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Abstract: The high-speed railway (HSR) has been a long-term hotspot in both scientific and engineering
societies to enhance the long-term high quality HSR service. This study aims to investigate the WJ-7B
type small resistance fastener rubber pad applied in HSR, and temperature sweep test is applied to
determine the mechanical parameters of the fastener rubber pad, which are hereafter introduced
into the vehicle-track-viaduct vertical coupling model via dynamic flexibility method. The track
irregularity spectrum is considered as fixed-point excitation to investigate the temperature-dependent
effect of fastener rubber pad on the dynamic responses. The results reveal that the rigidity of the
fastener rubber pad is low temperature sensitive and high temperature stable, and the temperature
variation has little effect on the vertical dynamic responses of the vehicle. The dynamic flexibility
of the rail increases in amplitude and the dominant frequency decreases as the temperature of the
fastener rubber pad increases. The vertical dynamic responses of the wheel-rail force, the wheelset
and the rail-viaduct system gradually decrease as the temperature of the fastener rubber pad increases,
and the peak frequency follows the similar rule. While under high temperature circumstances, the
temperature dependent stiffness of the fastener rubber pad has little influence on the peak of the
dominant frequency in the vertical dynamic response of the track-viaduct system.

Keywords: fastener rubber pad; dynamic flexibility method; temperature-dependent stiffness;
vehicle-rail-viaduct coupled dynamics

1. Introduction

In recent years, high-speed railway (HSR) has been widely constructed in a lot of countries and HSR
has also extensively transported a large amount of passengers and vast amount of goods, which enables
the possibility of long-distance fast travelling and fast goods transportation. Meanwhile, as wide use of
HSR, the corresponded problems such as vehicle-induced vibration have made the vehicle-rail-viaduct
coupling system worse and worse. An in-depth understanding of the vehicle-rail-viaduct coupling
system under complex circumstances shall be indispensable for enhancing the quality and long-term
service of HSR infrastructure system [1–4]. For instance, in [3], the power flow method is applied
to analyze the dominant vibration frequencies of the rail bridges for structure-born noise; in [4], the
acoustic modal contribution analysis is applied to study the structural noise mitigation performance
for the box-girder viaduct.

In terms of the HSR infrastructure system, various advancements have been developed and also
applied in the engineering, such as the China Railway Track System (CRTS) series slabs [5]. In addition
to slabs, the fastener serves as an essential component to mitigate the vibration in the rail system.
The fastener has several categories depending on various conditions; for instance, the fastener for
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normal speed railway systems shall differ from those applied for the HSR system. The HSR system has
more than 10 kinds of fasteners, which are designed regardless of distinct engineering circumstances.
Figure 1 illustrates two kinds of fasteners and their rubber pads. The mechanical properties of the
fasteners can largely affect the dynamic responses of the vehicle-rail-viaduct coupling system [5,6].
In the fastener’s system, the stiffness of the fastener rubber pad contributes 94% to the whole stiffness
of the fastener’s system, and therefore, the stiffness of the fastener rubber pad can be considered as the
whole stiffness of the fastener’s system [7]. Since the fastener rubber pad is made of rubber, the stiffness
has close relation to the temperature [8]. Considering such temperature-dependent phenomena,
extensive investigations have been conducted for studying certain effects. Ahmad et al. [9] studied
the temperature-dependent stiffness of the rubber in the dynamic vibration absorber; Zhao et al. [10]
conducted temperature sweep tests for rubber, and analyzed the temperature-dependent stiffness of
rubber material; Wei et al. [11–13] investigated temperature-dependent stiffness of the fasteners in the
subway system, and studied the nonlinear behavior of the temperature dependent stiffness of the
fasteners; Liu [14] conducted temperature sweep tests for the fastener rubber pad, and found that
at low temperatures, the fastener rubber pad shows low temperature sensitive performance, which
further affects the vibration responses of the coupled system.
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Figure 1. Details of the fastener rubber pad: (a) Fastener rubber pad of one fastener type; (b) Fastener
rubber pad of another fastener type.

As mentioned above, although certain investigations have been done for the fastener rubber pad—a
kind of viscoelastic damping material [15–19], not too many studies can be found for the temperature
dependent effect of the fastener rubber pad to the dynamic responses of the HSR system [16–21].
For instance, the effect of the rail fastener on the railway vehicle interior noise is investigated in [16],
in order to study the temperature dependent stiffness of the fastener rubber pad, which further affects
the dynamic responses of the vehicle-rail-viaduct coupling system.

This study takes the WJ-7B small resistance fastener rubber pad as objective, and Dynamic
Mechanical Analysis (DMA) is applied for temperature sweep tests in order to obtain the mechanical
properties of the WJ-7B small resistance fastener rubber pad; the dynamic flexibility method is then
applied to construct the vehicle-rail-viaduct coupling model, by incorporating with the measured
mechanical properties, the dynamic responses for each subsystem including the vehicle, rail, and
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viaduct are determined using track irregularity spectrum as fixed location excitation. The temperature
dependent stiffness of the WJ-7B small resistance fastener rubber pad is analyzed considering its further
influence to the dynamic responses of subsystems.

2. Fundamentals of Dynamic Flexibility Method

This study takes the CRH380A high-speed train and 32-m box-girder viaduct for instance,
illustrated in Figure 2a; the dynamic flexibility method is employed to build the vehicle-rail-viaduct
coupling model, depicted in Figure 2b, in the frequency domain. As shown in Figure 2b, this study
solely concerns the vertical vibration, and the vehicle is modeled with half as 10 degrees of freedom
(DOF) along the rail direction. The rail is modeled with Timoshenko beam, and the fastener, the
cement-emulsified asphalt (CA) mortar and the viaduct bearing are modeled with discrete spring
damping elements, the slab is modeled with free-free Euler-Bernoulli beam, and the viaduct is modeled
with simply supported Euler beam.
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Figure 2. Vertical model of vehicle-track coupling system: (a) high-speed railway (HSR) system; (b)
vehicle-rail-viaduct coupled model.

The vehicle-rail-viaduct coupling model is built firstly in frequency domain, by incorporating the
dynamic flexibility of each sub-system with the track irregularity spectrum of the rail, the wheel-rail
contact force is then obtained; and by substituting the wheel-rail contact force into the dynamic
motion equation, the responses of each subsystem including vehicle, rail, and viaduct are eventually
determined, respectively.

2.1. Vehicle-Rail-Viaduct Coupling Model via Dynamic Flexibility Method

The vertical wheel rail contact force is assumed to be harmonic, the displacement of the vehicle
system follows

ZV(ω) =
p(ω)

−ω2MV + iωCV + KV
(1)
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where Zv means the displacement of the vehicle system, Mv, Kv and Cv indicate the mass, stiffness
and damping, respectively. p(ω) represents the vertical rail-wheel force, andω denotes the excitation
circular frequency.

This study employs Timoshenko beam to model the rail, according to superposition theory for the
wheel rail interaction vibration analysis, the displacement in frequency domain for the rail follows

zr(x) =
Nw∑

w=1

βr(x, xw)Pw −

N∑
n=1

βr(x, xn)K f zr(xn) (2)

where βr(x, xw) denotes the displacement at x location when acting unit force at xw in the rail, xw

indicates the contacting point for the wth wheel rail, Pw means the wth wheel rail contact force for the
wheelset, Nw indicates the amount of the wheelsets; Kfzr(xn) represents the fastener’s force when nth
fastener acts on the xn location of the rail. N represents the amount of the fasteners.

The slab is modeled with free-free Euler-Bernoulli beam, and in the frequency domain, its
displacement follows

Zs(x) =
N∑

n=1

βs(x, xn)F f n −

M∑
m=1

βs(x, xm)F jm (3)

where βs(x, xn) indicates the displacement at the x location of the slab when unit force is loaded on xn

location of the slab, Ffn denotes the fastener’s force at location xn of the slab. N means the amount of
the fasteners. Fjm represents the discrete spring force at xm in the CA mortar of the slab; M illustrates
the amount of the discrete spring dampers in the CA mortar.

The box girder viaduct is considered as simply-supported Euler beam, and by using the modal
superposition method, the displacement of the box-girder viaduct follows

Zb(x) =
N∑

n=1

βb(x, xm)F jm −

2∑
h=1

(x, xzh)Fzh (4)

where βb(x, xm) represents the responses at x location when unit force is loaded at xm location of the
viaduct, Fzh denotes the hth bearing reaction force of the viaduct.

When constructing the vehicle-rail-viaduct coupling model, the fastener, the CA mortar, and the
bearing are modeled with discrete spring damping elements, and then the fastener’s force Ffn, the
discrete spring force at CA mortar Fjm, and the bearing reaction force Fzh can be illustrated as

F f n = K f (zr(xn) − zs(xn))

F jm = K j(zs(xm) − zb(xm))

Fzh = Kzzb(xh)

(5)

where Kf denotes the complex stiffness of the fastener, Kj means the complex stiffness of the discrete
spring damper element in the CA mortar, Kz indicates the complex stiffness of the viaduct bearing.

K f = k f (1 + iη f )

K j = k j(1 + iη j)

Kz = kz(1 + iηz)

(6)

where kf means the stiffness of the fastener, ηf denotes the loss factor of fastener, kj indicates the discrete
spring element stiffness of the CA mortar, ηj represents the loss factor of the CA mortar discrete spring
element, kz denotes the stiffness of the viaduct bearing, ηz represents the loss factor of the viaduct
bearing stiffness.
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Substituting Equation (5) into Equations (2)–(4) yields the following equation

[βK]{Z} = {P} (7)

where β means the dynamic flexibility matrix of the whole rail layer, K represents the full complex
stiffness of the slab-rail-viaduct system, Z indicates the displacement matrix of the rail, slab and viaduct;
P illustrates the load matrix.

2.2. Dynamic Flexibility Calculation for the Wheel

Separation of variables method (so called Fourier method) is applied to Equation (1), the dynamic
flexibility of the wheel can be obtained and is expressed as

βV
ij =

ZW
ij

P j
, i, j = 1, 2, 3, 4 (8)

where ZW
ij indicates the displacement at the ith contacting point of the wheel when the wheel-rail

contact force Pj is applied to the jth wheel-rail contacting point; βV
ij means the displacement at the ith

location of the wheel when unit force is applied to the jth contacting point.

2.3. Dynamic Flexibility for the Wheel Rail Interaction

This study employs the frequency domain model, the linear Hertz contacting model is used to
model the wheel-rail interaction [22], and the dynamic flexibility of the wheel-rail interaction follows

βC
i =

Zδi
Pi

=
1

KH
, i = 1, 2, 3, 4 (9)

where Zδi indicates the contacting deformation, KH denotes the contacting stiffness of the wheel-rail.

2.4. The Dynamic Flexibility of the Rail-Viaduct Coupling System

(1) Dynamic flexibility of the rail
The dynamic flexibility of the rail follows [23]

βr(x1, x2) = u1e−ik1 |x1−x2 | + u2e−k2 |x1−x2 | (10)

where

k1,2 =
(
ω
√

2

){
±

(
ρr

Er(1+iηr)
+

ρr
κGrEr(1+iηr)

)
+

[(
ρr

Er(1+iηr)
−

ρr
κGrEr(1+iηr)

)2
+

4ρrAr
Er(1+iηr)Irω2

] 1
2


1
2

(11)

u1 =
i

2κGrErIrAr(1 + iηr)
2 ×

ρrIrω2
− κGrAr(1 + iηr) − ErIr(1 + iηr)k2

1

k1(k2
1 + k2

2)
(12)

u2 =
i

2κGrErIrAr(1 + iηr)
2 ×

ρrIrω2
− κGrAr(1 + iηr) − ErIr(1 + iηr)k2

2

k2(k2
1 + k2

2)
(13)

where ρr, Er, Gr, Ir, Ar, κ, and ηr indicate density, Young’s modulus, shear modulus, sectional inertia
moment, section area, shear coefficient, and loss factor of the rail, respectively.

(2) Dynamic flexibility of the slab
The slab is modeled as free-free Euler-Bernoulli beam, and its dynamic flexibility follows

βb(x1, x2) =
N∑

n=1

ϕn(x1)ϕn(x2)

[ω2
n(1 + iη) −ω2]

(14)
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where ϕn(x) indicates the nth order mode shape at x location, ωn represents nth order resonant
frequency for the beam, η means the loss factor for the slab, N denotes the order.

(3) Dynamic flexibility of the viaducts
Viaduct is modeled as simply supported Euler beam, and its dynamic flexibility follows

βb(x2, x1) =
NMB∑
n=1

Wbn(x2)Wbn(x1)

(1 + iηb)ω
2
bn −ω

2
(15)

where Wbn indicates the nth order mode shape,ωbn indicates the nth order resonant frequency, NMB
means the amount of modes.

Substituting Equations (10), (14), (15) into Equation (7) determines the dynamic flexibility of the
rail-viaduct interaction system, it is expressed as

βTB
ij =

zTB
ij

p j
, i, j = 1, 2, 3, 4 (16)

where zTB
ij indicates the displacement of ith contacting point of the rail-viaduct coupling system when

wheel-rail interaction Pj is loaded at jth wheel rail contacting point, βTB
ij means the displacement at the

ith location of the rail-viaduct coupling system when unit harmonic force is applied to the jth wheel
rail contacting point.

2.5. Harmonic Analysis for the Vehicle-Rail-Viaduct Coupling System

The harmonic response analysis is applied to the vehicle-rail-viaduct coupling responses [24],
assuming the roughness amplitude spectrum to be r(ω), when the train is passing, due to the distinct
locations of the wheelsets, the excitations are not concurrently loaded at different wheel rail contacting
points, the corresponding track irregularity can be expressed as

R(ω) =
{
1e−2iωlt/Ve−2iωlc/Ve−2iω(lt+lc)/V

}T
r(ω) (17)

With the aforementioned constructed vehicle-rail-viaduct coupling model, the dynamic wheel-rail
contact force Pwr can be expressed as

Pwr = −(β
V + βTB + βc)

−1
R(ω) (18)

Substituting the dynamic wheel-rail force Pwr into Equations (1) and (7) can determine
displacements of the vehicle, the rail, the slab, and the viaduct, illustrated as Z(ω), respectively.

With the displacements of each subsystem, the corresponding accelerations can be determined,
and the accelerations can be expressed as

a(ω) = −ω2
×Z(ω) (19)

where a(ω), Z(ω) indicate the acceleration and displacements for the structures, respectively.
Figure 3 illustrates the flowchart for the investigation of the fastener rubber pad. The dynamic

mechanical tests of the fastener rubber pad can obtain the parameters for further analysis via dynamic
flexibility method, to unveil certain temperature variation effect of the fastener rubber pad to the
dynamic responses of the vehicle-rail-viaduct system. The subsequent sections try to describe the tests
in detail.
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3. Experimental Tests

3.1. General information for the tests

3.1.1. Dynamic Mechanical Tests for the Fastener Rubber Pad

This study takes the WJ-7B small resistance fastener rubber pad from the HSR system as a
test objective shown in Figure 4. In Figure 4, the pad below the rail was the fastener rubber pad.
The specimen took ∅15 mm × 10 mm cylinders, the 500 N Dynamic Mechanical Testing Machine,
Analyzing and Testing DMA GABO Instruments, shown in Figure 5, enabled the conduction of
temperature sweep tests for extracting the temperature dependent Young’s modulus [14]. The testing
frequency was set as 2 Hz, and temperature range was [−60, 40] ◦C. The temperature interval was
20 ◦C in the temperature sweep test. 20 ◦C is the typical operating temperature.
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The temperature dependent Young’s modulus of the fastener rubber pad is shown in Figure 6a.
Below −55 ◦C, the Young’s modulus of the fastener rubber pad increased as the temperature increased,
and under such a low temperature that it was in a glassy state, the Young’s modulus was relatively
high; as the temperature increased beyond −55 ◦C, the Young’s modulus of the fastener rubber pad
decreased sharply; and when the temperature increased beyond −20 ◦C, the Young’s modulus of the
fastener rubber pad decreased pretty slowly.
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With the available Young’s modulus, the stiffness of the structure can be obtained with Equation
(20) and is shown in Figure 6b, the complex stiffness can also be determined with Equation (21) and is
demonstrated in Figure 6c (absolute values).

k f =
AY
h

(20)

where kf indicates the stiffness of the fastener rubber pad, Kf means the complex stiffness of the fastener
rubber pad, A and h represent the section area, and thickness of the fastener rubber pad, respectively.

3.1.2. Testing Configuration

As to the dynamic responses analysis of the vehicle-rail-viaduct coupled system, this study
employed the testing temperature range [−40, 40] ◦C for the fastener rubber pad, with 20 ◦C as interval.
Then five scenarios are summarized in Table 1.

Table 1. Analytical scenarios of WJ-7B small resistance.

Cases Temperature (◦C) Stiffness (MN/m)

#1 −40 64.71
#2 −20 26.66
#3 0 21.00
#4 20 17.94
#5 40 16.65
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3.2. Model Description

3.2.1. Model Properties

This study takes the high-speed train CRH380A as example, the parameters are illustrated in
Table 2, and the structural parameters for the viaduct are illustrated in Table 3.

Table 2. Model parameters of CRH380A high-speed train.

Parameter, Symbol (Unit) Value

Vehicle’s weight under rated load (kg) 42,934
Bogie weight (kg) 3300

Wheelset weight (kg) 1780
Rotary of inertia for vehicle’s nod (kg m2) 1.712 × 106

Rotary of inertia for bogie’s nod (kg m2) 1807
Vertical stiffness of primary suspension (N m−1) 1.176 × 106

Damping of primary suspension (N s/m) 1.0 × 104

Stiffness of secondary suspension (N m−1) 2.4 × 105

Damping of secondary suspension (N s/m) 2.0 × 104

Length of train (m) 25
Fixed distance of carriage (m) 17.5

Fixed distance between axles (m) 2.5

Table 3. Dynamic parameters of the slab-rail-viaduct system.

Component Symbol, Unit Value

Rail

Stiffness (N/m2) 2.059 × 1011

Sectional inertia moment (m4) 3.217 × 10−5

Density (kg/m3) 7850
Section area (m2) 7.745 × 10−3

Shear modulus (N/m2) 7.7 × 1010

Section coefficient (κ) 0.45
Loss factor (ηr) 0.01

Fastener
Loss factor 0.25

Distance between fasteners (m) 0.625

Slab

Stiffness (N/m2) 3.6 × 1010

Sectional inertia moment (m4) 1.7 × 10−3

Density (kg/m3) 2750
Section area (m2) 0.51

Loss factor 0.1

CA mortar
Equivalent stiffness (N/m) 0.78 × 109

Loss factor 0.2

Viaduct

Length (m) 32
Stiffness (N/m2) 3.45 × 1010

Sectional inertia moment (m4) 5.757
Density (kg/m3) 2650
Section area (m2) 4.416

Loss factor 0.1

Bearing for the viaduct
Stiffness (MN/m) 6 × 109

Distance between bearings (m) 32
Loss factor 0.25
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3.2.2. Track Irregularity Spectrum of the Rail

The velocity of the train was considered to be 350 km/h, the track irregularity spectrum employed
the roughness amplitude spectrum of the rail in ISO 3095:2005 [25]

20lg
(

R
r0

)
=

{
18.435lgλ+ 27.194, 0.01 ≤ λ
−9.7, 0.00315 ≤ λ < 0.01

(21)

λ =
2πV
ω

(22)

where r0 denotes the reference roughness, r0 = 10−6 m; λ indicates the wavelength (m), V means the
velocity of the vehicle.

4. Results Analysis

This section aims to illustrate the effect of fastener rubber pad’s temperature dependent Young’s
modulus to the vibration responses of the vehicle-rail-viaduct system. Via the dynamic flexibility
method and the constructed vehicle-rail-viaduct coupling model for vertical vibration analysis, the
track irregularity spectrum of the rail from ISO 3095:2005 was considered as excitation, and according
to the distinct fastener rubber pad’s stiffness under different temperatures, five scenarios were studied
for investigating the performances of the vehicle-rail-viaduct coupling vibration, in order to draw out
the effect of the fastener rubber pad’s temperature-dependent Young’s modulus.

Figure 7 shows the dynamic flexibility amplitude of the rail-viaduct for all five scenarios.
From Figure 7, the dynamic flexibilities of the rail-viaduct for all five scenarios showed peaks around
5 Hz, and the dynamic flexibilities increased as then temperature increased, while the peak frequency
shifted leftward; in addition, the peak frequency was the first order resonant frequency of the
rail-viaduct vertical coupling system, which implies that the temperature dependent performance
of the fastener rubber pad had little effect to such first order resonant frequency; in frequency range
[0, 107] Hz, the dynamic flexibilities of the rail-viaduct increased as the temperature increased; in
frequency range [107, 144] Hz, the ratios of the peaks of the rail-viaduct’s dynamic flexibilities to the
peak under first scenario were 100%, 389.3%, 506.6%, 586.1%, 624.6%. As the temperature increased for
the fastener rubber pad, the peaks of the dynamic flexibilities of the rail-viaduct increased, and the
resonant frequency peaks shifted leftward. Table 4 gives the exact first order resonant and dominant
frequencies for five scenarios. The dominant frequencies change more than the first order resonant
frequencies for the same scenario in comparison to the Case #1.
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Table 4. The first order and dominant resonant frequencies comparison for five scenarios in the dynamic
flexibility amplitude of the rail.

Scenarios
First Order and Dominant Resonant Frequencies

First Order Resonant Frequency Dominant Resonant Frequency

(Hz) ∆(#-#1) (Hz) ∆(#1-#) (%) (Hz) ∆(#-#1) (Hz) ∆(#1-#) (%)

#1 6 0 0 142 0 0

#2 5 1 16.67 130 12 8.45

#3 5 1 16.67 118 24 16.90

#4 5 1 16.67 110 32 22.53

#5 5 1 16.67 107 35 24.65

Figure 8 shows the wheel-rail contact forces under five scenarios. From Figure 8, it can be found
that: (1) below 20 Hz, the temperature dependent Young’s modulus of the fastener rubber pad of the
fastener had little effect to the wheel-rail force; (2) in frequency range [20, 42] Hz, the amplitude of the
wheel-rail force increased sharply as the temperature increased; (3) as the temperature increased, the
peaks of the wheel-rail forces for all five scenarios decreased, and so did the dominant frequencies; the
dominant frequencies for five scenarios were 74, 51, 47, 43 and 42 Hz, respectively; (4) In frequency
range [56, 100] Hz, as the temperature decreases, the wheel-rail forces increased.
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Figures 9 and 10 illustrate the accelerations of the vehicle body and the wheelset, respectively.
Because the responses of the vehicle mainly occupy the frequency range below 20 Hz, this study takes
the frequency range [0, 20] Hz for further investigation. From Figure 9, for all five scenarios, the
vertical accelerations of the vehicle had little difference, which suggests that the temperature dependent
Young’s modulus of the fastener rubber pad had little influence to the vertical responses of the vehicle
on such occasion. In Figure 10, for all five scenarios, regarding to the frequency range below 20 Hz, the
temperature dependent Young’s modulus of the fastener rubber pad had little influence to the vertical
responses of the wheelset; while as temperature increased, the peaks of the vertical accelerations
decreased gradually, and the dominant frequencies also decreased.
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Table 5 illustrates the peak values and the dominant frequencies from the vertical acceleration of
the wheelset for the five scenarios. Both the peak value and the dominant frequency changed greatly
for the five scenarios in comparison to the scenario #1.

Table 5. The peak value and dominant frequency from the vertical acceleration of the wheelset.

Scenarios
Peak Value and Dominant Frequency

Peak Value Dominant Frequency

(kN) ∆(#1-#) (%) (Hz) ∆(#1-#) (%)

#1 20.62 0 74 0

#2 16.79 18.57 51 31.08

#3 14.41 30.12 47 36.49

#4 13.50 34.53 43 41.89

#5 13.35 35.26 42 43.24

Figures 11–14 illustrate the fastener’s force, accelerations of the rail, slab, and viaduct, respectively.
From Figures 11–14, the temperature dependent Young’s modulus of the fastener rubber pad had similar
influence to the acceleration responses of the rail, slab and viaduct. Taking the acceleration response of
the viaduct as example, in frequency range below 30 Hz, the vertical accelerations of the viaduct for all
five scenarios had little difference, which suggests that the temperature dependent Young’s modulus
of the fastener rubber pad had little influence to the acceleration response of the viaduct; for all five
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scenarios, the acceleration peaks of the viaduct decreased gradually as the temperature increased; the
dominant frequencies were 84 Hz, 49 Hz, 44 Hz, 44 Hz, and 44 Hz, respectively, for five scenarios,
which implies that the dominant frequencies decreased to a certain value and tended to be constant as
the temperature increased.
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From the above discussions, when the temperature increased, the stiffness of the fastener rubber
pad decreased more and more slowly, and all the response peaks for carriage, rail, and viaduct
decreased; this is because at high temperature, the stiffness of the fastener rubber pad changes very
little, this further enables the peaks and dominant frequencies of the accelerations decrease and tend to
be constant as the temperature increases; the dominant frequency is mainly affected by the resonant
frequency of the coupled wheel rail system.

5. Comparison of Proposed Method with Conventional Method

In order to validate the feasibility of aforementioned method, it has been compared with previous
investigations [3,26].

5.1. Case I: Three-Span Bridge

A power flow method is applied to analyze the structure-borne noise in the frequency domain
of the three-span bridge with piers [3], where the ANSYS software with 20-node solid elements and
single-node mass elements are used to model the three-span bridge, illustrated in Figure 15. Details
about the model can be found in [3].
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The wheel-rail contact force calculated by the proposed dynamic flexibility method in Figure 16
agrees well with the result determined by power flow method in [3], this suggests the feasibility of the
proposed dynamic flexibility method in analyzing the vibration characteristics of the wheel-rail-viaduct
coupling systems. The main resonant frequency locates at the frequency around 55 Hz.
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5.2. Case II: Multi-Layer Model for Ballastless Track

This section aims to compare the results obtained by the proposed dynamic flexibility method
and the results obtained in [26] with taking a multi-layer model for the vehicle-rail-viaduct shown in
Figure 17. Details about the vehicle-rail-viaduct system can be found in [26].
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Figure 17. Multiple-layer model for the vehicle-rail-viaduct system.

Figure 18 shows the dynamic flexibility amplitude obtained by the dynamic flexibility method,
the dynamic flexibility of the wheel obtains the peak value at 2 Hz, and decreases as the frequency
increases. The dynamic flexibility of the contacting spring keeps constant. These results agree well
with the results obtained in [26].

Figure 19 shows the phase of the dynamic flexibility obtained by the dynamic flexibility method,
the phase of the contacting spring keeps constant, and the phase of the dynamic flexibility of the
rail-viaduct reaches a lower peak at 7 Hz. All these results agree well with the results obtained in [26].
This also implies the feasibility of the proposed method in analyzing the vibration characteristics of the
vehicle-rail-viaduct system.
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6. Concluding Remarks

This study investigates the WJ-7B small resistance fastener rubber pad from the HSR system via
dynamic flexibility method, the mechanical properties of the WJ-7B small resistance fastener rubber
pad are determined via temperature sweep tests, and certain measured parameters are incorporated
with the track irregularity spectrum as excitation at a given location, the dynamic responses of the
vehicle-rail-viaduct coupling system are further identified, the effect of the temperature-dependent
stiffness of the small resistance fastener rubber pad to the vehicle, rail and viaduct are eventually
analyzed, this method has also been compared with conventional investigations, and conclusions are
summarized as follows:

1. The WJ-7B small resistance fastener rubber pad behaves sensitive at low temperatures, while
stable at high temperatures. The WJ-7B small resistance fastener rubber pad has relatively high
stiffness at low temperatures; during the transition period from a glassy state to a rubbery state,
the stiffness of the WJ-7B small resistance fasteners declines sharply; while at relatively high
temperatures, the stiffness of the WJ-7B small resistance fasteners keeps stable, with little change
versus the temperature change.

2. The temperature dependent stiffness of the WJ-7B small resistance fastener rubber pad has little
effect to the vertical vibration responses of the vehicle; as the temperature increases, the dynamic
flexibility of the rail-viaduct increases, the amplitudes increases, but the resonant frequencies
decrease especially when the frequency is higher than 30 Hz.
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3. In terms of the temperature dependent stiffness to wheel rail force and the dynamic responses
of the wheelsets, they share similar characteristics; i.e., in frequency range below 20 Hz, the
temperature dependent stiffness of the WJ-7B small resistance fastener rubber pad has little
influence on the wheel-rail contact force and the accelerations of the wheelsets; the peaks of
the wheel-rail contact force and the accelerations of the wheelsets decrease as the temperature
increases, and the dominant frequencies also decrease as the temperature increases; considering
the fact that the temperature dependent stiffness of the WJ-7B fastener rubber pad enables the
resonant frequencies of the coupled wheel-rail to decrease as the temperature increases, the peak
of the acceleration of the viaduct also decreases, and the dominant frequencies shift leftward.

4. In terms of further investigation, the extension of such work to the real engineering tests would
be desirable to optimize the proposed methodology. As to engineering application, in the low
temperature areas and sudden temperature changing areas, the stiffness of the WJ-7B fastener
rubber pad changes sharply, which further affects the vehicle-rail-viaduct coupling analysis. Such
an effect has to be considered in certain areas in the engineering projects.
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