figure 7).
As can be seen, the R» with importance of 0.37 was identified as the most important variable and
followed by V}, with importance of 0.35 and Isso with importance of 0.29. It is noteworthy to mention
that the RF model did not consider D as an important factor.
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Predicted

Actual Actual
Training Testing
Partition

Figure 6. Testing and training results of RF model to predict the BI.

0.40 037

0.35
0.35

0.30 0.29
0.25
0.20
0.15
0.10

0.05

0.00
Rn Vp 1s50

Figure 7. Input variable’s importance to predict the BI derived from the RF model.

3.2.2. ANN Model

As mentioned earlier, this study developed the ML predictive models by means of four input
variables, i.e., Vi, D, Rs, and Issofor predicting the rock BI. Here, several parameters have been used
to develop the ANN model. The type of neural network model was multilayer perceptron. The study
used “mean” as the default combing rule for our continuous target. Number of component models
for boosting and/or bagging was set as 10. To avoid over-fitting, the over-fit prevention set was set
as 30%. Different values were examined in order to determine the number of hidden neurons and in
the final model, a number of 4 hidden neurons was used to predict BI. Figure 8 shows the suggested
architecture of the ANN model with four input neurons, four hidden neurons and one output neuron
in predicting BI of the rock. In addition, the predicted BI values by ANN, along with their actual
values for train and test datasets, are displayed in Figure 9. According to obtained results of this
section, R? values of 0.75 and 0.85 for train and test stages, respectively showed that the ANN model
is able to provide acceptable level of accuracy specially in testing datasets for estimation of the BI.
ANN is able to determine the importance values of the use inputs in the system (Figure 10). As a
result, R» and Vj are the most important and least important parameters on the Bl which results of Ru
is same as the RF analysis part.



Appl. Sci. 2020, 10, 1691 11 of 18
Synaéati_c Weight
stimate
Negative Positive
Bias
Bias f % f
N\
Rn
IS A& B
/j,_ . Neuron3 -~ P
Dry £ AN
Density f NG P & /-"/
P
/ ';_,Neuron4///
Vp y / k| é} s
Figure 8. ANN network for predicting the BI.
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Figure 9. Testing and training results of ANN model to predict the BI.
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Figure 10. Input variable’s importance to predict the BI derived from the ANN model.
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3.2.3. KNN Model

In developing KNN model, several assumptions and parameters were considered. The KNN
model was developed to establish the balance between speed and accuracy. Therefore, the model
automatically selected the best number of neighbors, within a small range. In the present study, we
used k number between the values 3-5 by implementing a trial-and-error method of the system. In
addition, the distance computation was based on Euclidean metric. Predicted BI values by KNN,
along with their actual values for training and testing datasets, are displayed in Figure 11. With R? of
0.81 and 0.84 for train and test stages, respectively, in fact, the KNN model is able to offer a balance
range for these stages compared to RF and ANN. Figure 12 shows a suggested structure of the KNN
predictive model in predicting BI.

| i . . . H H i ‘
1 ®
ol e se% o ¥
v | ‘ “-‘ i . : :
Q i ;
g | 3\ ‘ . = @ 0o ‘
o ; . i : i ‘
} ‘ i e ® |
1 F ) - =Ihe |
10 - ‘
T T T T T T | T T T
5 10 15 20 25 5 10 15 20 25
Actual BI Actual BI
Training Testing
Partition
Figure 11. Testing and training results of KNN model to predict the BI.
k=3 k=4 k=5
L0 e e

3501

Sum of Squares Error
8
K?

250

124010 et el N i

Figure 12. The relationship between the predictors and K selection for predicting the BI.

This figure shows the relationship between the predictors and K selection. In the horizontal axis
of the chart, the numbers of the nearest neighbor are displayed. Sums of square errors are shown in
the vertical axis. As shown by the figure, the errors for k = 3, 4, and 5 were determined as 372.31,
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363.70, and 365.92 respectively. The results revealed that k =4 is the best value of the nearest neighbor
numbers for the developed KNN model. The KNN model also identified the importance of the input
variables (Figure 13). As can be seen, the R« was identified as the most important variable and
followed by Vj, D, and Isso, respectively. It should be noted that R» was introduced by all RF, ANN
and KNN model as the most influential factor on rock BI.

0.35 0.32

0.3
0.26

0.25

0.21 0.21

0.2

0.15

0.1

0.05

0
Rn 1s50 D Vp

Figure 13. Input variable’s importance to predict the BI derived from the KNN model.

4. Validation of the Selected Models

After developing the models for predicting Bl of the rock, they should be validated through the
use of new datasets. Therefore, the authors decided to use 15 more empirical data from the same case
study. In should be noted that these data were not used for training and testing phases. The authors
used the selected models in previous section and run them using the new datasets for validation
purposes. Then, the measured and predicted values of BI were evaluated considering the previous
performance indices. Table 3 presents the results of performance indices for all 3 predictive models
i.e, ANN, KNN and RF. According to this table, 120-index is 1 for all predictive models which shows
that m20 (values of experimental/predicted) is equal to N (total number of samples). It confirms that
all models are able to provide good results for similar data as well. In addition, R? results (0.971, 0.860,
and 0.807) and VAF results of (96.852, 85.633, and 80.642 %) were obtained for RF, ANN and KNN
models, respectively in validation stage which indicate that RF model is better than the other 2 models.
In terms of system error, RF model with RMSE of 0.62 and MAE of 0.46 received lower amount of
error compared to ANN and KNN models. Figure 14 shows the measured and predicted BI values
for the RF, ANN, and KNN models in validation phase. In addition, Figure 15 depicts predicted BI
values by RF, ANN and KNN together with their measured BI for all 15 data samples assigned for
validation stage. As it can be seen from these two figures, the Bl values by RF model are closer to the
measured BI values in comparison with the KNN and ANN models.

As conclusion on this part, all models are able to provide a good prediction results for Bl values
when similar data will be available. However, RF can receive higher performance capacity if similar
data will be available compared to ANN and KNN models. This means that if the other researchers
or designers can collect/measure the inputs of this study within their ranges and their properties, it
can be expected that the developed RF model is able to predict BI values with high correlations and
low system error. Therefore, the developed RF model and its structure can be utilized to estimate Bl
of the rock in preliminary design of geotechnical projects subjected to rock mass.
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Table 3. Performance Assessment for the Validation Phase.

Performance Index RF ANN KNN
R? 0.971 0.860 0.807
RMSE 0.62 1.22 1.42

VAF (%) 96.852 85.633 80.64
MAE 0.46 0.99 1.14
a20-index 1.00 1.00 1.00

Perfect R? = 1; Perfect RMSE = 0; Perfect VAF = 100%; Perfect MAE = 0; a20-index = 1. Training dataset
=TR; Testing dataset = TE.

B ANN RF ® KNN == Linear (ANN) Linear (RF) +ee+ Linear (KNN)
ANN, R? = 0.860 RF,RZ=0.971 KNN,R? = 0.807
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Figure 15. Predicted BI values by RF, ANN and KNN together with their measured BI for all 15 data
samples.
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5. Discussion and Conclusions

This present study investigated the application of multiple ML techniques for predicting the
rock Bl using a dataset from a water transfer tunnel in Malaysia. The main aim of this study was to
identify the best model (s) in terms of accuracy for both train and test stages. To compare the models,
five performance indices, a ranking system, and a gain chart were used. Therefore, five ML models,
including the RF, CHAID, ANN, KNN, and SMM were developed. While the results of performance
indices showed that the RF outperformed other models for the training dataset, ANN achieved the
best ranking for testing dataset. However, the KNN achieved the highest cumulative ranking. A
possible explanation for this is that the KNN showed a stable behavior for train and test stages, while
the RF and ANN resulted in too many different rankings for train and test stages. Concerning the
importance of predictors in this study, all three models, RF, KNN, and ANN identified R« as the most
important factor for predicting the BIl. The KNN and ANN considered D as an important predictor,
while the RF did not. This can be explained by the fact that the data of D diverged from the average
value. It also showed that the RF is intolerable to the dispersion of data points in a data series around
the mean.

The RF method outperformed the single-tree based methods like CHAID for both the training
and testing stages. The power of RF stems from its abilities to bag a huge number of single tree models
and produce an ensemble tree. For categorical data, the RF produces a number of rules which can
show the relationships between the predictors and the target variable. However, in this study, the
target variable was continuous and the RF could not create a set of rules. While the ANN showed an
acceptable performance to predict the BI, this method is viewed as black-box. Thus, while it can
predict the BI, studying its structure does not provide an understanding on the structure of the
function being measured. The future studies on the BI should cautiously use the KNN. While this
method is an intuitive approach and immune to outliers on the predictors [25,63], this may be
vulnerable to irrelevant features and correlated inputs [64]. In addition, the ability of KNN to deal
with data of mixed-types is still doubtful [25,64].

The last analysis section of this study was related to validation of the selected predictive models
i.e.,, ANN, KNN and RF. To this end, 15 datasets with the same input parameters were considered
and then, the ANN, KNN and RF models were run again using these 15 datasets. The results of
validation stage showed that RF with R?of 0.971 is more capable to predict rock Bl compared to KNN
model with R? of 0.807 and ANN model with R?of 0.860. This indicates that all models can be used
for similar conditions in the future. More specifically, this research suggests to use RF and KNN
models (or each of them) by the other researcher or designers in order to predict rock Bl in design
stage of geotechnical projects.
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