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Abstract: Artificial Intelligence (AI) has been applied to solve various challenges of real-world
problems in recent years. However, the emergence of new AI technologies has brought several
problems, especially with regard to communication efficiency, security threats and privacy violations.
Towards this end, Federated Learning (FL) has received widespread attention due to its ability
to facilitate the collaborative training of local learning models without compromising the privacy
of data. However, recent studies have shown that FL still consumes considerable amounts of
communication resources. These communication resources are vital for updating the learning models.
In addition, the privacy of data could still be compromised once sharing the parameters of the local
learning models in order to update the global model. Towards this end, we propose a new approach,
namely, Federated Optimisation (FedOpt) in order to promote communication efficiency and privacy
preservation in FL. In order to implement FedOpt, we design a novel compression algorithm, namely,
Sparse Compression Algorithm (SCA) for efficient communication, and then integrate the additively
homomorphic encryption with differential privacy to prevent data from being leaked. Thus, the
proposed FedOpt smoothly trade-offs communication efficiency and privacy preservation in order
to adopt the learning task. The experimental results demonstrate that FedOpt outperforms the
state-of-the-art FL approaches. In particular, we consider three different evaluation criteria; model
accuracy, communication efficiency and computation overhead. Then, we compare the proposed
FedOpt with the baseline configurations and the state-of-the-art approaches, i.e., Federated Averaging
(FedAvg) and the paillier-encryption based privacy-preserving deep learning (PPDL) on all these
three evaluation criteria. The experimental results show that FedOpt is able to converge within fewer
training epochs and a smaller privacy budget.

Keywords: Federated Learning; Artificial Intelligence; privacy preserving; communication efficiency

1. Introduction

Artificial Intelligence (AI) has been employed in a plethora of application fields in recent years [1].
In this context, as a notable branch of AI, Deep Learning (DL) has been broadly used to empower
plenty of data-driven real-world applications, such as facial recognition, autonomous driving and
smart grid systems [2–4]. These DL-based applications usually demand the gathering of large
quantities of data from various IoT edge-devices for training high-quality learning models. However,
the traditionally centralised DL models require the local edge-devices to upload their private data
to a central cloud server, which may cause serious privacy threats [5]. These privacy threats can
be mitigated through distributing the local training among multiple edge-devices, which has led
to the emergence of Federated Learning (FL) [6]. Federated Learning (FL) resolves this problem
by allowing the edge-devices to collaboratively train a DL model on their individually gathered
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data, without revealing their private-sensitive data to a centralised server. This privacy-preserving
collaborative learning technique is achieved by following three simple steps as illustrated in Figure 1.
In the first step, all the users download the global model and the learning parameters from the cloud
server. In the second step, the users train the local learning models based on their local data using
Distributed Stochastic Gradient Descent (DSGD) [7]. Finally, in the third step, all the users upload
the parameters of their locally trained models to the server, where they are aggregated to generate
a new global model. These three steps are continuously repeated until the desired convergence
level is achieved. However, despite this efficient training scheme, a major issue in FL is the massive
communication overhead that generally evolves from the model updates [8]. In specific, following the
above described FL protocol, each user has to communicate its full gradient update during each epoch.
This update is normally the same size as the fully trained model, where the trained model could be
in the size of gigabytes based on the DL architecture and its millions of parameters [9]. This size can
easily reach petabytes when the training is conducted on large-scale datasets that require thousands of
training epochs. As a result, communication cost with the limited bandwidth makes FL completely
infeasible and unproductive. In addition, FL still faces various privacy concerns as shown in recent
studies [10]. For example, a malicious user in a network of shared parameters can access the personal
images of users from surveillance systems through various attacks. In a different context, several
adversaries can similarly violate the emergency responses of autonomous vehicles or change the health
records of several patients from their wearable devices [11]. These threats not only result in serious
privacy leakages but also bring in unpredictable life losses. As a result, privacy preservation in FL has
become an important factor that spurs the further advancements and developments of efficient FL
approaches. To the best of our knowledge, none of the existing approaches supports communication
efficiency and privacy preservation in FL at the same time [12].

Figure 1. Federated learning process in one communication round of distributed stochastic gradient
descent (DSGD): (a) Users downloads the parameters and synchronise with the cloud server. (b) Users
compute the local model based on individual’s data in a distributed manner. (c) Finally, users upload
the computed local models to the cloud server, where they are averaged to generate a global model.

To this end, in this paper, we propose a novel approach, namely, Federated Optimisation (FedOpt),
based on Distributed Stochastic Gradient Descent (DSGD) optimisation. The major contributions in
this approach are summarised as follows:

1. FedOpt utilises the novel Sparse Compression Algorithm (SCA) in order to reduce the
communication overhead. In particular, SCA extends the existing top-k gradient compression
technique and enables downstream compression with a novel mechanism.

2. FedOpt adopts a lightweight homomorphic encryption for efficient and secure aggregation of the
gradients. In particular, FedOpt provides a concrete abstract, where additively homomorphic
encryption is completely utilised in order to eliminate the key-switching operation and to increase
the space for plain-text.

3. To further ensure the privacy of local users from the collusion of adversaries, FedOpt uses a
differential-privacy scheme based on Laplace mechanism in order to keep the originality of
local gradients.
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4. FedOpt tolerates user drops during the training process with negligible amounts of accuracy
losses. Furthermore, the performance evaluation demonstrates the training accuracy of FedOpt
in real-life scenarios as well as its efficient communication and low computation overhead.

The remainder of this paper is organised as follows: The system model and the problem statement
are presented in Section 2. Federated learning and the primary techniques of cryptography are briefly
explained in Section 3. Afterwards, we introduce FedOpt in Section 4 and conduct the experimental
evaluations in Section 5. We discuss the related work and a comprehensive comparison to the exiting
approaches in Section 6. Finally, Section 7 concludes the paper with future directions.

2. System Model and Problem Statement

Below, we first describe the system model and then define the problem statement of the
proposed approach.

2.1. System Model

In the proposed FL environment, two main entities constitute the basic parts of the whole
system: users and the cloud server. The major objective of the proposed approach is to minimise
the communication cost and to secure the privacy of individual users from the honest-but-curious
adversaries during the training process. In particular, the cloud server honestly executes all the data
aggregation process but it is also curious to infer private data from the inputs of users. Therefore,
the proposed approach is designed in a way that it can prevent the collusion between the users and
the cloud server. For this, we demand that the cloud server receives only the encrypted aggregated
result from the local gradients in order to avoid the harmful use of private information. To this
regard, in this model, we assume that all the users agree on the same leaning task with the same
objectives and parameters as shown in Figure 2. In specific, these users are required to compute the
local gradients from their private training datasets and then upload it to the cloud server. Afterwards,
these users receive the aggregated global gradient from the cloud server. To ensure privacy, each
local gradient is encrypted before being uploaded to the cloud server. Meanwhile, the cloud server
is assigned the primary task, that is to compute the global gradient based-on the encrypted local
gradients. After computing the global gradient, the cloud server broadcasts this global gradient to all
the users, and then the training begins on the proposed model. Finally, the proposed approach works
by following this iterative collaboration between the cloud server and the users.

Figure 2. System Model.

2.2. Problem Statement

As mentioned in Section 1, massive communication overhead and malicious users can make
the FL infeasible. In this context, we consider the typical environment of FL, where local users
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collaboratively learn a global parametric neural network. Thus, we propose an approach that use
data compression technique for efficient communication and integrates additively homomorphic
encryption with differential privacy to prevent data from being compromised. The major objective in
this approach is to obtain a parameter vector ν in Deep Neural Network (DNN) that is required in
order to minimise the expected loss $:

`(ν) = ∑
Di∈D

∑
(x, y)∈Di

$( fq(x, ν), y) (1)

As described in the system model, the users learn their local models on their personal datasets and
then upload their gradients which are calculated using this loss function to the cloud server. Meanwhile,
$(x, y) denotes the loss function and each user q computes the local gradient using gradient function
fq on its private dataset Di. In order to further ensure the privacy, we apply differential privacy with
additively homomorphic encryption on the uploaded gradients during the training process to achieve
the highest accuracy.

3. Preliminaries

In this section, we first briefly explain FL and then discuss the primary cryptographic techniques
that serve as a foundation of the proposed FedOpt.

3.1. Federated Learning

Federated Learning (FL) is an emerging privacy-protecting and decentralised learning scheme
that enables edge-devices (local users) to learn a shared global model without disclosing their personal
and private data to the cloud server. In FL, user download a shared global model from the cloud
server, train this global model over individuals’ local data, and then send the updated gradients back
to the cloud server. Afterwards, the cloud server aggregates these updated gradients in order to
compute a new global model. The following are some unique features of FL compared to traditional
centralised learning.

1. The learned model is shared between the users and the cloud server. However, the training data
which is distributed on each user is not available to the cloud server.

2. Instead of the cloud server, the training of learning model occurs on each user. The cloud server
receives the local gradients and aggregates these gradients to obtain a global gradient and then
send this global gradient back to all the users.

In this paper, we consider the standard settings of FL, where large-scale of local users train the
global learning model in a distributed and collaborative manner.

3.2. Additively Homomorphic Encryption

The homomorphic encryption performs a set of mathematical computations on plain-text and
derives a new cipher-text which presumably same as the plain text after decryption. Meanwhile,
additively homomorphic encryption performs the additivity on multiple cipher-texts and decrypts
the encrypted result at the same time [13]. Therefore, local users can send this encrypted data for
processing on the cloud server without revealing the private information. For instance, consider two
plain-texts ξ1, ξ2, such that

Eδ(ξ1 + ξ2) = τ1 ⊕ τ2

Eδ(α× ξ1) = α⊗ τ2
(2)

where Eδ represents the encrypted-secret text, τ1, τ2 denotes the cipher-text of ξ1, ξ2, respectively, and α

is a constant for any encrypted text.
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3.3. Differential Privacy

Differential privacy is a privacy preserving technique that ensures the overall statistics of a dataset
will remain same, regardless of change in a single tuple. For example, any algorithm Λ satisfies
ε-differential privacy (ε-DP), if it satisfies the following:

P[Λ(D) ∈ T] ≤ eεP[Λ(D) ∈ T] (3)

where P indicates privacy, D and D represent any two neighbouring datasets that have only a
single different element, T denotes a set of tuples, and ε represents the privacy budget. Whereas,
the privacy budget ε is an important factor in differential privacy which ranges from 0 (minimum-ε) to
1 (maximum-ε) [14].

3.4. Laplace Mechanism

Any gradient function fq satisfies the ε-DP, if it satisfies the following:

f ′q(D) = fq(D) + Lap(
∆ fq

ε
) (4)

where Lap(∆ fq
ε ) is generated from Laplace distribution which satisfies the P[Lap(∆ fq

ε ) = x] =

ε
2∆ fq

e
−|x|ε
∆ fq and function fq determines the gradients for each user during the epoch [15].

4. Federated Optimisation (FedOpt)

In this section, we propose a new FedOpt approach based on DSGD optimisation in order to
promote communication efficiency and privacy preservation in FL.

4.1. Sparse Compression Algorithm (SCA)

In the existing literature, sparse top-k, a compression algorithm prove the significant performance
in distributed training of data [16–18]. Therefore, we use this observation as a starting point to
construct a communication efficient protocol in FL. To this end, we design a Sparse Compression
Algorithm (SCA) for FedOpt, to reduce the number of communication bits during the models training.
In particular, in SCA algorithm, we introduce temporal sparsity into DSGD, which is inspired by [6] to
reduce the communication delay. SCA allow each user to perform multiple epochs of SGD, to compute
more informative updates. These updates are given by

∆ν = SGDn(ν, Gq)− ν (5)

where SGDn(ν, Gq) refers to the set of gradient updates after n epochs of SGD on DNN parameters ν

during the sampling of mini-batches from local data Gq. Based on the experiments in Sections 5.1–5.3,
we conclude that communication delay reduces drastically, with marginal degradation of accuracy.
For details about the impact of existing compression techniques on communication delay, we refer the
reader to [18].

SCA Technique

We use the proportion of each user gradient into a full gradient update. To implement this, we set
the biggest and smallest fraction q of gradient updates to zero. Then, we compute the mean Ψ of all
the remaining negative and positive gradient updates, separately. Afterwards, if the absolute negative
mean Ψ− is smaller than the positive mean Ψ+, then we set all the positive values to the positive mean
Ψ+ and all the negative values to zero. Otherwise, if the absolute negative mean Ψ− is bigger than
positive mean Ψ+, then we set all the positive values to zero and all the negative values to the negative
mean Ψ−. The detailed technique is formalised in Algorithm 1. In order to find the values of biggest
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and smallest fraction q in a parameter vector ν, SCA requires the number O(|νn|) operations, where
νn refers as the total number of parameters in ν. Following the above technique, SCA reduces the
required number of bits bnum from 32 to 0 through computing the non-zero values of sparse gradient
update to the mean Ψ. This results in the reduction of communication cost of up to ×3.

Algorithm 1: SCA: Communication Efficiency in FedOpt
Input : temporal vector ∆ν, Sparsity Fraction q

Output : sparse temporal ∆ν∗

1 Initialisation:
2 num+ ← topq% (∆ν); num− ← topq% (−∆ν)
3 Ψ+ ←mean (num+); Ψ− ←mean (num−)
4 if Ψ+ ≥ Ψ−

5 then
6 return (∆ν∗ ← Ψ+ (ν ≥min(num+)))
7 else return (∆ν∗ ←−Ψ− (ν ≤min(−num−)))
8 end

4.2. Gradient Aggregation in FedOpt

Secure gradient aggregation in the form of cipher-text can be achieved through homomorphic
encryption. However, the large amounts of required communication resources and the computation
overhead on public-key encryption might delay and disturb the accuracy of data [19,20]. Towards
this end, we utilise the additively homomorphic encryption in FedOpt in order to achieve efficiency
throughout the learning process. Furthermore, differential privacy is used in order to tolerate the
local users’ dropouts and to add calibrated noises before encryption in each gradient. In this context,
each user q uses a small-size batch from the local dataset Di and learns the model to compute the
local gradient Gq in each epoch. In order to protect their local gradients, the local users use Laplace
mechanism to encrypt their local gradients using Eq = Eδ(Gq + Lap(∆ fq

ε )). Once the cloud server
receives all the encrypted gradients, it conducts the aggregation operation where the noises are nearly
eliminated due to the symmetry of the Laplace mechanism. This aggregation operation is processed
by the following equation:

Eadd = τ1 ⊕ τ2 ⊕ . . .⊕ τn = Eδ(
n

∑
q=1

Gq) (6)

In the end, all the users decrypt the encrypted global gradient Eadd that is received from the cloud
server using the following equation:

Dδ(Eadd) =
n

∑
q=1

Gq (7)

The detailed pseudocode of privacy preservation technique using differential privacy which is
integrated with additively homomorphic encryption is formalised in Algorithm 2.
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Algorithm 2: Pseudocode of Privacy Preserving
Input : Users for local datasets Di, the cloud server to initialise global parameters vo

Output : New global parameters v

1 Initialisation:
2 while Cloud server initialise global parameters vo do
3 Aggregate global parameters vo to users
4 while Users obtain local gradients Gq by training local models Di do
5 Add noise ε-DP← Gq
6 Encrypt Gq ← Eδ(Gq + Lap(∆ fq

ε ))

7 Generate encrypted local gradients Eq
8 Aggregate Eδ(∑n

q=1 Gq)
9 end

10 while Cloud server aggregates encrypted local gradients to users q do
11 Eadd ← Eδ(∑n

q=1 Gq)
12 Generate cipher-text from Eq
13 Generate encrypted global gradients Eadd

14 end
15 while Users decrypts Eadd to get global gradients Bq do
16 Dδ(Eadd)← ∑n

q=1 Gq
17 Update existing parameters v

18 Aggregate new parameters v to the cloud server
19 end
20 end

4.3. Efficiency and Privacy in FedOpt

The efficiency and privacy preservation of FedOpt are set in each epoch and the complete process
of each epoch is divided into multiple phases as follows:

4.3.1. Initialisation Phase

In the beginning, the global parameters vo and the learning rate ℘ are initialised by the cloud
server. Then, all the users copy the global training model to the private devices. Apart from having
the security parameter σ, a secret key δ is assigned to each user which is comprised of two big prime
numbers j, k(|j| = |k| = σ) where, these prime numbers are given as public parameters M.

4.3.2. Encryption Phase

In this phase, all the users jointly choose the same level of privacy budget ε in order to maintain
the differential privacy. Specifically, in each epoch, the set of users q derives their initial parameters v

and obtains their local gradients Gq through their individual datasets. Afterwards, the set of users q
utilise a privacy measure by randomly choosing the noises from the Laplace distribution Lap(∆ fq

ε )

and adds it to the local gradients.

Gq,j ≡ (Gq + Lap(∆ fq
ε )) mod j

Gq,k ≡ (Gq + Lap(∆ fq
ε )) mod k

(8)

In the equation above, both the privacy budget ε and the sensitivity ∆ fq of Laplace distribution
play important roles in differential privacy. Meanwhile, ∆ fq can be set to 1 and each gradient is
assumed to set at 0 ≤ Gq ≤ 1 by utilising the min-max normalisation [21].
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Subsequently, the users encrypt their local gradients using the secret key δ from j, k as given below:

Eq = j−1 jGk
q,k + k−1kGj

q,j mod M (9)

where, M is the public parameter M = jk and j−1, k−1 denote the inverses of j, k respectively. In the
end, these encrypted local gradients Eq from all the users are sent to the cloud server.

4.3.3. Aggregation Phase

Once all the gradients Gq are received by the cloud server, it initialises the secure aggregation
process as given below:

Eadd = ∑n
q=1 Eq

= j−1 j(∑n
q=1 Eq,k)

k + k−1k(∑n
q=1 Eq,j)

j mod M
(10)

Afterwards, the cloud server begins communication with all the local users and broadcasts the
encrypted global gradient Eadd, in order to avoid collusion from adversaries.

4.3.4. Decryption Phase

Once the local users receive the global encrypted gradient Eadd, each user begins the decryption
process as follows:

Eadd mod k
= j−1 j(∑n

q=1 Eq,k)
k + k−1k(∑n

q=1 Eq,j)
j

= j−1 j(∑n
q=1 Eq,k)

k−1(∑n
q=1 Eq,k) mod k

= ∑n
q=1 Eq,k mod k

= Eadd,k mod k

(11)

In similar fashion,
Eadd mod j
= k−1k(∑n

q=1 Eq,j)
j + j−1 j(∑n

q=1 Eq,k)
k

= k−1k(∑n
q=1 Eq,j)

j−1(∑n
q=1 Eq,j) mod j

= ∑n
q=1 Eq,j mod j

= Eadd,j mod j

(12)

Following the above procedure, the local users utilise the Chinese Remainder Theorem (CRT) in
order to obtain the final decrypted global gradients Bq [22]:

Eadd ≡
{

Eadd,j mod j

Eadd,k mod k
(13)

Since the number of users is sufficient in real-world scenarios, therefore, FedOpt tolerates the
users which might drop at any instance of time. Therefore, there is nearly zero effect on eliminating
the noises. In the end, each user updates the parameters v according to v ← v− qN Eadd, where N is
received from the cloud server. Afterwards, the whole operation is performed repeatedly until the loss
function $ is achieved.

The complete FedOpt approach that features two-way (upstream and downstream) compression
via SCA and performs optimal encryption through differential privacy is shown in Algorithm 3.
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Algorithm 3: FedOpt: Communication-Efficiency and Privacy-Preserving
Input : Initial parameters v

Output : Global model with improved parametersvo

1 Initialisation: all users qi, i = 1, . . . ,[Total number of users] are initialised with the same
parameters νi ← ν. Those users who carry different private datasets Di with |{c : (x, y) ∈
Di}| = [total classes per user]. The remaining q are initialised to zero ∆ν,Ri ,R ← 0.

2 for epoch e = 1,. . . , E |E = Total number of Epochs| do
3 for qi ∈ q ⊆{1,. . . , [Number of users]} do
4 User qi execute:
5 Plain-text = ξ ← downloadsCS→qi (ξ)
6 ∆ν← decrypt (ξ)
7 νi ← νi + ∆ν

8 ∆νi ← Ri + SGD(νi, Di)− νi
9 ∆νi ← SCAupload(∆νi)

10 Ri ← ∆νi − ∆νi
11 ξi ← encrypt ∆νi
12 uploadqi→CS(ξi)

13 end
14 Cloud Server CS execute:
15 collectqi→CS(∆νi), e ∈ q
16 ∆ν← R + 1

q ∑e∈q ∆νi
17 ∆ν← SCAdownload(∆ν)

18 R ← ∆ν− ∆ν

19 ν← ν + ∆νi
20 ξ ← encrypt ∆νi
21 AggregateCS→qi (ξ), i = 1, . . . , GlobalModel
22 end
23 return vo

5. FedOpt Evaluation

In this section, we conduct the experimental evaluation of the proposed FedOpt in terms of model
accuracy, communication efficiency and computational overhead. We conduct our experiments on the
server with an Intel(R) Core(TM) CPU i7-4980HQ (2.80 GHz) and 16 GB of RAM. The compression
and privacy-preserving algorithms are simulated by TensorFlow in Python. For evaluation, we
consider baseline configuration of FL, Federated Averaging (FedAvg) [23] and Privacy Preserving
Deep Learning (PPDL) [24]. In particular, we evaluate the performance of FedOpt on MNIST dataset
where the gradient consists of 60,000 training examples and each example consists of 28 × 28 size
images. Then, similar to MNIST dataset, we assess the performance of FedOpt on CIFAR-10 dataset
where the gradient consists of 50,000 training examples and 10,000 testing examples and each example
consists of 32 × 32 size images with three different RGB channels. The baseline configuration setup is
given in Table 1.

Table 1. Baseline Configuration.

Parameters Number
of Users

Participation
Ratio

Mini-Batch
Size

Classes
per User

Gradient
Size

Number
of Epochs

Privacy
Budget

Value Various 10% 20 10 32-bits Various 0.5
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5.1. Accuracy Test

Accuracy is an important factor to measure the performance of any model in DL. In this regard,
the proposed FedOpt is able to achieve the accuracy of 99.6% and 98.4% after 500 epochs on MNIST
and CIFAR-10 datasets, respectively. As shown in Figures 3a and 4a, we conduct the experiments
on various numbers of privacy budgets ε, i.e., 0.2, 0.4, 0.6, 0.8 and 1.0, in order to test the accuracy of
FedOpt on MNIST and CIFAR-10 datasets, respectively. Compared with FedAvg and PPDL, FedOpt
is able to achieve 92.3% on 0.2 (lowest-ε) and 99.6% on 1.0 (highest-ε) of accuracy on MNIST dataset.
Similarly, FedOpt is able to achieve 91.2% on 0.2 (lowest-ε) and 98.7% on 1.0 (highest-ε) of accuracy
on CIFAR-10 dataset. The above results demonstrate that the number of privacy budgets ε has a
huge impact on the prediction accuracy. Therefore, we conclude that, higher levels of privacy budget
ε produce higher accuracy, but provide lower levels of privacy. Furthermore, we also conduct the
accuracy tests with regard to the impact of various number of users q, e.g., 200, 400, 600, 800 and 1000
on the constant privacy budget at 0.5-ε. For example, in Figures 3b and 4b, the accuracy increases with
the increasing number of users on MNIST and CIFAR-10 datasets, respectively. In specific, in Figure 3b,
FedOpt achieves 97.1% on 200 users (minimum-q) and 99.7% on 1000 users (maximum-q) of accuracy
on MNIST dataset. Similarly, as shown in Figure 4b, FedOpt achieves 93.4% on 200 users (minimum-q)
and 98.6% on 1000 users (maximum-q) of accuracy on CIFAR-10 dataset. As shown in Figures 3 and 4,
the proposed FedOpt is compared with FedAvg and PPDL, where it is able to achieve the highest
level of accuracy. This is attributed to the fact that a huge part of the noises is eliminated through
the symmetry of Laplace mechanism and the complete utilisation of SCA. Furthermore, differential
privacy provides protection to gradients during the training process.
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Figure 3. Achieved accuracy of model on MNIST dataset.
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Figure 4. Achieved accuracy of model on CIFAR-10 Dataset.
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5.2. Communication Efficiency

In our experiments, we consider the communication efficiency among the cloud server and
the users q as they are the main entities of the whole system. In specific, during the aggregation
phase, we assume there are n epochs in the whole training process and each user q has a single
thread with the security parameter σ is set to 512 and the size of each local gradient Gq is 32 bits.
In each epoch, the users q aggregate the encrypted local gradients Eq to the cloud server and receives
the shared parameters Eadd from the cloud server. Figures 5 and 6 show the comparison result of
communication efficiency between FedOpt, FedAvg and PPDL on MNIST and CIFAR-10 datasets,
respectively. In specific, we consider different numbers of gradients and different numbers of users for
evaluation in Figures 5a,b and 6a,b respectively. Clearly, it can be demonstrated that the increasing
numbers of gradients with the maximum numbers of users has the maximum communication efficiency.
Compared to the FedAvg and PPDL, FedOPT has 56% and 38% more communication efficiency,
respectively, on MNIST dataset. Similarly, FedOpt outperforms on CIFAR-10 dataset with 54% and
32% more communication efficiency as compare to the FedAvg and PPDL. The major reason behind
this higher communication efficiency is that, FedOpt completely utilises pallier encryption [25] which
helps in the rapid growth of cipher-text volume. In addition, SCA algorithm helps FedOpt in faster
convergence in terms of training epochs with significant compression rate.
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Figure 5. FedOpt communication efficiency on MNIST dataset.
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Figure 6. FedOpt communication efficiency on CIFAR-10 dataset.

5.3. Analysis of Communication Efficiency w.r.t Accuracy

In this subsection, we compare the proposed compression algorithm SCA with respect to the
number of epochs and the communicated bits that are required to achieve the targeted accuracy on a FL
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task. In the above subsections, FedOpt performed significantly better than FedAvg and PPDL. In order
to have a meaningful comparison, we choose 100 users for 50 and 100 epochs, where every user holds
10 different classes and uses a batch-size of 20 during training. This setup of less number of users
and epochs favours the FedAvg and PPDL. The rest of the parameters of the learning environment
is the same as given in Table 1. We train the datasets until the targeted accuracy is achieved in the
given number of epochs and measure the total communicated bits both for upload and download.
The required amounts of upstream and downstream communication bits to achieve the targeted
accuracy is given in megabytes (MB) in Table 2.

Table 2. Communication bits required for upload and download to achieve the targeted accuracy.

MNIST (Accuracy = 91.3) CIFAR-10 (Accuracy = 87.6)

Baseline 2218/2218 MB 35653 MB/35653 MB

FedAvg epochs = 50 119.65 MB/119.65 MB 2589.5 MB/2589.5 MB

FedAvg epochs = 100 84.73 MB/84.73 MB 1665.7 MB/1665.7 MB

PPDL epochs = 50 98.63 MB/311.6 MB 1472.2 MB/4739.2 MB

PPDL epochs = 100 63.74 MB/432.2 MB 958.3 MB/6342.4 MB

FedOpt epochs = 50 10.2 MB/102 MB 109.23 MB/1090.3 MB

FedOpt epochs = 100 14.6 MB/146 MB 172.3 MB/1723 MB

In Table 2, FedOpt communicates 14.6 MB and 172.3 MB of data on MNIST and CIFAR-10
datasets, which is a reduction in communication by a factor of ×152 and ×207 as compared to baseline
configurations. Meanwhile, FedAvg and PPDL (epochs = 100) requires 84.73 and 63.74 MB of data
on MNIST dataset and 1665.7 and 958.3 MB of data on CIFAR-10 dataset which proves that proposed
FedOpt have a minimum delay period in order to achieve the targeted accuracy within a given number
of training epochs.

5.4. Computation Overhead

In the end, we discuss the computation cost of FedOpt on MNIST and CIFAR-10 datasets as
shown in Figures 7 and 8, respectively. We only consider the running time of the cipher-text operation
to prove our main contribution. By considering the security requirement, we select plain-text ξ1 = 216

with the security parameter of σ = 128 bits, and analyse the computational cost per each userq and the
cloud server on each phase as mentioned in Section 4.3. In specific, in each subfigure, as demonstrated
in Figures 7 and 8, the computational cost increases linearly with the increasing number of gradients
because FedOpt encrypts every single packet in each aggregation. Therefore, the computational
overhead over the encryption process is related to the total number of gradients regardless of number
of users. Furthermore, increased security (higher security parameter σ) leads to the inefficiency. In this
regard, as shown in Figure 7, FedOpt achieves 74% and 53% at the encryption phase, 72% and 45%
at the aggregation phase, and 86% and 31% at the decryption phase, less computational overhead
than FedAvg and PPDL, respectively, on MNIST dataset. Similarly, Figure 8 shows the computation
overhead on CIFAR-10 dataset where FedOpt achieves 61% and 52% at the encryption phase, 43% and
31% at the aggregation phase and 72% and 48% at the decryption phase, less computational overhead
than FedAvg and PPDL. The overall computational overhead for users at the encryption phase with
the security parameter of σ = 128 bits is about ×2.8 slower than the baseline configurations because
FedOpt requires fewer addition and multiplication operations. Similarly, the overall computational
overhead for the cloud server with the security parameter of σ = 128 bits is about ×9.3 slower than
the baseline configurations. This less computational overhead at the server-end is because FedOpt
decrypts every single packet in each aggregation, where the number of decryption process linearly
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increases with the increasing number of gradients. Therefore, the proposed FedOpt is able to support
the learning scenarios with large numbers of users.
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Figure 7. Computational cost per user with different number of gradients on MNIST dataset.
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Figure 8. Computational cost per user with different number of gradients on CIFAR-10 dataset.

6. Related Work and Discussions

Stochastic Gradient Descent (SGD) is very popular optimisation training technique that supports
various DL applications in DNN models. In particular, on one end of the spectrum, SGD can
be used to reduce the convergence time in large-scale applications of DL models by using the
device-level parallelism [26–28]. On the other end of the spectrum, SGD can be used to enable
and enhance the privacy preserving in DL algorithms [29]. Since the users are require to share the
gradient updates, where SGD helps in training of model from the combined data of all the users
without revealing the individual’s local data to a centralised cloud server [30]. However, despite
the tremendous advantages and the extensive applications of SGD based DL, existing research show
that, learning the model updates suffers from a massive communication overhead [31,32]. In order
to reduce this communication overhead, a wide variety of methods had been proposed in the past.
For example, in [23], the authors proposed a novel approach, i.e., FedAvg, where each user computes
the gradient updates by performing multiple epochs of SGD which results into increasing the number
of gradient evaluations that causes delay in communication. In order to minimise this communication
delay, the authors in [33], use probabilistic-quantisation and random-sparsification. In particular,
the authors force the random-sparsity on the users or restrict them in order to learn random-sparse
gradient updates (structured and sketched updates) and combine probabilistic quantisation with this
sparsification. This method however is not suitable for SGD epochs as it slows down the convergence
speed significantly. To overcome this convergence issue, the authors in [34], propose a compression
technique; namely, SignSGD that theoretically guarantees the convergence over iid data. This SignSGD
quantises each gradient from each user to a binary sign and reduces the bit-size per gradient update
by ×32. This compression on gradients is done by means of a majority vote which may result into
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the loss of important updates. In addition, the compression rate and empirical performance does not
reach up-to the convergence requirement in FL.

On the other hand, several adversaries may violate the private information of users from DL
networks [35,36]. As a result, several privacy preserving DL schemes are proposed in order to eliminate
those privacy threats. For example, in [19], the authors proposed the first privacy preserving approach
for collaborative DL where, the users share their selective partial gradients with the cloud server in
order to ensure the privacy of the training data. However, even sharing a small part of the gradient,
the privacy of users can still be compromised [37]. Additionally, in [38], the authors proposed a DL
model using additively homomorphic encryption where, all the users share the same decryption key,
which may lead to collusion among the users and the cloud server. However, all these approaches
suffer from serious privacy threats because of the shared parameters.

On the contrary, unlike the proposed FedOpt, various privacy preserving centralised training
approaches are proposed to overcome the privacy issues. For example, the authors in [39], adopt a
two-party computation scheme that utilises two-party computation training model, where the local
users separate the sensitive data into two parts before sending it to the two non-collusive central servers.
In order to eliminate privacy leakage, [40] used a Gaussian mechanism to update the gradients and
proposed a rigid method (e.g., moment accountant) in order to keep record of the entire privacy loss.

Functional Comparison

Several communication efficient and privacy preservation distributed approaches have
been proposed recently including Practical Secure Aggregation (PSA) [41], Federated Extreme
Boosting (XGB) [42], Efficient and Privacy-Preserving Federated Deep Learning (EPFDL) [43] and
Privacy-preserving collaborative learning (PPCL) [44] as listed in Table 3. Specifically, PSA and XGB
utilise collaborative training in order to resist collusion among adversaries, but both approaches do
not guarantee communication efficiency. Compared with EPFDL, the proposed FedOpt is not only
communication efficient but also serves for collaborative training. Meanwhile, PPCL serves most of
the security features by sharing the same decryption key among all the users, which is not desirable
in real-time applications. On the contrary, FedOpt considers these real-time applications, where
adversaries may act as honest parties but colludes due to the shared parameters. Table 3 shows that,
none of the state-of-the-art approaches completely address the challenges of privacy preservation and
communication efficiency. On the other hand, the proposed FedOpt not only mitigates the above attacks
by utilising differential privacy, but also provides communication efficiency via compression algorithm.

Table 3. Functionality comparison with existing FL approaches.

Functionality PSA XGB EPFDL PPCL FedOpt

Communication Efficient ! !

Collaborative Training ! ! ! !

Non-IID Support !

Gradient Confidentiality ! ! ! !

Attack Resilience ! !

Post-Quantum Security ! !

Collusion Resistance ! ! ! !

Fast Convergence Speed ! ! !

Application Aware ! ! !

Algorithm Complexity ! ! !
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7. Conclusions

This paper proposes a novel approach, namely, Federated Optimisation (FedOpt) that is able
to simultaneously decrease the communication cost and increase the privacy in federated learning
settings. In particular, we design a Sparse Compression Algorithm (SCA) for communication efficiency
and integrates the additively homomorphic encryption with differential privacy in order to prevent
data from being leaked. Compared to the existing approaches, the proposed FedOpt compresses the
upstream and downstream communication and reduces the communication overhead. In general,
FedOpt is advantageous especially in the network where communication is costly or bandwidth
is constrained as it achieve the targeted accuracy within fewer amounts of communication bits.
Furthermore, the proposed FedOpt is able to mitigate the security threats for both the local users and
the cloud server. In addition, the proposed FedOpt is completely non-interactive which provides
higher levels of privacy at the aggregation phase, even when the adversaries collude with honest-users.
The experimental evaluation on both MNIST and CIFAR-10 datasets proves that the proposed FedOpt
outperforms the state-of-the-art approaches in terms of accuracy, efficiency and privacy. In the
future, we will consider the virtualisation of this work through docker to make it useful in real-life
environments. In addition, we plan to investigate further approaches for communication efficiency
and privacy preservation while maintaining robustness in federated learning, especially with complex
neural networks and high-dimensional datasets for diverse learning tasks and their models.
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Abbreviations

The following abbreviations and notations are widely used in this manuscript, while the arithmetic operations
and their notations are to be understood element-wise:

FedOpt Federated Optimisation
AI Artificial Intelligence
FL Federated Learning
DL Deep Learning
SGD Stochastic Gradient Descent
DNN Deep Neural Network
SCA Sparse Compression Algorithm
ε-DP Privacy Budget on Differential Privacy
q users
δ Secret Key
$ Expected Loss
v Initial Parameters
vo Global Parameters
ν Parameter Vector
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