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Abstract: Dynamic vision sensor (DVS) is a new type of image sensor, which has application prospects
in the fields of automobiles and robots. Dynamic vision sensors are very different from traditional
image sensors in terms of pixel principle and output data. Background activity (BA) in the data
will affect image quality, but there is currently no unified indicator to evaluate the image quality
of event streams. This paper proposes a method to eliminate background activity, and proposes
a method and performance index for evaluating filter performance: noise in real (NIR) and real
in noise (RIN). The lower the value, the better the filter. This evaluation method does not require
fixed pattern generation equipment, and can also evaluate filter performance using natural images.
Through comparative experiments of the three filters, the comprehensive performance of the method
in this paper is optimal. This method reduces the bandwidth required for DVS data transmission,
reduces the computational cost of target extraction, and provides the possibility for the application of
DVS in more fields.
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1. Introduction

The rapid development of imaging sensors has caused a geometric increase in the image-data
quantity, rendering it difficult for the current algorithms and computing power to process such massive
image data rapidly. Dynamic vision sensor (DVS) can solve the problem of large image-data quantities,
from a hardware perspective [1–3]. Dynamic vision sensors are biologically inspired event-based
image sensors. In the case of fast moving targets and large dynamic range, DVS can achieve low power
visual sensing, but it is a challenge to traditional detectors [4].

The pixel of DVS detects the change of light intensity. When the change reaches a certain
threshold, the imaging system outputs the event coordinate, time stamp, event polarity or gray level
information [5]. The output of events is asynchronous, rather than the synchronous output of traditional
sensors in frame. Such characteristics make DVS more advantageous in areas such as moving target
detection, simultaneous localization and mapping (SLAM), and drones [6–13]. At present, commercial
companies have used them for automotive and other fields [14,15].

However, due to thermal noise and junction leakage current, there will be output even if there
is no change in light intensity [16], called background activity (BA). It can affect the image quality,
waste the communication bandwidth, and consume unnecessary computing power. Therefore, a DVS
denoising algorithm is necessary.
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Background activity differs from real events in that there is a higher spatiotemporal correlation
between real events. In spatiotemporal images, the images of real events are denser, and BA is sparser.
This difference can be used to denoise by judging the space-time density of events; the quality of the
image can also be quantified by this property.

The imaging system used in this work is CeleX-IV from CelePixel Technology Co., Ltd. [3].
The resolution of the sensor is 768 × 640, an Opal Kelly XEM6310 control board drives sensors and
outputs data, the maximum output rate is 200Meps, and each pixel occupies 18 × 18 µm2 with a 9% fill
factor. Unlike dynamic and active-pixel vision sensor (DAVIS), the event output by this sensor does
not contain polarity information, but contains light intensity information of the event [17].

In this study, we present a method for reducing the noise in the event stream of a DVS, based on
the event density in the spatiotemporal neighborhood. Our algorithm derives inspiration from the
spatiotemporal principle and event-based optical flow [18,19]. This method has two steps. The first
step filters out random noise and the second step filters out hot pixels. At the same time, a method
for quantifying image quality is proposed based on the spatiotemporal correlation: model a piece of
event data, use a two-dimensional Gaussian kernel to convolve with each event, determine the real
event probability of the noise, and evaluate the amount of noise. This method can quantify the quality
of natural images and filter performance. There is no need to design fixed image stimulation in [4].
This method can evaluate the filtering effect and image quality as long as there is an image, and it is
easy to implement and reproduce.

The remainder of this paper is organized as follows: Section 2 reviews the related work on
space-time correlation. Section 3 introduces the classification of noise, the concepts in the algorithm,
and the design of the filter. Section 4 introduces methods for quantifying and evaluating image quality.
Section 5 designs experiments to compare the denoising results of different filters. Section 6 discusses
the experimental results and Section 7 presents the conclusions.

2. Materials and Methods

The background activity is caused by many factors such as charge injection, the leakage of the
transistor section of the reset switch, and thermal noise. The location of the background activity
is random and less frequent than real events. In addition, similar to the hot pixel of traditional
image sensors, a similar situation exists in DVS. Because the pixel cannot be reset properly, the pixel
continuously outputs events [20]. In the image, two kinds of noise exist at the same time. As shown in
Figure 1, a filter is required to filter out these two kinds of events that should not occur.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 18 

Background activity differs from real events in that there is a higher spatiotemporal correlation 
between real events. In spatiotemporal images, the images of real events are denser, and BA is 
sparser. This difference can be used to denoise by judging the space-time density of events; the quality 
of the image can also be quantified by this property. 

The imaging system used in this work is CeleX-IV from CelePixel Technology Co., Ltd [3]. The 
resolution of the sensor is 768 × 640, an Opal Kelly XEM6310 control board drives sensors and outputs 
data, the maximum output rate is 200Meps, and each pixel occupies 18 × 18 μm2 with a 9% fill factor. 
Unlike dynamic and active-pixel vision sensor (DAVIS), the event output by this sensor does not 
contain polarity information, but contains light intensity information of the event [17]. 

In this study, we present a method for reducing the noise in the event stream of a DVS, based 
on the event density in the spatiotemporal neighborhood. Our algorithm derives inspiration from the 
spatiotemporal principle and event-based optical flow [18,19]. This method has two steps. The first 
step filters out random noise and the second step filters out hot pixels. At the same time, a method 
for quantifying image quality is proposed based on the spatiotemporal correlation: model a piece of 
event data, use a two-dimensional Gaussian kernel to convolve with each event, determine the real 
event probability of the noise, and evaluate the amount of noise. This method can quantify the quality 
of natural images and filter performance. There is no need to design fixed image stimulation in [4]. 
This method can evaluate the filtering effect and image quality as long as there is an image, and it is 
easy to implement and reproduce. 

The remainder of this paper is organized as follows: Section 2 reviews the related work on space-
time correlation. Section 3 introduces the classification of noise, the concepts in the algorithm, and 
the design of the filter. Section 4 introduces methods for quantifying and evaluating image quality. 
Section 5 designs experiments to compare the denoising results of different filters. Section 6 discusses 
the experimental results and Section 7 presents the conclusions. 

2. Materials and Methods  

The background activity is caused by many factors such as charge injection, the leakage of the 
transistor section of the reset switch, and thermal noise. The location of the background activity is 
random and less frequent than real events. In addition, similar to the hot pixel of traditional image 
sensors, a similar situation exists in DVS. Because the pixel cannot be reset properly, the pixel 
continuously outputs events [20]. In the image, two kinds of noise exist at the same time. As shown 
in Figure 1, a filter is required to filter out these two kinds of events that should not occur. 

 Figure 1. This is the data of a moving car. The sensor size is 768 × 640. There are real events and a lot
of noise in the data. The color indicates the gray information of the event.



Appl. Sci. 2020, 10, 2024 3 of 18

Khodamoradi’s team has confirmed through testing that the BA events from the DVS can be
assumed to be drawn from a Poisson distribution [21]. Calculating the probability that a single pixel
will generate BA numbers within a finite time interval can be performed by the Poisson process:

P
{
N(t) = n} =

(λt)n

n!
e−λt. (1)

In Equation (1), t is the time interval, n is the number of BAs reached in the time interval, and λ is
the average rate of each pixel BA.

It was found in previous research that the difference between BA and real events is that BA lacks
correlation with other BAs in its spatiotemporal neighborhood. The spatiotemporal correlation of two
events e1 (x1, y1, t1), e2 (x2, y2, t2) can be expressed as:

spatiotemporal correlation⇔


|x1 − x2| ≤ dN∣∣∣y1 − y2

∣∣∣ ≤ dN
|t1 − t2| ≤ dt

. (2)

In Equation (2), dN is the spatial neighborhood size, and dt is the time neighborhood size.
Based on this characteristic, many filtering methods are designed, and several related works are
introduced below.

Delbruck proposed the background activity filter in [22]. This filter will filter out events that have
no events in the surrounding 8 pixels in the past time T. Although BA is sparse compared to real events,
there is a possibility for two BAs to be close enough in spatiotemporal neighborhood; in this case,
the filter passes the latter BA.

Liu’s filter groups pixels by subsampling [18]; the subsampling factor is S, so S2 pixels are a group.
The filter determines the time correlation of events in this group, that is, determines whether the time
difference between events is less than T; if, yes, passes, otherwise filter.

Khodamoradi’s filter uses a specific storage method to store the timestamps of events; two 32-bit
storage units are used in every row and column to store the coordinates, polarity, and timestamp of the
latest event. For example, event e0 (x0, y0, t0, p0), y0, p0, t0 are stored in the storage unit of x0, x0, p0,
t0 are stored in the storage unit of y0. This way saves storage space. However, this storage method
can only recover events of up to 6 pixels, and more importantly, these 6 pixels are not necessarily
neighboring pixels of the newly arrived event pixels. For example, the event sequence is e1 (x, y, t1,
p), e2 (x+2, y, t2, p), e3 (x, y+2, t3, p), e4 (x, y, t4, p), where t1 <t2 <t3 <t4, and t4 – t1 < T. In this case,
according to the coordinates of e4, only the addresses of e2 and e3 can be recovered; e4 is not adjacent
to them and will be filtered. However, e4 and e1 have spatiotemporal correlation and should not be
filtered. So this will lose more real events.

In the study of filter performance evaluation, Daniel Czech proposed a method of repeated
recording using a fixed pattern to determine whether the event is noise or a real event, thereby
evaluating the performance of the filter [4]. In this method, the events generated by each pixel are
represented by a pulse function:

SF(x, y, p) = Σiδ(t− t0) 0 < i < n, xi = x, yi = y, pi = p. (3)

For each event, the convolution of the same-polarity event sequence with the one-dimensional
Gaussian kernel is used to estimate the event probability of each point in the record, and then the
average signal probability and total signal probability of the event stream before and after filtering are
calculated as metrics to evaluate the filter performance. Compared with the traditional image-to-noise
ratio method for evaluating filters, due to the requirements of a fixed image generator and other
hardware environments, such an evaluation method has poor propagation. There is currently a need
for a metric that can use natural images to evaluate event stream quality and filter performance.
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3. Algorithm

3.1. Event Density and Event-Density Matrix

Before introducing the algorithm, we first define two concepts: the event density matrix and event
density. The output event of a DVS can be represented by three parameters, e(x, y, t), which include the
x and y coordinates of the image plane, where the event is located, and the timestamp, respectively.
The timestamp is added to the output by the field programmable gate array (FPGA) driving the DVS.
According to the spatiotemporal correlation principle, real events are related to events adjacent to
each other in time and space; hence, a spatiotemporal neighborhood is set for each event, as shown in
Figure 2. The red point indicates the newly arrived event at t1, in the center of a spatial neighborhood
sized L× L; L is odd, the time neighborhood is (t1 − ∆t, t1), and the spatiotemporal neighborhood is
expressed as ΩL

∆t. The L× L pixel output events in ΩL
∆t are respectively accumulated, and the result is

placed in the corresponding position in an L× L sized matrix, which is the density matrix, D; the matrix
element, Di, j, is expressed as Equation (4),

Di, j =

t0∑
t=t0−∆t

γ(x0 −
L− 1

2
− 1 + i, y0 −

L− 1
2
− 1 + j, t) 1 ≤ i, j ≤ L, (4)

where x0, y0 are the spatial coordinates of the newly arrived event. γ(x, y, t) is a binary function:

γ(x, y, t) =
{

1 i f there is an event e(x, y, t)
0 otherwise

. (5)

After obtaining the density matrix, define the event density, d, as the L1 norm of the density
matrix:

d = ‖D‖1 (6)

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18 

3. Algorithm 

3.1. Event Density and Event-Density Matrix 

Before introducing the algorithm, we first define two concepts: the event density matrix and 
event density. The output event of a DVS can be represented by three parameters, e(x, y, t), which 
include the x and y coordinates of the image plane, where the event is located, and the timestamp, 
respectively. The timestamp is added to the output by the field programmable gate array (FPGA) 
driving the DVS. According to the spatiotemporal correlation principle, real events are related to 
events adjacent to each other in time and space; hence, a spatiotemporal neighborhood is set for each 
event, as shown in Figure 2. The red point indicates the newly arrived event at 1t , in the center of a 

spatial neighborhood sized L L× ; L  is odd, the time neighborhood is 1 1( , )t t t−Δ , and the 

spatiotemporal neighborhood is expressed as L
tΔΩ . The L L×  pixel output events in L

tΔΩ  are 
respectively accumulated, and the result is placed in the corresponding position in an L L×  sized 
matrix, which is the density matrix, D ; the matrix element, ,i jD , is expressed as Equation (4), 

0

0

, 0 0
1 1( 1 , 1 , ) ,

2 2
1

t

i j
t t t

L LD x i y j t i j Lγ
= −Δ

− −= − − + − − + ≤ ≤ , (4)

where 0 0,x y  are the spatial coordinates of the newly arrived event. ( , , )x y tγ  is a binary function: 

1 ( , , )
( , , )

0
if there is an event e x y t

x y t
otherwise

γ 
= 


. (5)

After obtaining the density matrix, define the event density, d , as the L1 norm of the density 
matrix: 

1d D=  (6)

 

 

Figure 2. Schematic of the spatiotemporal neighborhood. The red-point indicates a newly arrived 
event at t1, the surrounding yellow part indicates the spatial neighborhood of the new-arrival event, 
and delta, t, which is the time period before t1 is the time neighborhood of the event. The time 
neighborhood and spatial neighborhood form a spatiotemporal neighborhood. 

3.2. Denoising Algorithm 

Because the pixel structure and readout circuit of DVS are very different from traditional image 
sensors (CCD, CMOS), the output data form is completely different. The data of the frame image can 
be expressed mathematically as a matrix with the same size as the sensor pixels. The DVS event 
stream is asynchronous output, that is, when the pixels of the sensor are activated, the events 

Figure 2. Schematic of the spatiotemporal neighborhood. The red-point indicates a newly arrived event
at t1, the surrounding yellow part indicates the spatial neighborhood of the new-arrival event, and
delta, t, which is the time period before t1 is the time neighborhood of the event. The time neighborhood
and spatial neighborhood form a spatiotemporal neighborhood.

3.2. Denoising Algorithm

Because the pixel structure and readout circuit of DVS are very different from traditional image
sensors (CCD, CMOS), the output data form is completely different. The data of the frame image can
be expressed mathematically as a matrix with the same size as the sensor pixels. The DVS event stream
is asynchronous output, that is, when the pixels of the sensor are activated, the events generated by
these pixels are output, and if they are not activated, they are not output. The data generated in this
way is sparse and cannot form a matrix like a frame image.
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In DVS, events are delivered in pulses, so, events can be expressed as pulse functions
mathematically:

e0(x0, y0, t0)⇒ δ(x− x0, y− y0, t− t0). (7)

The DVS event steam can be expressed as the accumulation of event pulses, that is:

ES(x, y, t) =
N∑

i=1

δ(x− xi, y− yi, t− ti), (8)

where N is the number of events contained in the event stream and δ(x, y, t) is a pulse function.
The noise model Equation (1) shows that the more BAs generated by a non-hot pixel, the lower

the probability within a fixed time interval. However, real events are generated by the movement of
objects or the change in light intensity. The activated pixels are generally adjacent. According to the
handshake circuit structure, it can be known that the event timestamps in the same row are the same,
and the time difference between events in adjacent rows is in nanoseconds. Therefore, in a certain
space-time, the number of BAs is less than a certain threshold with a high probability, and the number
of events generated by the real target will be greater than this threshold, which can be expressed as:

y

xi,yi,ti∈ΩL
∆t

δ(x− xi, y− yi, t− ti)dxdydt
{
< Ψ i f there are BAs in ΩL

∆t
≥ Ψ i f there are Objects in ΩL

∆t
, (9)

where Ψ is the threshold of the number of events. The threshold is related to the threshold of the ON
or OFF comparator of the DVS and the size of target.

For the noise generated by the hot pixel, if there are BAs around the hot pixel, filtering based on
the criteria supported by the events of the surrounding pixels will be affected. Therefore, the BA needs
to be filtered out before the hot pixel is processed.

This algorithm is divided into two steps: the first step involves coarse filtering, where the random
noise is filtered out, and the second step involves fine filtering, where the hot pixel is filtered. As the
random-noise event density is lesser than that of the real event, the threshold of the event density is set
to determine whether the event is noise. The event density, d, is first calculated in its spatiotemporal
neighborhood, ΩL

∆t, for each input event, e (x, y, t). If the event density is less than the threshold, Ψ,
the event is random noise and is filtered out; if it is greater, the event is stored in the coarse filtering
result, and enters fine filtering.

As a hot pixel appears at high frequency in a fixed position, it is difficult to filter using the
event-density threshold alone; hence, the result of the coarse filtering is fine filtered. In the second step
of filtering, the density matrix, D, is calculated for the coarse filtering result event in the spatiotemporal
neighborhood, Ω3

∆t, of the new event. The flicker noise decision value, R, is then calculated:

R = ‖〈P, D〉‖1, (10)

where

P =


1 1 1
1 0 1
1 1 1

 (11)

and 〈•〉 is the inner product. After coarse filtering, there are other real events in the small spatiotemporal
neighborhood of the real event, but there is no other noise around the flicker noise, so the above
calculation is performed on the density matrix. If R = 0, it is noise, otherwise it is retained as the result
of the final noise reduction.
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4. Evaluation Method

It is difficult to obtain target information from a single event in the event image of the DVS, and it
is difficult to distinguish whether it is a real event or noise after imaging. When the trajectory of the
target is known, the time correlation of events generated by a single pixel can be counted through
repeated recording. The higher the correlation, the higher the probability of real events, and the
lower the probability of noise. However, in natural scenes, the target’s motion information cannot be
obtained, and relying on this method of judging image quality is not feasible.

According to the spatiotemporal correlation of events, the average time and space between real
events is smaller than that of the noise. A single event contains very little information, and the
probability that an event is a signal event or noise requires a period of event flow to calculate. First
calculate the spatial distance between the event and other events, reduce the dimension of the parameter,
and use the event e0(x0, y0, t0,) as the “center” to express the event sequence, that is

ES(d, t) =
N∑

i=1

δ(d− ∆di, t− ∆ti), (12)

where δ(d, t) is the pulse function, N is the number of events,

∆di = [(xi − x0) + (yi − y0)]
1
2 , and (13)

∆ti =
∣∣∣(ti − t0)

∣∣∣. (14)

Then use a two-dimensional Gaussian kernel

G(d, t) =
1

2πσ1σ2
e
−

1
2 (

d2

σ2
1
+ t2

σ2
2
)

(15)

to convolve with the above event sequence to get the real event probability of the event

Pe0 = ES(d, t) ⊗G(d, t), (16)

namely

Pe0 =
N∑

i=1

1
2πσ1σ2

e
−

1
2 (

(∆di)
2

σ2
1

+
(∆ti)

2

σ2
2

)
. (17)

Among them, σ1 and σ2 are the standard deviations of the spatial distance d and the time
distance t, respectively, which are determined by the resolution of the DVS and the time interval of
the event stream. The location and time of the event are independent of each other, so ρ = 0 in the
normal distribution.

It can be seen from the formula that if there is only one hot pixel noise in the image, then the real
event probability of these noises will be abnormally high. In order to eliminate this effect, the real
event probability when d = 0 is set artificially as 0, namely

Pe0 =


N∑

i=1

1
2πσ1σ2

e
−

1
2 (

(∆di)
2

σ2
1

+
(∆ti)

2

σ2
2

)
d , 0

0 d = 0

. (18)

For the evaluation of image quality, it is necessary to calculate the number of events with low
real events probability in the image. The criterion for low real events probability is less than or equal
to BAs’ average real events probability. BA will change with factors such as light intensity, ON/OFF
threshold, sensor temperature, etc. Therefore, the selection of BA is performed by manually opening
the window in the original event stream, that is, selecting some pixels in the area without target
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movement, counting the real event probability of each BA, and then calculating the average real event
probability of the BA, PARE. Comparing the passed events with it, the fewer events less than the BAs’
average real event probability, namely noise in real (NIR), the less residual noise after filtering. NIR is
calculated from Equation (19), namely

NIR =
∑

δ(x− xi, y− yi, t− ti) ei(xi, yi, ti) ∈ ΛPE and Pei ≤ PARE, (19)

where ΛPE is a collection of passed events in the period. Comparing the filtered noise events with
it, the fewer events higher than the BA average true event probability, namely real in noise (RIN),
the fewer the filtered real events. RIN is calculated from Equation (20), namely

RIN =
∑

δ(x− xi, y− yi, t− ti) ei(xi, yi, ti) ∈ ΛFE and Pei > PARE, (20)

where ΛFE is a collection of filtered events in the period.

5. Experiment and Evaluation

In this section, we will use the data collected by DVS to compare the performance of the filters.
The filters to be compared are Delbruck’s filter, Liu’s filter, and Khodamoradi’s filter. All algorithms
were implemented using MATLAB. The data used was collected by the CeleX-IV imaging system.
The imaging target was a swaying ball in natural light.

In the experiment, the parameters used in the method of this paper are L = 5, dt = 5 ms, and the
threshold is 3. In the control experiment, setup was done according to the frequency of BA in
CeleX-IV and the time window used by Delbruck’s filter. Khodamoradi’s filter is set to 1 ms, and the
downsampling factors of Liu’s filter are 1, 2, namely time stamps from 2 × 2 and 4 × 4 pixels are stored
in a cell respectively, and the time window is 1 ms.

The event stream is sorted in chronological order, and the events are sent to the filter sequentially.
After filtering, the passed events and filtered events are saved separately to evaluate the performance of
the filter, and they are judged by the amount of noise in the passed events and the number of real events
in the filtered events in the same time period. The lower the values, the better the filter performance.

The spatiotemporal image of the original event stream is shown in the Figure 3. It can be seen
from the figure that the BA wraps the real event in it, and the average BA frequency is calculated by
sampling multiple spatiotemporal positions in the original event stream. There is no real event in the
spatiotemporal positions mentioned above, only noise, which is called a noise block. The sampling
position and frequency statistics are shown in the Figure 4. The dotted line in the frequency diagram is
the average value, which is 0.52 Hz.
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The filtering results are shown in the Figures 5–9, where (a) of each graph is the result of denoising
and (b) is the filtered noise. It can be seen from the figures that several methods can filter most of the
noise, but in the space-time below the pendulum, the result of the comparison method still has some
noise in it. This is because the space-time distance between BA is too small, so it was passed. However,
the filter is too strict, the real events will be filtered out incorrectly, and the traces of the pendulum ball
in the filtered noise will be clearer. The clearest is the result of the subsample factor of 2 in Liu’s filter.
The factor is smaller, and the real events of the target are stored in more cells. They cannot support
each other, so they are filtered out.
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Statistics for the entire event stream. The event stream is divided into 288 segments with a time
interval of 10 ms and start time is 3553 ms. The images in Figure 10 are two-dimensional binary images
of the original event stream and five results displayed at 3923 ms, and two-dimensional binary images
of the filtered noise at that moment. The binary image is obtained by projecting events in the time
period of 10 ms into elements at corresponding positions of a matrix of the same size as the focal plane.
It can be seen from Figure 11 that the method proposed in this paper has no noise in the area outside
the target projection and is denser than the denoising result of Liu’s filter. In the binary image of noise,
the outline of the target is clearer than with Delbruck’s filter, which shows that this method filters
more real events than Delbruck’s filter, but compared with the other two filters, the real events are
better retained.
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Figure 11. Binary images of the raw image and the events filtered by the five filters at 3923 ms.

The σ1 and σ2 parameters in the evaluation model are set according to the chip resolution and
time interval size. If they are set too small, the real event probability of real events will also approach
0. If they are set too large, then the real events probability of events at the edge of space-time will
be lower than the events in the center of space-time. The subfigures in Figure 12 are heat maps of
evaluation models with different σ1 and σ2. The abscissa is the value of d and the ordinate is the value
of t. The color corresponds to the weight of the evaluation model. The dark color indicates a larger
value, and the light color indicates a smaller value. The heat map shows the change trend of the weight
of the evaluation model in time and space by color. As can be seen from Figure 12, when σ1 and σ2 are
both 2, the events at the edge of time and space will not be affected. As a result, the evaluation model
parameters are determined accordingly.
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Calculate NIR of results and RIN of the filtered noise at 3923 ms of each filter respectively, as shown
in Figure 13. Both σ1 and σ2 are 2, they are used in the Gaussian kernel, and the average real event
probability of the noise at this moment is 0.0007768.
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The average real event probability of noise over 288 time periods is 0.001. The Figures 14 and 15
show the comparison of noise in real and real in noise of each filter. It can be seen that the method in
this paper is the best of the four methods from the figure of noise in real. This is because the noise
determination in this method is based on the density of events, using multiple events to support the
identified event to get more accurate results. From the comparison chart of real in noise, it is seen
that the value of Delbruck’s filter is the lowest. The method of this article and Khodemoradi’s filter’s
indicators are intertwined. Due to insufficient support events for the latest event judgment in the
method described in this article, real events are filtered out, and Khodemoradi’s filter caused similar
results because it failed to store enough events to support the judgment. The periodic fluctuations
in the two figures are due to the periodic movement of the target, the amount of data generated in
different time periods is different. The peak in noise in real and the valley in real in noise correspond
to the moment when the ball is at the highest point and the speed is the lowest. There are few real
events at this moment and more noise, so periodic peaks and valleys appear.
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6. Discussion

In this section, the results of these experiments are discussed. It can be seen from the experiments
that the method in this paper has good denoising performance, especially the NIR in the denoising
results is the lowest among several methods, and the RIN in noise is also ranked second. The advantage
of this method on NIR is that the determination of noise is no longer supported by a single event.
The spatiotemporal correlation theory determines whether an event is noise or not depending only on
whether the eight pixels around the event have an event within a specified time. However, such a
standard will cause noise to support the noise and pass when the frequency of noise occurrence is high.
In the method of this paper, the determination of noise is based on the density of events in space and
time. The determination of noise requires multiple events in a larger range, so the number of incorrect
noise passes is reduced.

However, such a judgment method also increases the RIN in the filtered events. Because the
projection of the target in the focal plane moves to a new position, and the event density of the pixels at
that position does not reach the threshold, the real event will be filtered out by mistake, so the outline
of the pendulum can be seen in the experimental noise binary image. The RIN of Delbruck’s filter is
optimal also because the events that pass through need only a neighborhood event support, which can
protect the target contour events when the target is moving.

It can be seen from the experimental results that the denoising method in this paper can well
remove the noise generated during the DVS imaging process. To judge whether an event is noise, only
the generated event is required, and more real events are retained. It plays a good supporting role
in DVS used in autonomous driving, indoor monitoring, SLAM and other scenarios; it reduces the
amount of transmitted data and makes it easier for back-end algorithms to extract target information.
In the future, the algorithm’s operation consumption and memory usage will be further optimized.

7. Conclusions

In this paper, we propose a method for denoising the DVS output event stream based on event
density and a method for evaluating filter performance without the need for a fixed pattern generator.
It can be concluded that this method is more effective than other methods in filtering BA in the event
stream. The average noise amount in the denoising result based on event density is less than half of
the result of other methods, and the number of filtered real events is also relatively lower. This method
reduces the bandwidth required for DVS data transmission, reduces the computational cost of target
extraction, and provides the possibility for the application of DVS in more fields.
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