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Abstract: The extracellular matrix (ECM) is a highly complex macromolecular network present in all
tissues and organs. The ECM is continuously remodelling under an orchestrated process facilitated
by many matrix-degrading and matrix-synthesising enzymes in both health and disease. Disturbance
of this balance can be the result of or can lead to various diseases. In cardiovascular diseases (CVDs),
changes to the ECM are evident in conditions including: atherosclerosis, myocardial infarction
(MI), venous thromboembolism (VTE) and abdominal aortic aneurysm (AAA). ECM proteins and
ECM regulating enzymes are differently expressed in various CVDs. Most importantly, the altered
deposition, macromolecule arrangement and activity of the ECM makes it an attractive marker
of disease onset, pathogenesis and progression. Many medical imaging modalities allow disease
assessment by exploiting native image contrast, by using non-targeted or by using protein or cell
specific (targeted) imaging probes. However, the ability to directly visualise and quantify changes in
specific ECM proteins enhances our understanding of the biological role of these proteins, enables
monitoring of disease progression and response to treatment and may improve patient diagnosis
and allocation of personalised therapies. This review focuses on the biochemistry of the major
extracellular matrix proteins and advancements in the development of ECM-targeted probes for
molecular imaging of CVD, particularly for applications of molecular magnetic resonance imaging
(MRI) and position emission tomography (PET) imaging.

Keywords: extracellular matrix; matrix proteins; cardiovascular disease; molecular imaging; imaging
probes; collagen; elastin; fibrin; matrix metalloproteases

1. Introduction

The extracellular matrix (ECM) plays a key role in multicellular organism development [1].
Previously, it was believed that the ECM was an inert component that solely served to provide
mechanical stability, but today, it is viewed as a highly dynamic system that undergoes constant
remodelling with post-translational modifications of its molecular components [2,3]. The ECM is
found within all tissues and organs and acts not only as a framework for cellular organelles but also
has a crucial signal transduction role in both healthy and diseased tissues [2,4]. The composition of
the ECM is tissue specific and heterogeneous and its unique structure is formed early during tissue
development. The ECM is comprised of many macromolecules that can be categorised into two key
groups: fibre-forming and non-fibre-forming molecules. As the ECM is a highly organised ensemble
of different macromolecules, even small changes to each subunit can have detrimental effects on the
macromolecules’ physiochemical properties and thus the properties of the tissue and the cellular
phenotypes, ultimately resulting in functional changes [3].
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It is possible to identify changes in the ECM during disease. However, it is vital to distinguish
between ECM changes causing disease and ECM changes that occur as a result of disease progression [3].
During the early stages of development and in response to injury, the remodelling rate of the ECM is
increased and involves various molecules, including but not exclusively limited to, integrins and matrix
metalloproteins (MMPs) [5] and also changes of intra- or extracellular tension forces [5]. There is an
extensive list of diseases that involve disturbances of the ECM including: connective tissue disorders,
genetic disorders, liver cirrhosis, inflammatory bowel disease, chronic kidney disease and several
cardiovascular diseases [3,6]. In cardiovascular diseases, preserving ECM integrity by reducing excess
fibrosis or inhibiting degradation is a critical target of both treatment and prevention strategies [7].
Given the critical role of the extracellular matrix in both physiological homeostasis and pathological
compensatory processes, the ECM has become an attractive new target for molecular imaging with
applications in numerous diseases.

The ECM can be imaged using both invasive (including tissue staining methods, nonlinear
optic microscopy, electron microscopy and fluorescence life time imaging [8–10]) and non-invasive
including [MRI (magnetic resonance imaging), PET (positron emission tomography) and CT (computed
tomography)] imaging methods. There are several review articles that provide extensive coverage
of the use of these imaging modalities in the context of imaging cardiac ECM [11,12]. The major
limitation with invasive imaging methods is that clinical translation can be limited due to the general
use of ex vivo tissue specimens requiring biopsies obtained by specialised surgical procedures and
are therefore not readily available. Non-invasive imaging methods overcome this limitation as they
provide in vivo imaging which can be applied safely to the patient. This review aims to address the
latest developments in the field of non-invasive imaging of ECM changes that are associated with CVD.
Whilst we briefly mention other imaging modalities, the scope and focus of this review is on MRI
and PET applications. The review also provides a summary of the basic components that comprise
the ECM and their biosynthetic pathways that enable a better understanding of the development of
targeted probes for imaging of the ECM.

2. Understanding the Key Extracellular Matrix Proteins

2.1. ECM Synthesis

The ECM is a complex, heterogenous collection of different molecules. Over the last two decades
intensive research into ECM proteins has generated new insights into ECM composition and function
in both healthy and diseased tissues [13]. The exact number of ECM proteins remains an open
question and is an active area of research; however, it is estimated that there are between 300–400 ECM
genes, with a third of them still to be identified [14]. ECM components are commonly categorised
into two groups: fibre-forming and non-fibre-forming molecules [3]. The typical fibre-forming
molecules include specific classes of collagen and elastin and the non-fibre-forming molecules include
proteoglycans and glycoproteins (Figure 1). It is paramount to have a tight regulation between the
molecules signalling ECM synthesis and degradation as this is essential for maintaining the structural
integrity and thereby the tissue and organ functions.

ECM proteins are located within these two basic compartments (Figure 2): (i) interstitial
connective tissue, that surrounds cells providing a structural matrix for the tissues and (ii) specialised
basement membrane that separates the epithelium and the stroma and is involved in the matrix-cell
interactions [15]. These two compartments of the ECM are characterised by different components with
the interstitial matrix comprised of molecules, including type I collagen, fibronectin, proteoglycans
(PGs), glycosaminoglycans (GAGs), tenascin C and elastin, whereas the basement membrane is
comprised of type IV collagen, laminins and nidogen. Dysregulated ECM composition either because
of excessive ECM production and/or increased degradation is observed in various diseases including
cardiac, lung, liver, cancer, deep vein thrombosis and osteoarthritis [15]. A summary of these common
ECM components with respective functions are provided in Table 1.
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Rozario et al., 
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ECM that provides elasticity and 
reliance to tissues undergoing 
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Table 1. Summary of common ECM components with their respective functions. The components have
been categorised into structural ECM proteins (green); adhesion proteins (orange); glycosaminoglycans
and proteoglycans (blue).

ECM Component Type Function Reference

Collagen Fibrous protein

Main structural component of the
ECM that provides strength,
regulates adhesion and supports
chemotaxis and migration.

Rozario et al., 2010 [16]

Elastin Fibrous protein

Main structural component of the
ECM that provides elasticity and
reliance to tissues
undergoing stretching.

Bailey, 1978 [17]
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Table 1. Cont.

ECM Component Type Function Reference

Laminin Glycoprotein
Regulate vital ECM activities
including cell adhesion, migration,
differentiation and proliferation.

Hamill et al., 2009 [18]

Fibronectin Glycoprotein

Interacts with cells to link the
ECM to the intracellular
cytoskeleton and
signalling pathways

Magnusson et al., 1998 [19]

Tenascin Glycoprotein

Carries out adhesive and counter
adhesive activities upon binding
of the ECM proteins to cell
surface receptors

Jones et al., 2000 [20]

Glycosaminoglycans
(GAG)

Heterogenous
polysaccharide

Negatively charged molecules that
interact (reversibly and
irreversibly) with other ECM
proteins and growth factors
providing they exhibit a positive
charge on their surface.
These interactions play essential
roles in normal physiology and
pathogenic processes.

Rienks et al., 2014,
Hileman et al., 1998 [21,22]

Proteoglycan (PG)
GAG covalently
linked to a
core protein

Retain water that hydrates that
ECM generating a swelling
pressure that aids the ECM to
resist compressive forces.

Yanagishita, 1993 [23]

Understanding the underlying biosynthesis and assembly of the ECM proteins is essential
for various disciplines, including the development of molecular imaging probes and drugs, tissue
engineering and regenerative medicine. The turnover of ECM proteins is regulated by various cell
types, including fibroblasts, mast cells and macrophages, growth factors such as the transforming
growth factor-βs (TGF-βs) and enzymes including matrix metalloproteases (MMPs). In the late
1980s, it was first shown that TGF-β has the ability to control synthesis of ECM proteins [24,25].
Subsequently, in 1986, Robert et al. demonstrated that injecting TGF-β in new-born mice activated
the rough endoplasmic reticulum (RER) of fibroblasts stimulating the production of extracellular
collagen fibres [24,25]. The pro-fibrotic effect of TGF-β is complemented with its ability to inhibit
the proteolytic degradation of ECM proteins [25] by increasing the production of tissue inhibitors
of matrix metalloproteases (TIMPs) [26]. MMPs are a class of enzymes that have been studied since
1962 with 23 human MMPs identified to date [15]. MMPs are categorised into six groups including
collagenases and gelatinases, based on their structure and enzymatic substrates [27]. MMPs are
secreted as inactive pro-enzymes, pro-MMPs, and are activated by proteolytic degradation of the
amino terminals exposing the Zinc ion (Zn2+) binding pocket of the catalytic domain [28]. Activated
MMPs cleave at specific sites, and therefore, breakdown the ECM scaffold or they can modify bioactive
molecules that exist within the ECM proteins [27]. The activity of MMPs is counterbalanced by TIMPs
that block the activation pathway and hence inhibit MMPs binding to ECM substrates. There are
four members in the TIMPs family, TIMP1-4. The ratio of MMP to TIMP determines the overall ECM
degradation. A disease example that illustrates the importance of ECM homeostasis is cardiomyopathy,
where increased levels of MMP-1 reduce collagen content and thus reduced cardiac contractility [29].
The increased overexpression of MMP-1 is associated with an increased ratio of MMP-1/TIPM-1 in
dilated cardiomyopathy [30]. In vessel wall development and remodelling, MMPs also have an
inflammatory mediated function, similar to cytokines, as they are actively expressed in diseased tissue
but absent or expressed at very low levels in healthy tissue [27]. In vascular tissues inflammatory
cells, including macrophages and neutrophils, are important sources of MMPs [27]. Tissue injury
or pathologic conditions can also lead to excessive production and accumulation of ECM proteins,
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ultimately leading to fibrosis [15]. Fibrosis is the body’s natural response mechanism to injury whereby
a scar is formed as part of the wound healing process. However, if the tissue properties within the
scar region are not the same as the native surrounding tissue, it can lead to organ failure, such as
liver cirrhosis [1] and heart failure [31]. The fibrotic response is driven by a variety of cell types,
growth factors and cytokines and can be inhibited by signalling mediators such as interferon-γ (IFN-γ),
an antagonist to TGFβ [15].

2.2. Collagen

Collagen comprises about one third of the total protein content in the human body [1]. Collagen
is a large family of molecules with more than 28 different types of collagen identified to date [32].
All collagens have the same fundamental characteristic; a protein comprised of three polypeptide
chains that has at least one repeating amino acid sequence [32]. The most abundant fibrillar collagen,
type I, is composed of well organised fibrils that provide tensile strength and resistance to deformation
and stress to the ECM and is found in various tissues including the skin, the vasculature, the heart
tissue and bones [33]. Type I collagen is formed by two types of α helices; specifically, [α1(I)]2α2(I),
thus forming a triple helix consisting of two α1(I) and one α2(I) helix [34]. Other types of collagen
include; type II found mainly in cartilage; type III found in the skin, muscle and blood vessels and type
IV found in all basement membranes [35].

All collagens are characterised by the repeat sequence of: GLY-X-Y, where GLY is glycine, X is
often proline and Y is often hydroxyproline [36,37]. The precursor molecule of collagen is procollagen,
a glycoprotein that consists of three extended polypeptide chains and is believed to have a stiff structure
with flexible short end regions [37]. The synthesis of collagen initiates in the nucleus where the
DNA is transcribed into mRNA that is then translated in the rough endoplasmic reticulum (RER),
synthesising collagen α-chains (Figure 3). These molecules are transported to the Golgi apparatus
where post-translational modifications generate the self-assembled triple helical procollagen structure
that is then secreted to the extracellular space [37]. During this exocytosis, procollagen is converted
into tropocollagen, by the proteolytic cleavage of the C- and N-terminus propeptides of the procollagen
molecule [38]. Collagen fibres are assembled by a process called fibrillogenesis [32] through a variety of
cross-linking mechanisms. Three key cross-liking mechanisms occur in vivo: lysyl oxidase crosslinking,
sugar mediated and transglutaminase crosslinking [38]. Lysyl Oxidase (LOX), a copper-dependent
enzyme, specifically crosslinks collagen and elastin [39] creating intramolecular bonds by catalysing
the deamination of lysine to allysine and hydroxylysine to hydroxyallysine (Figure 3). The allysine
aldehyde product subsequently undergoes spontaneous aldol condensation resulting in crosslinks
between the fibrils. Alternatively, Schiff base crosslinks are formed as the aldehyde groups react with
the amino groups of lysine and hydroxylysine residues on adjacent molecules [39]. The hydroxylysine
pathway results in two cross linked molecules: ketoimine and aldimine, which connect individual
collagen triple helices [38]. Sugar-mediated crosslinking is characterised by a Maillard reaction,
also known as a non-enzymatic browning reaction, which increase the turnover of collagen linearly.
In diabetic patients studies have shown that there is an acceleration of the browning reaction [40]. Finally,
transglutaminases (TGase), that are thiol- and calcium dependent multifunctional enzymes [31,41],
also induce collagen crosslinking. However, not a lot is currently known about their activity. To date,
we know that Tgase catalyses the formation of covalent bonds between the γ-carboxamide group of
the peptide-bound glutamine residue and the ε-amino group of lysine of the collagen molecules [31].
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D. Lysyl Oxidase (LOX) catalyses the deamination of the lysine. E. Conversion of a lysine residue into 
a reactive aldehyde. F. Aldol condensation reaction between neighbouring aldehyde groups. G. 
Crosslinks both within and between triple-helical molecules [where X is C=C(CHO)].  
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skin [17]. Elastin is an insoluble molecule with a finite turnover in healthy tissue. The appearance of 
elastin was first reported in 1958, but the interest in understanding elastin biochemistry further 
sparked in 1963 when the relationship between elastin structure and function was first reported [17]. 
The most abundant amino acids present in elastin are glycine followed by alanine, valine and a low 
level of hydroxyproline [43]. It has been shown that elastin and collagen are the only animal proteins 
that contain hydroxyproline, with an abundance of 2–4% and 13%, respectively [44]. Elastin, just like 
collagen, is an insoluble protein synthesised from intracellularly soluble monomers called 
tropoelastin (TE) that are assembled extracellularly by crosslinking (Figure 4). After the tropoelastin 
mRNA is translated in the RER, the protein migrates to the Golgi apparatus where it binds to the 
elastin-binding protein (EBP) to inhibit self-aggregation and avoid early degradation [36]. The TE-
EBP complex is then exocytosed and the EBP releases the tropoelastin to the ECM environment. 
Extracellularly, the tropoelastin monomers align and interact with the microfibrillar scaffold and 
acquire the correct orientation to form the polymeric elastic fibres [36]. Tropoelastin has an intrinsic 
ability to undergo coacervation which is an endothermic process driven by entropy [45]. The process 
is believed to be largely due to the hydrophobic domains of tropoelastin [45]. With increasing 
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Figure 3. Collagen Synthesis pathway and demonstration of LOX-medicated crosslinks: A. Triple
stranded helix is formed in the endoplasmic reticulum (ER) followed by post-translational modification
in the Golgi apparatus. B. Procollagen is processed and assembled intracellularly before being secreted
to the extracellular space. C. The N and C terminus are removed to form tropocollagen. D. Lysyl
Oxidase (LOX) catalyses the deamination of the lysine. E. Conversion of a lysine residue into a reactive
aldehyde. F. Aldol condensation reaction between neighbouring aldehyde groups. G. Crosslinks both
within and between triple-helical molecules [where X is C=C(CHO)].

2.3. Elastin

The mechanism of elastin synthesis is much better understood compared with collagen. The elastic
and resilient properties of the ECM are provided by elastin and microfibrils [42]. Elastin itself is the
second most abundant macromolecule in the ECM and serves an important role in the regulation
of the biomechanical properties of cells and tissues [36] such as blood vessels, lungs and skin [17].
Elastin is an insoluble molecule with a finite turnover in healthy tissue. The appearance of elastin
was first reported in 1958, but the interest in understanding elastin biochemistry further sparked in
1963 when the relationship between elastin structure and function was first reported [17]. The most
abundant amino acids present in elastin are glycine followed by alanine, valine and a low level of
hydroxyproline [43]. It has been shown that elastin and collagen are the only animal proteins that
contain hydroxyproline, with an abundance of 2–4% and 13%, respectively [44]. Elastin, just like
collagen, is an insoluble protein synthesised from intracellularly soluble monomers called tropoelastin
(TE) that are assembled extracellularly by crosslinking (Figure 4). After the tropoelastin mRNA is
translated in the RER, the protein migrates to the Golgi apparatus where it binds to the elastin-binding
protein (EBP) to inhibit self-aggregation and avoid early degradation [36]. The TE-EBP complex
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is then exocytosed and the EBP releases the tropoelastin to the ECM environment. Extracellularly,
the tropoelastin monomers align and interact with the microfibrillar scaffold and acquire the correct
orientation to form the polymeric elastic fibres [36]. Tropoelastin has an intrinsic ability to undergo
coacervation which is an endothermic process driven by entropy [45]. The process is believed to
be largely due to the hydrophobic domains of tropoelastin [45]. With increasing temperature to
physiological conditions, the tropoelastin molecules are correctly aligned for the subsequent enzymatic
crosslinking of the molecules [45]. Lysyl oxidase (LOX) catalyses this reaction [36] in a similar way as
for collagen. The structure of elastin is reported to be highly elastic and amorphous when compared to
inextensible collagen [17].
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Figure 4. Elastin biosynthesis pathway: A. Tropoelastin (TE), precursor of elastin, is translated from
mRNA in the rough endoplasmic reticulum. B. TE and elastin binding protein (EBP) form a complex
in the Golgi apparatus. C. The TE–EBP complex is secreted to the extracellular space. D. The EBP
detaches from TE, allowing TE to interact and align along the microfibrillar scaffold. E. Coacervation of
TE together with the enzymatic reaction, catalysed by lysyl oxidase (LOX), result in the crosslinking of
the TE molecules into the polymeric elastin fibre.

2.4. Fibrin

The precursor of fibrin is the glycoprotein fibrinogen. Each unit of fibrinogen comprises of
two copies of three polypeptide chains; Aα, Bβ and γ. These polypeptide chains are connected by
29 disulphide bonds and each fibrinogen molecule has outer D domains that are connected via a
coiled central E domain [46,47]. The N-termini of all six chains are contained within the E domains,
while the carboxyl termini of both Bβ and γ are located within the D domain [48]. The overview of the
synthesis of fibrin is illustrated in (Figure 5). If the vessel wall sustains an injury, a series of local events
ultimately lead to production of thrombin, a protease, that convers fibrinogen to fibrin [48]. It does so
by cleaving peptides at the N-terminus of fibrinogen, causing the release of fibrinopeptides generating
fibrin monomers [48]. Fibrin monomers then undergo polymerisation to effectively produce fibres to
stabilise the clot.
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Figure 5. Synthesis of fibrinogen and the conversion pathway into fibrin. A. The three polypeptide
chains that make up fibrinogen are A-Alpha (Aα), B-Beta (Bβ) and Gamma (γ) B. Each of the polypeptide
chains are translated and independently translocated to the endoplasmic reticulum with the signal
protein cleaved from each chain. It is then processed and assembled in the Golgi apparatus. Disulphide
bridges are formed between two of the AαBβγ units and post translation occurs before the fibrinogen
molecule is excreted. C. The fibrinogen unit is comprised of two sets of the polypeptides, (AαBβγ)2,
and is characterised by a D Domain, on the outer regions, and an E domain in the central region.
D. When thrombin cleaves the fibrinogen molecule a fibrin monomer and two fibrinopeptides are
removed leaving the knobs exposed. These knobs are complementary to the holes that are on the
surface of the interacting fibrin molecule. E. The knob-hole interaction occurs which generates the
protofibril. F. Protofibrils aggregate laterally resulting in fibrin formation.

3. Cardiovascular Disease

3.1. Clinical Relevance

Cardiovascular disease (CVD) is a collective term to characterise various conditions of the heart
and blood vessels. CVD can occur from genetic and acquired diseases. CVD itself includes, but is not
limited to, diseases such as coronary artery disease, cerebrovascular disease, aortic disease and Marfan
syndrome, deep vein thrombosis, heart attacks, heart failure, cardiomyopathy, inflammatory diseases
and atrial fibrillation. CVD is the primary cause of death worldwide, and it is reported by the World
Health Organisation (WHO) that around 17.9 million people died from CVD in 2016, representing 31%
of deaths globally [49]. Even with improved patient management it is projected that CVD will account
for 10 million deaths globally by 2030 [50]. Sections 3.1–3.4 will focus on the latest developments in
non-invasive MRI and PET imaging of four prevalent CVDs: atherosclerosis, myocardial infarction,
deep vein thrombosis and abdominal aortic aneurysms. A summary of the various targeting probes
and their respective applications in imaging the ECM are presented in Table 2.
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Table 2. Summary of recent probe development in the field of cardiovascular disease (CVD) with indication to the ECM structure that they target.

Protein Probe Model and Species Reference General Application

Collagen

EP-3533
Fibrosis in various disease including
myocardial infarction (MI) model—mice
(in vivo)

Caravan et al., 2007 Imaging of Type I collagen in fibrosis

Atherosclerotic model of plaque progression
and regression—mice (in vivo) Chen et al., 2013

Healed myocardial infarction (MI)—mice
(in vivo) Helm et al., 2008

CNA-35 Atherosclerotic arteries—mice (ex vivo) Megens et al., 2007 Binds to all fibrillar collagens and
collagen type IV

Aortic aneurysms and rupture Klink et al., 2011

Platelet Collagen Receptor
Glycoprotein (GP) VI

Carotid atherosclerotic plaques—human
(ex vivo) and atherosclerotic model—mice
(in vivo)

Schulz et al., 2008 Targeted to selectively visualise type I
and III

Elastin

ESMA Arterial remodelling post stent—swine
(in vivo) Von Bary et al., 2011 Quantification of elastin in plaque

Plaque rupture—rabbit (in vivo) Phinikaridou et al., 2014
Matrix remodelling in a MI model—mice
(in vivo) Wildgruber et al., 2014 Quantification of elastin

in myocardium
Aortic aneurysm remodelling—mice
(in vivo) Botnar et al., 2014

Elastin remodelling in aortic wall in Marfan
mouse model (in vivo) Okamura et al., 2014

TESMA Atherosclerosis model—mice and rabbits
(in vivo) Phinikaridou et al., 2018

Tropoelastin selectively visualises
dysfunctional elastogenesis
or elastolysis

Model of abdominal aortic aneurysm—mice
(in vivo) Lavin et al., 2019
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Table 2. Cont.

Protein Probe Model and Species Reference General Application

Collagen
Fibrin

Lipid encapsulated
perfluorocarbon nanoparticle Human thrombus (ex vivo) Yu et al., 2000 Imaging of fibrin clots

Para-magnetic nanoparticle Jugular vein—canine (in vivo) Flacke et al., 2001 Targets and enhances signal
in thrombi

EP-1242 Acute plaque thrombus—guinea pig
(in vivo) Sirol et al., 2005

EP-1873 Plaque rupture model—rabbit (in vivo) Botnar et al., 2004 Imaging subacute plaque thrombosis

EP-2014R

Acute coronary thrombosis—swine (in vivo)
and human translation

Botnar et al., 2004 Detection of acute coronary
thrombosis

Spuentrup et al., 2008
Vymazal et al., 2009

Mouse model of DVT—mice (in vivo) Andia et al., 2014

FTP11-cy+NIRF Deep venous thrombosis (DVT)
model—mice (in vivo) Hara et al., 2012

64Cu-FBP8
Carotid artery and femoral vein
thrombosis—rodent (in vivo) Blasi et al., 2015

Matrix Metalloproteinase (MMP)

P947 Atherosclerotic plaque—mice (in vivo) and
rabbit (ex vivo) Lancelot et al., 2008 Detects arterial wall remodelling

Model of abdominal aortic aneurysm—rat
(in vivo) Bazeli et al., 2010

ACPPs Plaque rupture model—rabbit (ex vivo) Hua et al., 2015 Selectively differentiates stable and
unstable plaques

Monoclonal Antibody Atherosclerosis model—rabbit (in vivo) Kunge et al., 2010 Targets MMP in atherosclerosis
MPI Atherosclerosis model—rabbit (ex vivo) Fujimoto et al., 2008

RP-782

111In- labelled assessing MMP activation in
an induced vascular remodelling
model—mice (in vivo)

Zhang et al., 2008 Assess MMP activation in vascular
remodelling

RP-805 Post-MI model—mice (in vivo) Su et al., 2005
Aneurysm biology and outcome
prediction—mice (in vivo) Golestani et al., 2015
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3.2. Atherosclerotic Arterial Disease

3.2.1. Clinical Need

Atherosclerosis is a disease of the vessels and is characterised by build-up of atheromatous
plaques [51]. The plaques are formed by the deposition of fatty substrates, cells and other molecules
within the vessel wall [52]. This accumulation of plaque eventually causes partial or total obstruction
of the vessel [52]. Atherosclerosis is a major contributor to overall cardiovascular morbidity and
mortality [53]. Clinical manifestations include ischaemic heart disease, stroke and peripheral arterial
disease [53].

3.2.2. ECM in Atherosclerosis

ECM changes are observed in various CVD conditions with MMPs playing a key role in remodelling
of the ECM. In atherosclerosis, excessive activation of MMPs contributes to disease progression and
plaque destabilisation. In atherosclerotic vessels MMPs act as inflammatory mediators linking
inflammation with vascular remodelling. In disease vessels MMPs function as inflammatory cytokines
and their expression and activity increases. However, MMPs are only present in low concentration
and activity in healthy vessels. An important cell type in atherosclerosis is vascular smooth muscle
cells (VSMCs). VSMCs are present in a quiescent/contractile state in healthy arteries and switch to a
proliferative/synthetic state in atherosclerosis [54] rendering atherosclerotic plaques rich in collagen [54].
VSMC proliferation is dependent on type I collagen and results in plaque progression [54]. Adhesion
of the ECM to cells is largely regulated by integrins, a large family of heterodimeric cell adhesion
molecules that anchor cells to ECM and neighbouring cells. In this regard, integrin β1 is the most
predominant integrin expressed on the surface of VSMCs and all collagen-binding integrins share
the common β1 subunit [55,56]. Important extracellular matrix components and imaging targets in
atherosclerosis include elastin, collagen, fibrin and metalloproteinases.

3.2.3. Imaging Atherosclerosis

Elastin

Taking advantage of the increased abundance of elastin within the extracellular matrix of
atherosclerotic plaque compared to the normal arterial wall, a novel elastin-specific magnetic resonance
contrast agent (ESMA, BMS753951) was used for the non-invasive quantification of plaque burden and
arterial remodelling in a mouse and swine model of atherosclerosis [57,58]. ESMA is a paramagnetic
Gd-labelled C32H40N7O11Gd low-molecular-weight contrast agent (855.95 Da), which has high vessel
wall and plaque uptake (peaking at 30 min post injection in an apolipoprotein E-deficient ApoE−/−

mouse) and relatively low uptake within other tissues (e.g., heart, liver, lung and muscle). ApoE−/−mice
fed a high fat diet have become a popular animal model of atherosclerosis because they reproducibly
develop plaques in the aorta, aortic root and brachiocephalic arteries with little variability between
animals. It is also the quickest animal model that can achieve advanced atherosclerosis within 3 months
of high-fat feeding in comparison, for example, to LDLR−/− mice that require around an additional
month to display the same plaque burden and features as Apoe−/− mice [59]. In an ApoE−/− mouse
model fed a high fat diet (HFD), the plaque contrast to noise ratio (CNR) post ESMA injection was
significantly higher at 8 weeks and 12 weeks compared with control mice. Furthermore, there was a
significant reduction in the post ESMA CNR at 12 weeks in mice who were treated with pravastatin
compared with mice on a high fat diet alone; demonstrating the potential for non-invasive quantitative
detection of plaque elastin content and size after therapeutic treatment (Figure 6) [57].
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views of brachiocephalic arteries by MRI of control and ApoE−/− mice 4, 8 and 12 weeks after the onset 
of HFD (n = 8 per group). High-resolution delayed-enhancement images overlaid on TOF images with 
corresponding sections from histology (H&E and EvG stain). (b) Comparison of average PAMV, 
calculated from morphometric measurement on high-resolution DE images after the injection of 
ESMA (n = 8 per group). (c,d) Scatter plots showing significant (p < 0.05) correlation between 
morphometric PAMV measurements (c) and lumen CSA measurements (d) on high-resolution DE-
MRI (Delayed enhancement magnetic resonance imaging) images and on corresponding EvG-stained 
histological sections (n = 15). Scale bars: white, 250 μm; black, 100 μm. Values are expressed as means 
± s.d. MRI—magnetic resonance imaging, HFD—high fat diet, TOF—time of flight, PAMV—
percentage atheroma/media volume, CSA—cross-sectional area. Reproduced with permission from 
Makowski et al., 2011 [57]. 

In a swine model of arterial remodelling post stenting, significantly increased CNR was 
observed within the coronary arteries post ESMA injection compared with a non-targeted 
gadolinium agent [58]. Furthermore in a rabbit model of plaque rupture, ESMA enabled a more 
accurate assessment of vascular remodelling and identification of unstable plaque that rupture and 
form thrombus compared with gold-standard native T1 weighted black blood imaging (Figure 7) 
[60].  

 

Figure 6. In vivo assessment of plaque burden by morphometric measurements. (a) Cross-sectional
views of brachiocephalic arteries by MRI of control and ApoE−/− mice 4, 8 and 12 weeks after the
onset of HFD (n = 8 per group). High-resolution delayed-enhancement images overlaid on TOF
images with corresponding sections from histology (H&E and EvG stain). (b) Comparison of average
PAMV, calculated from morphometric measurement on high-resolution DE images after the injection
of ESMA (n = 8 per group). (c,d) Scatter plots showing significant (p < 0.05) correlation between
morphometric PAMV measurements (c) and lumen CSA measurements (d) on high-resolution DE-MRI
(Delayed enhancement magnetic resonance imaging) images and on corresponding EvG-stained
histological sections (n = 15). Scale bars: white, 250 µm; black, 100 µm. Values are expressed
as means ± s.d. MRI—magnetic resonance imaging, HFD—high fat diet, TOF—time of flight,
PAMV—percentage atheroma/media volume, CSA—cross-sectional area. Reproduced with permission
from Makowski et al., 2011 [57].

In a swine model of arterial remodelling post stenting, significantly increased CNR was observed
within the coronary arteries post ESMA injection compared with a non-targeted gadolinium agent [58].
Furthermore in a rabbit model of plaque rupture, ESMA enabled a more accurate assessment of
vascular remodelling and identification of unstable plaque that rupture and form thrombus compared
with gold-standard native T1 weighted black blood imaging (Figure 7) [60].

More recently, Phinikaridou et al. introduced tropoelastin as a new and attractive biomarker
for plaque progression and instability [61]. As elastogenesis and elastolysis favour the accumulation
of tropoelastin, rather than mature cross-linked elastin, tropoelastin may serve as a more sensitive
imaging biomarker of active, yet incomplete, elastogenesis to detect plaque progression and instability.
MRI imaging of tropoelastin using a gadolinium labelled tropoelastin-binding contrast agent (TESMA)
detected increased pathologic elastogenesis during atherosclerosis progression in ApoE−/− mice that
was reduced with statin treatment. Moreover, tropoelastin MRI was more sensitive at detecting
unstable plaque in a rabbit model of plaque rupture compared with ESMA [61]. This is because TESMA
binds only to tropoelastin that accumulates in higher proportion in unstable plaques as a result of a
dysfunctional cross-linking or elastolysis in the presence of disease, whereas ESMA binds equally
to both tropoelastin and endogenously present polymeric elastin. Thus, ESMA could be used as an
imaging probe to assess the net elastin increase and plaque burden, whilst TESMA could be used to
selectively visualise dysfunctional elastogenesis or elastolysis (Figure 8) [61].
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Figure 7. (A,E), Cross-sectional pre-contrast MR images. (B,F), Corresponding DE MR images obtained
after administration of elastin-specific contrast agent. (C,G), DE MR images fused with angiographic
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Uptake of elastin-specific contrast agent and R1 values are higher in diseased compared with control
aortas. Reproduced with permission from Phinikaridou et al., 2014 [60].
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Figure 8. In vivo magnetic resonance imaging (MRI) comparison of vessel wall enhancement using
the elastin (elastin-specific magnetic resonance contrast agent [ESMA]) and tropoelastin (TESMA)
binding contrast agents in mice. (A), Fused maximum intensity projection (MIP) reconstructed
magnetic resonance angiography and delayed-enhanced-MRI after administration of Gd-TESMA show
focal uptake of Gd-TESMA in the brachiocephalic artery (BCA) of an atherosclerotic apolipoprotein
E–deficient mouse. (B–E), MRI of the BCA acquired from a control animal, scanned 24 h apart, showed
vessel wall uptake of Gd-ESMA (B,C), but no uptake of Gd-TESMA (D,E) because of the lack of
tropoelastin in the absence of disease. (F–M), MRI of the BCA acquired from 2 different diseased
animals showed enhancement of the vessel wall after administration of both agents because of the
presence of both cross-linked elastin and tropoelastin in the atherosclerotic lesion. Ao indicates aortic;
and L., left. Reproduced with permission from Phinikaridou et al., 2018 [61].
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Collagen

The differential expression of various collagen sub-types within atherosclerotic plaque and at
different stages of plaque progression makes it an attractive target for atherosclerosis imaging. Type I
collagen is the most abundant sub-type and accounts for up to two thirds of all collagen [62]. In an
ex vivo immunoblotting study, Chung et al. investigated the abundance of different subtypes of
collagen in atherosclerotic carotid arteries in patients presenting with diabetes. They demonstrated
significant accumulation of type III collagen in diabetic vessels and found that type III collagen was
more predominant than type I [63]. Caravan et al. developed a Gd-DTPA-based MRI probe that
binds to type I collagen (EP-3533) for molecular imaging of fibrosis [64]. More recently, Chen et al.
extended this approach by conjugating high density lipoprotein (HDL) based nanoparticles with
EP-3533 and used it to image collagen in atherosclerotic plaque progression and regression in mice
in vivo (Figure 9) [65]. Molecular imaging of collagen using EP-3533 has been extensively discussed in
a review article by Haas et al. [12]. Using a different approach, a collagen binding adhesion protein
found in Staphylococcus aureus, called CNA35, was shown to selectively bind to type I and type II
collagen [66,67]. Healthy and atherosclerotic arteries have been imaged with both gadolinium and
fluorescently labelled liposomes conjugated with CNA35 [68,69]. Using positron emission tomography
(PET), Schulz et al. demonstrated the feasibility of a novel platelet-collagen-receptor-glycoprotein
(GP) VI radiotracer to target and selectively visualise collagen type I and III ex vivo in human carotid
atherosclerotic plaques and in vivo in an ApoE−/− mouse model [70].
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Figure 9. (A) Typical MR images, (B) normalised enhancement ratio of the aortic wall to muscle (NERw)
and (C) the difference between the contrast-to-noise ratio from the aortic wall to muscle pre- and
post-contrast injection of abdominal atherosclerotic plaques for pre- and 24 h post-injection (∆CNRw)
of HDL, EP3533-HDL, and EP3612-HDL at day 0 (yellow bars) and day 28 (green bars) of Reversa
mice in the regression group. The red arrows point to the aortas. Error bars are representing mean
± SD. Statistical significance at p < 0.05 (n = 25) is indicated by the asterisks (*). HDL—high density
lipoprotein. Reproduced with permission from Chen et al., 2013 [65].
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Fibrin

Fibrin plays a crucial role during plaque progression, development of intraplaque haemorrhage
and formation of thrombus following plaque rupture [71,72]. It is therefore an important target for
molecular imaging of atherosclerotic plaque. Yu et al. demonstrated the feasibility of molecular
MRI of fibrin clots ex vivo using a novel fibrin-targeted contrast agent with a lipid-encapsulated
perfluorocarbon nanoparticle incorporating numerous Gd-DTPA complexes into its outer surface [73].
The ability to visualise human clots of variable sizes (0.5–7.0 mm) ex vivo was significantly improved
after administration of this contrast agent compared to non-contrast T1 weighted imaging. In another
study, the use of fibrin-specific paramagnetic nanoparticles enabled efficient targeting and signal
enhancement of thrombi in the external jugular vein of a canine model in vivo [74]. Instead of
nanoparticles, Sirol et al. used a gadolinium-based, small molecular weight, fibrin-binding MRI agent
(EP-1242; EPIX Pharmaceutical) to image acute carotid plaque thrombus in guinea pigs [75]. Later on,
Botnar et al. demonstrated the feasibility of in vivo molecular MRI of acute and subacute plaque
thrombosis following plaque rupture using the gadolinium-based fibrin-binding MRI contrast agent
(EP-1873) in a rabbit model of plaque rupture and thrombosis [76] (Figure 10). The same group also
demonstrated the feasibility of acute coronary thrombus detection using a similar gadolinium based
fibrin-binding contrast agent, EP-2104R, in a swine model [77] (Figure 11). EP-2104R was subsequently
successfully translated into humans, demonstrating the in vivo potential of this fibrin-specific MRI
contrast agent for the detection of acute venous and arterial thrombus in patients for the first time [78,79]
(Figure 12).
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Figure 10. (A), Reformatted view of a coronal 3D data set shows sub-renal aorta ≈20 h after EP-1873
administration. Three well-delineated mural thrombi (arrows) can be observed, with good contrast
between thrombus (numbered), arterial blood (dotted arrow), and vessel wall (dashed arrow). The in-
plane view of the aorta allows simultaneous display of all thrombi, showing head, tail, length,
and relative location. (B–D), Corresponding cross-sectional views show good agreement with
histopathology (E–G). Reproduced with permission from Botnar et al., 2004 [76].
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Figure 11. In vivo MRI of Gd-labelled fibrinogen clots. (A) and (D), Coronary MRA before (A) and 
after (D) thrombus delivery. On both scans, no apparent thrombus is visible (circle). (B) and (E), Black-
blood inversion recovery TFE scans before (B) and after (E) clot delivery (same view as (A) and (D). 
After thrombus delivery (E), three bright areas are readily visible (arrows and circle), consistent with 
location of thrombus. No apparent thrombus was visible on prethrombus (B) images (arrow and 
circle). (C), X-ray angiogram confirming MR finding of thrombus in mid-LAD (circle). (F), Magnified 
view of (C). LM indicates left main; LAD indicates left anterior descending artery; LCX indicates left 
circumflex artery. Reproduced with permission from Botnar et al., 2004 [77]. 

 
Figure 12. (a) Molecular MR imaging of thrombus in the descending thoracic aorta in an 82-year-old 
female patient using inversion recovery black-blood gradient-echo imaging (IR). In this patient, 
parasagittal IR post-contrast imaging was also performed to demonstrate the extent of the clot. The 
high local signal amplification allows for white spot imaging of the clot (arrow). (b) Corresponding 
multiplanar reconstruction from contrast-enhanced multislice CT demonstrating corresponding 
plaque in the aortic wall. At the cranial end of the plaque a small calcification is also visible 
(arrowhead). Reproduced with permission from Spuentrup et al., 2008 [78]. 
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Figure 11. In vivo MRI of Gd-labelled fibrinogen clots. (A,D), Coronary MRA before (A) and after (D)
thrombus delivery. On both scans, no apparent thrombus is visible (circle). (B,E), Black-blood inversion
recovery TFE scans before (B) and after (E) clot delivery (same view as (A,D). After thrombus delivery
(E), three bright areas are readily visible (arrows and circle), consistent with location of thrombus.
No apparent thrombus was visible on prethrombus (B) images (arrow and circle). (C), X-ray angiogram
confirming MR finding of thrombus in mid-LAD (circle). (F), Magnified view of (C). LM indicates left
main; LAD indicates left anterior descending artery; LCX indicates left circumflex artery. Reproduced
with permission from Botnar et al., 2004 [77].
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Figure 12. (a) Molecular MR imaging of thrombus in the descending thoracic aorta in an 82-year-old
female patient using inversion recovery black-blood gradient-echo imaging (IR). In this patient,
parasagittal IR post-contrast imaging was also performed to demonstrate the extent of the clot. The high
local signal amplification allows for white spot imaging of the clot (arrow). (b) Corresponding
multiplanar reconstruction from contrast-enhanced multislice CT demonstrating corresponding plaque
in the aortic wall. At the cranial end of the plaque a small calcification is also visible (arrowhead).
Reproduced with permission from Spuentrup et al., 2008 [78].

Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) have an important role in extracellular matrix and plaque
remodelling and are associated with the thinning of the fibrous cap and the destabilization of
atherosclerotic plaques [80,81]. Lancelot et al. introduced a novel gadolinium-based MRI contrast
agent (P947) to target MMPs in atherosclerotic plaques [82]. P947 was evaluated in vivo using
ApoE−/− mice and ex vivo in hyperlipidaemic rabbits and human carotid artery endarterectomy
specimens. This study demonstrated the preferential accumulation of P947 in atherosclerotic lesions



Appl. Sci. 2020, 10, 4001 17 of 40

compared with non-targeted Gd-DOTA (Figure 13). This contrast agent has also been shown to
distinguish dietary-induced variations in MMP-related enzymatic activity within plaques in an
atherosclerotic model, supporting its utility as a clinical imaging tool for in vivo detection of arterial
wall remodelling [83]. Haas et al. have systematically reviewed alternative applications of the P947
probe for imaging the ECM [12].
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Figure 13. In vivo MRI of an ApoE−/− mouse before (arrow) and after P947 injection (arrowhead).
After injection, significant contrast-enhancement appears in the atherosclerotic aortic wall as shown on
the inset images of the aorta. Delineation of plaque morphology after contrast-enhancement is clearly
improved (arrowhead). The bottom-right panel is the matched pathologic section. Reproduced with
permission from Lancelot et al., 2008 [82].

In a more recent study, fluorescent-labelled activatable cell penetrating peptides (ACPPs)
designed to target MMPs were tested in a rabbit model of plaque rupture [84]. Fluorescence
enhancement was significantly higher in ruptured plaques ex vivo, suggesting that ACPP probes
can selectively differentiate unstable from stable plaques (Figure 14). Taking advantage of the
higher sensitivity of single photon emission computed tomography (SPECT), Kuge et al. proposed a
technetium-99m-labelled monoclonal antibody targeted to MMP-1, for imaging atherosclerosis in a
rabbit model [85]. Probe uptake was significantly higher in atherosclerotic arteries compared with
control arteries, with further increased uptake in grade IV atheroma in comparison with neointimal or
more stable lesions. In another study, technetium-99m-labelling of the broad MMP inhibitor (MPI)
enabled ex vivo quantification of the reduction of MMP after dietary modification or statin therapy in
atherosclerotic rabbit aortas [86]. In a further study, Zhang et al. used a novel indium 111In-labelled
tracer (RP782) with specificity for activated MMPs for molecular imaging of MMP activation in
injury-induced vascular remodelling in ApoE−/− mice [87] using micro SPECT/CT.
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Figure 14. Comparison of fluorescence signals from thrombi and the surrounding atherosclerotic
plaque in the experimental group. HCD + MMP-ACPP (a,b) and HCD + Thrombin-ACPP(c).
The images from left to right in (a) are: closed view fluorescence image, opened and zoomed-in
fluorescence/reflected images with the thrombus (green arrows) attached at its original site, opened
and zoomed-in fluorescence/reflected images with the thrombus removed. The dark signal of the aorta
on the reflected image comes from clotted blood and relatively healthy vessel wall (without obvious
fatty streaks). Plaques appeared as brighter (grey) signal. The bar graphs (b,c) give the statistical
analysis of fluorescence signal for the underlying disrupted plaques (DP) and the overlaying thrombi
(p < 0.001). HCD—high cholesterol diet; ACPP—activatable cell penetrating Peptides. Reproduced
with permission from Hua et al., 2015 [84].

3.3. Myocardial Infarction

3.3.1. Clinical Need

Myocardial infarction (MI) followed by permanent structural damages and adverse cardiac
remodelling can gradually lead to heart failure (HF). HF is an increasingly prevalent clinical condition,
accounting for 1–2% of morbidity in the adult population in developed countries, rising to ≥10%
among people >70 years of age. The lifetime risk of developing heart failure at age 55 years is 33% for
men and 28% for women [88–90]. Ischaemic heart disease and myocardial infarction account for the
vast majority of all cases of heart failure [91] and therefore pose a significant health burden on patients
and an economic burden on healthcare systems.

3.3.2. Biology of Myocardial of Infarction

Myocardial infarction involves a sudden and transient occlusion of the coronary arteries
(either following acute atherosclerotic plaque rupture or a thrombo-embolic event), depriving the
cardiomyocytes of vital nutrients and oxygen. The myocardial matrix network is primarily fibrillar
collagen and is organised into three distinct interconnected structures: endomysium (surrounding
cardiomyocytes), perimysium (surrounding major bundles) and the epimysium (encasing the whole
cardiac muscle). Within these interconnected myocardial structures, there are different types of
collagen, with the epimysium and perimysium containing approximately 85–90% type I and 6–11%
type III collagen in the endomysium of the total collagen content [92]. The cardiac ECM has the
structural role to preserve the shape of the ventricles, facilitate the translation of force and transduce
signals [93]. Cardiomyocytes have no ability to regenerate and therefore, depending on the extent of
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the injury, the myocardial structural integrity can be severely disrupted with necrosed cardiomyocytes
replaced with fibrotic tissue leading to life-threatening arrhythmias and development of heart failure.
After myocardial infarction (MI), MMPs are important in myocardial repair and scar formation,
however if MMPs become excessively activated leading to an imbalance in MMP:TIMP ratio it can
cause LV dysfunction and eventually lead to HF. The resulting insult subsequently triggers a cascade
of molecular and cellular compensatory or damaging inflammatory, proliferative and maturation
responses. The inflammatory phase is triggered by the death of cardiomyocyte cells that consequentially
activates pro-inflammatory cytokines, enhancing the activity of MMPs promoting ECM degradation
and also activates chemokines and other cell adhesion molecules. Neutrophils, leukocytes and
macrophages are recruited into the infarcted area and as the debris is cleared from the area, the initial
pro-inflammatory stimulus is suppressed by signals from mediators like interleukin-10 (IL-10) and
transforming growth factor- β (TGF-β). These molecules, activate TIMPs that help preserve the
ECM by inhibiting MMPs activity and initiate the proliferative phase [94]. During the proliferative
phase, fibroblasts proliferate and transform/differentiate into myofibroblasts and secrete ECM proteins.
The ECM subsequently undergoes extensive remodelling and cross-linking during the maturation
phase leading to the formation of a fibrous scar. Fibroblasts are quiescent and along with endothelial
cells they are also subjected to apoptosis at this stage [94]. Throughout the myocardial remodelling
process, the ECM plays a crucial role and molecular imaging of specific ECM components could offer a
wealth of diagnostic and therapeutic insights into heart failure post myocardial infarction that is an
incredibly challenging clinical syndrome.

3.3.3. Imaging Myocardial Infarction

Non-Contrast Imaging

Cardiovascular magnetic resonance (CMR) is clinically established as the gold standard
non-invasive imaging modality for the assessment of myocardial injury in the context of ischaemic heart
disease and heart failure. In addition to highly reproducible 3D volumetric assessment of biventricular
dimensions and function, CMR offers a spectrum of non-contrast and contrast enhanced myocardial
tissue characterisation functions. Simonetti et al. proposed a short-inversion-time inversion-recovery
(STIR) magnetic resonance imaging sequence with preparatory radio-frequency pulses to eliminate
signal from flowing blood to distinguish between normal and abnormal myocardial tissues and
image focal high signal intensity consistent with myocardial oedema following an acute myocardial
infarction [95]. Here, a segmented rapid acquisition with relaxation enhancement (turbo spin echo)
readout is used, with the inversion-recovery delay adjusted to null fat. To enable a more quantifiable
and reproducible assessment of myocardial oedema and inflammation post-MI, 2D and more recently
free breathing 3D whole heart myocardial T2 mapping sequences have been proposed [96,97]. It is
also possible to take advantage of native myocardial T1 values to differentiate between normal
and pathological myocardium including myocardial fibrosis, oedema, inflammation and infiltrative
processes such as Fabry disease, amyloidosis and hemosiderosis [98–101]. Furthermore, recent pre
and post contrast myocardial T1 mapping techniques have enabled a non-invasive and quantifiable
assessment of the myocardial extracellular volume (ECV), a technique that was previously only
feasible through invasive histopathological analysis [102]. This is particularly important in assessing
pathological remodelling within the myocardial extracellular matrix, such as extracellular volume
expansion caused by oedema, inflammation, infiltrative processes and diffuse and focal fibrosis [102].

Contrast-Enhanced Imaging

Leveraging the differential washout time of gadolinium-based contrast agents within normal and
pathological myocardial tissue (e.g., fibrotic scar tissue), T1-weighted inversion recovery prepared late
gadolinium enhancement (LGE) CMR is able to directly visualise the transmural extent and pattern of
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myocardial scar (e.g., following acute myocardial infarction) with a high degree of accuracy, offering
both prognostic and therapeutic guidance to clinicians [103].

Collagen
Recent studies have demonstrated that early gadolinium enhancement (EGE) myocardial imaging

identifies both reversibly and irreversibly injured myocardium following an acute MI, thus detecting
and quantifying potential areas at risk [104–106]. However, none of these techniques are able to
directly visualise and assess individual components of the extracellular matrix and its underlying
biological processes. To overcome this limitation, targeted molecular imaging of individual extracellular
matrix components is required. One example is EP-3533, the same collagen-binding agent used for
atherosclerotic imaging [107]. In a mouse model of myocardial infarction, Helm et al. demonstrated
significantly longer washout time for EP-3533 compared to gadopentetate dimeglumine in regions
of post-MI scarring and in normal myocardium, with good correlation on histologic sections stained
for collagen and EP-3533 enhanced areas seen on inversion-recovery CMR images (Figure 15) [107].
Furthermore, there was a two-fold higher concentration of EP-3533 within post infarction tissues
compared to normal myocardium.
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Figure 15. (a,b,d,e) Gradient-echo IR MR images and (c,f) corresponding picrosirius red–stained
histologic sections of the LV. Arrows point to area of scarring. (a,d) Standard anatomic MR images
acquired by using a double IR gradient-echo sequence (8.0/3.7/R-R interval). (b,e) Regions of contrast
enhancement on midventricular short-axis MR images (7.1/3.0/430) of the LV at two section locations
obtained 40 min after EP-3533 injection correlate closely with (c,f) photomicrographs of picrosirius
red–stained tissue sections shown at nine times their original size. LV—left ventricle. Reproduced with
permission from Helm et al., 2008 [107].

Elastin
In a separate approach, Wildgruber et al. used ESMA to image elastin fibres for in vivo assessment

of extracellular matrix remodelling in a mouse model of myocardial infarction [108]. Despite the final
measured area of infarction being similar to that measured with a conventional Gd-based contrast
agent, the authors observed progressively increased ESMA uptake within the infarcted area, peaking at
day 21 post-MI, which correlated with increased synthesis of tropoelastin and improvement in ejection
fraction, suggesting some compensatory properties of elastin post myocardial injury in a mouse of
permanent occlusion (Figure 16) [108,109].
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C57BL/6J mouse on postoperative day 7 after myocardial infarction. Two-chamber view and short-
axis view obtained at the level of the blue lines in first 4-chamber (image) show accumulation of Gd-
ESMA (second and third image) in the myocardial scar, corresponding to the infarct area on 
triphenyltetrazolium chloride (TTC) staining (last image). Reproduced with permission from 
Wildgruber et al., 2014 [108]. 

In an alternative approach, perfluorocarbons were combined with elastin MRI to enable 
simultaneous assessment of inflammation and elastin remodelling in a murine model of myocardial 
infarction using a single loop multinuclear 1H/19F send receive coil [110]. This confirmed an early 
inflammatory response (peaking at day 7 post infarction) followed by elevated elastin remodelling 
(peaking at day 21 post MI) (Figure 17) [110]. 

 

Figure 17. (A): Assessment of inflammatory response after myocardial infarction in mice at 3T 
magnetic resonance imaging (MRI) using 19F perfluorocarbons. Representative short-axis views of 
co-registered 1H + 19F images (left column; N = 8 MI animals/time-point; N = 6 SHAM-operated 
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Figure 16. Gadolinium-based elastin-specific MR contrast agent (Gd-ESMA) for imaging of myocardial
scar. (A), Chemical structure of Gd-ESMA. (B), Cross-sectional cardiac MR images of C57BL/6J mouse
on postoperative day 7 after myocardial infarction. Two-chamber view and short-axis view obtained at
the level of the blue lines in first 4-chamber (image) show accumulation of Gd-ESMA (second and third
image) in the myocardial scar, corresponding to the infarct area on triphenyltetrazolium chloride (TTC)
staining (last image). Reproduced with permission from Wildgruber et al., 2014 [108].

In an alternative approach, perfluorocarbons were combined with elastin MRI to enable
simultaneous assessment of inflammation and elastin remodelling in a murine model of myocardial
infarction using a single loop multinuclear 1H/19F send receive coil [110]. This confirmed an early
inflammatory response (peaking at day 7 post infarction) followed by elevated elastin remodelling
(peaking at day 21 post MI) (Figure 17) [110].
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Figure 17. (A): Assessment of inflammatory response after myocardial infarction in mice at 3T magnetic
resonance imaging (MRI) using 19F perfluorocarbons. Representative short-axis views of co-registered 1H
+ 19F images (left column; N = 8 MI animals/time-point; N = 6 SHAM-operated animals/time-point) and
macrophage immunohistochemistry (IHC; macrophages identified as MAC-3 positive, brown; N = 4 MI
animals/time-point; N = 3 SHAM-operated animals/time-point) from the heart at 3, 7, 14, and 21 days after MI.
(B): In vivo imaging of extracellular matrix remodelling after myocardial infarction with a gadolinium-based
elastin/tropoelastin-specific contrast agent Representative short-axis images of relaxation rate (R1, left columns)
maps and tropoelastin immunohistochemistry (IHC; right columns) of the hearts sections at 7, 14, and 21 days
post-myocardial infarction (MI) at 3T magnetic resonance imaging (MRI). Tropoelastin fibres were identified
as black fine fibre network. Reproduced with permission from Ramos et al., 2018 [110].
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Matrix Metalloproteinases
Targeting the extensive role of MMPs in post-MI remodelling, Su et al. proposed a novel and highly

sensitive MMP-targeted imaging approach in a murine model [111]. This study used an MMP-targeted
99mTc-labelled compound (99mTc-RP805), which acted on the activated catalytic domain and therefore
exhibit enzyme inhibitory effects. Using SPECT imaging, 99mTc-RP805 uptake was increased threefold
and twofold within the infarcted and remote myocardium regions, respectively, compared with control
mice; confirming the significant role of MMPs within both the infarcted and remote myocardium
following an ischaemic insult. In a review article by Haas et al., further applications of the RP805 probe
for imaging the ECM in CVD are discussed [12].

3.4. Venous Thromboembolism

3.4.1. Clinical Need

Venous thromboembolism (VTE) predominantly manifests as deep vein thrombosis (DVT) in the
veins of the pelvis or lower limb [112], with or without pulmonary embolism (PE), and annual incidence
and mortality of up to 600,000 and 100,000, respectively in the United States [113,114]. Approximately
30% of patients with DVT develop pulmonary embolism (PE), of which 10% die; while 50% of patients
with DVT develop post-thrombotic syndrome (PTS) characterised by pain, swelling and chronic
ulceration [113,115]. PTS is associated with a reduced quality of life [116]. VTE causes a substantial
financial burden to health systems in Europe with the range of costs for in Europe ranging from 1.5 to
13.2 billion euros [117]. Given the burden of the disease early diagnosis and treatment are essential to
improve patient prognosis, quality of life and management is needed [112]. Venous thrombi mainly
contain erythrocytes, fibrin and collagen [118].

3.4.2. Biology of Venous Thromboembolism

The factors contributing to the formation of DVT were first described in 1856 as stasis in the
venous system, injury to vasculature and hypercoagulability that collectively increase the risk of clot
formation [119]. The initiation of this coagulation cascade along with fibrin deposition in the vessel
leads to the formation of the venous thrombus. Thrombus resolution occurs slowly through a natural
process of organisation involving the replacement of fibrin with collagen and recanalisation of the
vein [115,120,121]. Inflammation has been strongly associated with DVT thrombus resolution as the
inflammatory response causes the activation of pro-inflammatory cytokines (including IL-6 and IL-8)
and growth factors (including transforming growth factor beta-1 (TGF-β1) and -2 tumour growth factor
(TGF-β2) [122–124]. Consequently, macrophages, neutrophils and monocytes are recruited within the
thrombus further enhancing the inflammatory response by producing more inflammatory cytokines,
amalgamating the inflammation and growth factors [125]. With time, this existing fibrin fibre network
thickens or is replaced by other structural proteins, such as collagen [126]. An important factor of MMP
activation in DVT is that MMP are activated proximally by serine proteases; in particular plasmin
that is the main mediator of fibrinolysis [125]. Fibrinolysis, breakdown of fibrin, along with collagen
remodelling are essential for the resolution of the thrombus [127]. Fibrinolysis occurs at an increased
rate at the early phases and as the thrombus matures, fibrin is replaced by collagen [127]. Only acute
thrombi are considered for thrombolytic treatment, as they are more fibrin-rich, while older thrombi
are more collagenous and therefore resistant to plasmin-mediated degradation [128–132].

3.4.3. Imaging Venous Thromboembolisms

Direct MRI Thrombus Imaging

Moody et al. [133] demonstrated that it is possible exploit the intrinsic T1 properties of tissues to
image thrombus with MRI. Proton binding to Fe3+ within accumulating methemoglobin in thrombi
produces T1 shortening leading to high signal intensity on T1-weighted images of thrombi such as in
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DVT. In a murine model of DVT, Saha et al. assessed the longitudinal relaxation time (T1) of thrombus
over a 28 day evolutionary phase of the thrombus [134]. They demonstrated that the T1 relaxation time
of thrombus was shortest at 7 days following thrombus induction and returned to that of blood as the
thrombus resolved (Figure 18). T1 relaxation time was related to thrombus methemoglobin formation
and was a good predictor of successful thrombolysis with a cut-off point of <747 ms; with a sensitivity
and specificity to predict successful lysis of 83% and 94%, respectively.
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Short T1relaxation times (ms) appear red and revert back to blood (black) as thrombus ages. (D), Mean 
T1 relaxation times (ms) of the thrombus change during its resolution (scatter plot and mean of 
thrombus T1 relaxation time [ms] is shown, n = 88 mice, p < 0.0001, 1-way ANOVA). Mouse 
procedures were performed under the Animals (Scientific Procedures) Act, 1986, UK. ANOVA 

Figure 18. Magnetic resonance T1 mapping of experimental venous thrombi. (A), MRI venography
demonstrates the presence of thrombus in the murine inferior vena cava, which recanalizes over
28 days. (B), MSB sections of venous thrombus (T) during its resolution (yellow = red cells, red = fibrin,
blue = collagen;×200; bar, 200µm). (C), Corresponding T1 maps were generated by the use of a customised
program (MATLAB software, MathWorks) before importation into OSIRIX as shown. Short T1relaxation
times (ms) appear red and revert back to blood (black) as thrombus ages. (D), Mean T1 relaxation times
(ms) of the thrombus change during its resolution (scatter plot and mean of thrombus T1 relaxation time
[ms] is shown, n = 88 mice, p < 0.0001, 1-way ANOVA). Mouse procedures were performed under the
Animals (Scientific Procedures) Act, 1986, UK. ANOVA indicates analysis of variance; d—day; and MSB—
Martius Scarlet Blue. Reproduced with permission from Saha et al., 2013 [134].

In a similar experimental murine model of DVT, Phinikaridou et al. assessed the feasibility
of in vivo magnetization transfer contrast (MTC) and diffusion-weighted (DW) MRI for thrombus
imaging [135]. They demonstrated that quantitative MTC imaging is able to differentiate between
young (days 1 and 7) and old (>day 14) thrombus, while the combination of quantitative MTC and
DW imaging can successfully identity thrombus between days 7 and 14 (Figure 19).
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Figure 19. Percentage of magnetization transfer rate (MTR) and apparent diffusion coefficient (ADC)
values measured at different time points of venous thrombosis organization. The combination of
the percentage of MTR (<7620%/cm3) and ADC (>0.81 × 10 − 3 mm2/s) had a sensitivity of 87.5%
(95% confidence interval [CI], 47–99) and specificity of 83.3% (95% CI, 51–97) to identify thrombus
between 7 and 14 days old, when the fibrin content would be larger. Reproduced with permission from
Phinikaridou et al., 2013 [135].

Recently, Wu et al. demonstrated the feasibility of non-contrast diffusion weighted MRI for in vivo
discrimination of acute (<14 days) from non-acute (>14 days) DVT [136]. In this study, 85 patients with
lower limb DVT who underwent diffusion weighted MRI could be successfully differentiated based
on their apparent diffusion coefficient (ADC) images. The mean ADC was higher in acute DVT than
non-acute DVT (0.56 ± 0.17 × 10−3 vs. 0.22 ± 0.12 × 10−3 mm2/s, p < 0.001). Using 0.32 × 10−3 mm2/s
as the cut-off, the sensitivity and specificity of ADC to discriminate acute from non-acute DVT were
93% and 90%, respectively (Figure 20).Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 42 
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In a different study, Chen et al. demonstrated the potential of black blood non-contrast direct 
thrombus imaging in a cohort of 15 healthy volunteers and 30 patients with acute DVT. Thrombus 
appeared either iso- or hyperintense in the acute phase with comparable diagnostic confidence to 
contrast enhanced CMR venography: sensitivity (95%), specificity (99%), positive predictive value 
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Figure 20. A comparison between acute and non-acute DVT. Acute thrombus (first line) and non-acute
thrombus (second line) were hypointense on b = 0 (a,d), b = 800 s/mm2 (b,e) image. The signal
intensity was about the same for acute and non-acute thrombus, while ADC values differed greatly (c,f).
Mean ADC of this acute thrombus was above the cut-off of 0.32 × 10−3 mm2/s, while that of non-acute
thrombus was below the cut-off. Reproduced with permission from We et al., 2019 [136].
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In a different study, Chen et al. demonstrated the potential of black blood non-contrast direct
thrombus imaging in a cohort of 15 healthy volunteers and 30 patients with acute DVT. Thrombus
appeared either iso- or hyperintense in the acute phase with comparable diagnostic confidence to
contrast enhanced CMR venography: sensitivity (95%), specificity (99%), positive predictive value
(96%), negative predictive value (98%), and accuracy (98%) (Figure 21) [137].
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onset at 10 days. The small thrombus can also be detected by BBTI and matched well with that seen with
CE-CMRV (yellow arrows). BBTI—black-blood thrombus imaging; CE-CMRV—contrast-enhanced
CMR venography. Reproduced with permission from Chen et al., 2018 [137].

Molecular Thrombus Imaging

Fibrin
Fibrin is heavily involved in thrombus formation [71,72] and is therefore an important molecular

target for imaging of DVT. In a pre-clinical murine model of DVT, Andia et al. investigated the
fibrin-specific MRI contrast agent (EP-2104R) for the in vivo quantification of thrombus fibrin content
the identification of thrombus suitable for thrombolysis [138] (Figure 22). Contrast uptake positively
correlated with the fibrin content of the thrombus measured by Western blotting (R2 = 0.889; p < 0.001).
Furthermore, thrombus relaxation rate post contrast and the change in visualised thrombus size pre
and post EP-2104R injection were the best predictors for successful thrombolysis.
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of the thrombus and enabled visualisation of additional thrombus features, not visible on the pre-
contrast images (Figure 23). In a different approach, Hara et al. combined a novel fibrin-targeted 
probe (FTP 11-Cy7) with near-infrared fluorescence (NIRF) in a mouse model of DVT [140]. In vitro 
human clot-binding analyses showed a 6-fold higher NIRF signal for the clot target-to-background 
ratio (TBR) using the FTP11-Cy7 probes compared to the free Cy7. Moreover, the thrombus TBR of 
acute and sub-acute femoral DVT with FTP11-Cy7 obtained by intravital fluorescence microscopy 
was 4-fold higher than control free Cy7. Indeed, in vivo imaging of fibrin in jugular DVT via 
fluorescence molecular computed tomography demonstrated strong NIRF signal in thrombi 
compared to sham-operated jugular veins using FTP11-Cy7. Recently, Blasi et al. combined whole-
body PET/MRI with the fibrin-binding probe 64Cu-FBP8 in a rodent model of carotid artery and 
femoral vein thrombosis [141]. A single whole-body PET/MRI scan revealed the location of both 
arterial and venous thrombi after the administration of 64Cu-FBP8. PET imaging showed that probe 

Figure 22. (A), Changes in thrombus relaxation rate ∆R1 (s-1) pre–EP-2104R and post–EP-2104R
administration at different time point during thrombus organization. Greatest differences in ∆R1 pre
and post contrast are observed at days 7 and 10. (B), Thrombus gadolinium concentration (µmol/L)
mirrored the changes in R1 over time. (C), R1mapping images pre EP-2104R and post EP-2104R
injection and Martius Scarlet Blue (MSB) histology sections at the corresponding levels and fibrin
selective segmentation. Gd-DTPA indicates gadolinium with diethylenetriaminepentacetate (Magnevist,
Schering AG, Berlin, Germany). Reproduced with permission from Andia et al., 2014 [138].

In another study, Spuentrup et al. demonstrated the successful imaging of thrombus (both freshly
engineered thrombi and human thrombus removed from patients) by using EP-2104R in a swine model
of pulmonary embolism [139]. In a clinical translational study, Vymazal et al. assessed the use of
EP-2104R in patients with confirmed PE or DVT [79]. Use of the agent enhanced the signal of the
thrombus and enabled visualisation of additional thrombus features, not visible on the pre-contrast
images (Figure 23). In a different approach, Hara et al. combined a novel fibrin-targeted probe
(FTP 11-Cy7) with near-infrared fluorescence (NIRF) in a mouse model of DVT [140]. In vitro human
clot-binding analyses showed a 6-fold higher NIRF signal for the clot target-to-background ratio (TBR)
using the FTP11-Cy7 probes compared to the free Cy7. Moreover, the thrombus TBR of acute and
sub-acute femoral DVT with FTP11-Cy7 obtained by intravital fluorescence microscopy was 4-fold
higher than control free Cy7. Indeed, in vivo imaging of fibrin in jugular DVT via fluorescence molecular
computed tomography demonstrated strong NIRF signal in thrombi compared to sham-operated
jugular veins using FTP11-Cy7. Recently, Blasi et al. combined whole-body PET/MRI with the
fibrin-binding probe 64Cu-FBP8 in a rodent model of carotid artery and femoral vein thrombosis [141].
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A single whole-body PET/MRI scan revealed the location of both arterial and venous thrombi after
the administration of 64Cu-FBP8. PET imaging showed that probe uptake was greater in younger,
fibrin-rich clots compared with older collagen-rich clots in both arterial and venous thrombosis
(p < 0.0001), which was also confirmed on quantitative histopathology analysis.
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Figure 23. Left panel, met-Hb enhanced thrombus in the lower femoral/popliteal (knee) veins. Centre
panel, Additional thrombus apparent in the mid and upper femoral vein when image acquired 2 h post
EP-2104R injection. Right panel, 20 h postcontrast agent image demonstrates persistent enhancement
of the thrombus. Reproduced with permission from Vymazal et al., 2009 [79].

3.5. Abdominal Aortic Aneurysms

3.5.1. Clinical Relevance of AAA

Abdominal aortic aneurysms (AAA or triple A) are a localized enlargement of the abdominal aorta
such that the diameter is greater than 3 cm or more than 50% larger than normal. AAA’s are becoming
increasingly more prevalent with rupture of an AAA having devastating clinical consequences, with up
to 90% mortality [142,143]. This rise is driven by a maelstrom of risk factors including connective
tissue disorders (e.g., Marfan syndrome, Ehler Danlos syndrome), autoimmune and inflammatory
disorders (e.g., Takayasu disease, Kawasaki disease), infective disorders (e.g., brucellosis, salmonellosis
and tuberculosis), modifiable factors (e.g., smoking, hyperlipidaemia, obesity, hypertension) and
non-modifiable factors (increasing age and male sex) [144,145]. The size and rate of progression of AAA
has important prognostic implications and it currently serves as the screening marker for monitoring
disease progression and for following up treatments prior to pre-emptive surgical intervention [146].
However, anatomical assessment alone is highly unreliable as the rate of disease progression and aortic
dilatation varies significantly between affected individuals [147]. ECM components could potentially
offer a complementary tool to that of anatomical imaging, for improved and early diagnosis and
therapeutic targeting of AAA at a biological and molecular level [148].

3.5.2. Biology of AAA

Components of the extracellular matrix play significant roles in the remodelling and dilatation of
the abdominal aorta. Based on ex vivo tissue studies there is strong evidence that the breakdown of two
major ECM fibre components, elastin and collagen, is what primarily weakens the aortic wall resulting
in gradual enlargement and formation of a balloon-like swelling, called an aneurysm [149]. With the
continuous enlargement of the aneurysm, the media and adventitial layers of the vessel wall might
separate, and an intramural hematoma might be formed which is frequently rich in fibrin. Through
time the aneurysm tissue matures and the hematoma composition changes from fibrin-rich to collagen
and elastin rich, ultimately improving the hematomas’ stability [149]. Acute aortic dissection (AAD) is
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characterised by the formation of an intimal flap separating the true (normal pathway for blood) and
false (newly created pathway for blood) lumens [150]. The false lumen is located in the outer portion
of the aorta and there are generally indications of slow flow along some, if not all, of the lumen [150].

In AAAs, the most common type of proteinases are the MMPs [151]. MMP expression is increased
in comparison to normal tissue and TIMPs expression is also changed, However the MMP/TIMP
equilibrium is shifted towards the degradation of proteins [151]. In healthy conditions many vascular
cells secrete MMP, including both endothelial and VSMC, however in AAA additional secretion
is adopted by macrophages and lymphocytes [152,153]. Aortic wall elastin can be degraded and
fragmented by MMPs, leading to subsequent instability of the aortic wall [154]. Consequently,
the pulsatile strength of the vessel wall is reduced and as a result there is initially compensatory
production of collagen, which however, is also degraded over time [151]. When collagen degradation
surpasses the production of collagen the tensile strength of the vessel wall attenuates even more
resulting in vessel wall thinning and ultimately rupture [151]. Therefore, prognosis of AAA is highly
determined by the synthesis and degradation of elastin and collagen proteins.

3.5.3. Imaging AAA

Elastin

Elastin underpins the structural integrity of the aortic wall and constitutes up to a third of its
weight [155]. In a mouse model of aortic aneurysm, Botnar et al. demonstrated the feasibility of an
elastin-specific MR agent (ESMA) to monitor the in vivo stages of aortic wall remodelling prior to and
during aortic dilatation, with subsequent histopathological validation (Figure 24) [156].
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corresponding transverse images. On elastin-specific magnetic resonance molecular imaging agent 
(ESMA)-MRI, the rupture of elastic laminae could be clearly visualized in vivo (A4, A5). 
Corresponding ex vivo histological sections (A6, A7) confirmed the rupture of elastic laminae in this 
area (magnification of A6, orange arrows). On pre-contrast (A2) and gadolinium diethylenetriamine 
penta-acetic acid enhanced images (A3), only minor enhancement of the arterial wall was observed. 
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artery; and TOF—time of flight. Reproduced with permission from Botnar et al., 2014 [156]. 

Figure 24. In vivo assessment of the aortic rupture site prior to the dilation of the aorta. In an ApoE–/–

mouse 1 week after continuous infusion of angiotensin II, the angiogram demonstrates an aortic
lumen without dilatation or luminal irregularities (A1). The red line indicates the location of the
corresponding transverse images. On elastin-specific magnetic resonance molecular imaging agent
(ESMA)-MRI, the rupture of elastic laminae could be clearly visualized in vivo (A4,A5). Corresponding
ex vivo histological sections (A6,A7) confirmed the rupture of elastic laminae in this area (magnification
of A6, orange arrows). On pre-contrast (A2) and gadolinium diethylenetriamine penta-acetic acid
enhanced images (A3), only minor enhancement of the arterial wall was observed. aA—abdominal
aorta; EvG—Elastica van Gieson; HE—hematoxylin and eosin; rRA—right renal artery; and TOF—time
of flight. Reproduced with permission from Botnar et al., 2014 [156].
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Similarly, in a Marfan mouse model Okamura et al. demonstrated the potential of ESMA to detect
decreased aortic wall levels of elastin compared with wild-type controls [157]. Recently, Lavin et al.
advanced our understanding of dysfunctional elastogenesis in AAA disease by employing a newly
developed gadolinium labelled tropoelastin-binding MRI agent (TESMA). This study assessed whether
quantifying regional tropoelastin turnover correlates with aortic expansion in an Angio-II-infused
murine model (Figure 25) [158]. The authors demonstrated that tropoelastin overexpression and
the uptake of the contrast agent were confined within aneurysmal walls. Significantly, a parallel
longitudinal imaging study demonstrated a greater proportion of tropoelastin:elastin in dilating
compared to non-dilating aortas, which correlated with the rate of aortic expansion. Interestingly,
treatment with aspirin and statins did not affect tropoelastin turnover or aortic dilatation in a small
cohort of mice. Finally, TESMA was able to identify accumulation of tropoelastin in a small number of
excised human aortic aneurysmal tissue as confirmed by histology.
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first aortic dilation, there is vascular enhancement of the aneurysm after administration of Gd-TESMA 
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Figure 25. MRI of tropoelastin shows enhancement at sites of aortic aneurysm or dissection.
(A) A reformatted MRA of an Ang II-infused ApoE−/− mouse shows two regions of aortic dilation.
(B–G) MRA, LGE-MRI, and histology of a non-dilated segment show a normal aortic size,
low enhancement after administration of Gd-TESMA, and lack of tropoelastin, respectively. (H–M) At the
level of the first aortic dilation, there is vascular enhancement of the aneurysm after administration
of Gd-TESMA that co-localized with the accumulation of tropoelastin as verified histologically.
(N–P,T–V) At the level of the second aortic dilation, MRI images show the formation of a false
lumen indicative of an aortic dissection, with aortic enhancement after administration of Gd-TESMA
and retrograde blood flow. (Q–S) Histology verified the formation of two lumens and the accumulation
of tropoelastin in areas where vascular enhancement was observed in vivo using the tropoelastin agent.
Ao, aorta; FL, false lumen. Reproduced with permission from Lavin et al., 2019 [158].

Collagen

Despite an initial compensatory increase in collagen synthesis in the early stages of AAA onset,
enzymatic (e.g., MMPs and cathepsins) collagen degradation dominates the subsequent progressive
stages of AAA development, paving the way for aortic dilatation [159,160]. In a mouse model of aortic
aneurysm and rupture, Klink et al. assessed the feasibility of in vivo molecular MRI of collagen using
paramagnetic/fluorescent micellar nanoparticles functionalized with the collagen-binding protein
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CNA-35 [161]. Injection of CNA-35 micelles resulted in a significantly higher MRI signal enhancement
in aneurysmal walls compared with nonspecific micelles. Histological analysis demonstrated that
CNA-35 colocalized with type I collagen, although it is known to bind to all fibrillar collagens and
collagen type IV [161]. Furthermore, the investigators also showed that stable aneurysms were
associated with increased expression of collagen in the aortic wall and high CNA-35 uptake, whilst
ruptured aneurysms displayed significant collagen degradation and low CNA-35 uptake demonstrating
the potential of collagen imaging in the diagnosis and risk stratification of AAA. Given the most
abundant collagens in the aortic wall are type I and III collagen, Satta el al investigated whether
changes of the propeptide of type III collagen (PIIINP) in serum could be associated with characteristics
of AAA. PIINP measures the turnover of type III collagen [162]. Satta et al. quantified the levels of
animoterminal PIIINP and carboxyterminal propeptide of type I collagen by radioimmunoassays in
patient samples of AAA and reported an increase in type III collagen in the serum of patients with AAA
compared with controls. These result could be attributed to increased synthesis of type III collagen,
increased degradation or both in these patients [162].

Fibrin

Fibrin is a key protein in the formation of focal hematoma associated with aortic dissection and
the development of larger thrombi during the progression of AAAs [154]. Botnar et al. used the
fibrin-specific molecular MRI probe (EP2104R) in an angiotensin-II-infused ApoE−/− mouse model
of AAA [149]. EP2104R enabled visualization of the small fibrin-rich hematoma located at the site
of aortic dissection prior to aortic dilation and during the progression of AAA (Figure 26). In early
thrombi, a strong in vivo signal and increased fibrin deposition was measured, which was confirmed
by ex vivo analysis. In advanced thrombi, an increased remodelling of the matrix of the thrombus was
observed and a relative decrease in fibrin expression was measured in vivo. This could potentially
enable differentiation between early fibrin-rich and advanced remodelled aortic aneurysm thrombi.
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Figure 26. Assessment of a focal fibrin-rich intramural hematoma before the dilation of the aorta by fibrin
MRI. A, On the TOF angiogram (A1), a nondilated aortic lumen without luminal irregularities can be
appreciated in an ApoE−/−mouse 1 week after continuous infusion of angiotensin II. The red line indicates
the alignment of in vivo MRI sequences and ex vivo histology. No significant enhancement of the aorta
was measured on pre-contrast scans (A2) and following the administration of the nonspecific control
agent (Gd-DTPA, A3). Following the administration of the fibrin-specific molecular probe, a strong
focal enhancement was measured at the dissection side (A4–A6). On the EvG stain, the dissection
of elastic laminae can be clearly visualised on magnified images (B2). In between the dissection,
a fibrin-rich mural hematoma can be visualised (B2–B4). It is a strong signal from the fibrin that
antibody was measured at the location of the intramural hematoma (B4). No relevant formation of
elastin or collagen fibres was measured in the hematoma on histologic sections (B1–B3), indicating
that no remodelling of the hematoma has occurred. aA—abdominal aorta; Gd-DTPA—gadopentetate
dimeglumine; MRI—magnetic resonance imaging; rRA—right renal artery; TOF—time of flight.
Reproduced with permission from Botnar et al., 2018 [149].
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Matrix Metalloproteinases

Similar to atherosclerotic arterial disease, MMPs play a significant role in aortic remodelling during
the evolution of AAA (e.g., the degradation of elastin and collagen) [153,154]. Bazeli et al. used the
MMP targeting MRI probe (P947) in an elastase-infused rat model of AAA [163]. After 5 days of elastase
infusion, a significantly higher molecular signal was detected in rats injected with P947 compared
with rats injected with an untargeted-scrambled agent or Gd-DOTA. Histologic analysis confirmed
colocalisation of areas of contrast enhancement and the periarterial inflammatory area of the aneurysms,
representing a potential non-invasive method to detect AAAs at high risk of rupture. Using SPECT
imaging, Golestani et al. used a technetium-99m-labeled MMP-specific tracer (RP805) for the detection
of aneurysm biology and prediction of outcome in angiotensin II-infused mice [164]. RP805 uptake
was significantly higher in animals with AAA when compared with angiotensin II-infused animals
without AAA or control animals. A cohort of angiotensin II-infused animals were imaged at one week
and followed up for an additional three weeks. RP805 uptake at 1 week was significantly higher in
mice that later developed rupture or AAA. Furthermore, tracer uptake at one week correlated with
aortic diameter at four weeks, demonstrating the potential of RP805 as a risk stratification tool for
future aortic expansion/rupture.

4. Clinical Relevance of Non-Invasive Imaging Probes

The ability to image the individual components of the ECM to gain an insight into the live
biological processes that ultimately manifest as various CVDs is of great clinical value. The clinical
translational scope is multifaceted. Patients can be identified at an earlier stage in the disease process,
potentially prior to phenotypical or symptomatic presentation. This will subsequently enable the
initiation of either prophylactic or therapeutic treatment at a much earlier stage, which may translate
into improved clinical outcomes. The dynamic nature of ECM biology can be leveraged to monitor
patients over time, including their response to treatment. Furthermore, the quantitative and targeted
imaging of ECM components could be utilised as an additional tool to titrate and if needed alter
therapeutic strategies. Similarly, molecular imaging of ECM components could play a significant
role in therapeutic drug development both in pre-clinical and clinical trials to assess the efficacy of
pharmacological interventions at both the cellular and molecular levels.

However, these probes are largely still at the developmental stage and no single probe has yet been
established for routine clinical decision-making. They remain expensive to implement and are mainly
used by a select group of academic and commercial institutions. In addition to large clinical efficacy
trials, long-term data on the potential effect these imaging probes may have on the physiological
function of the ECM is required before large-scale clinical trials take place. Nuclear imaging probes
have a distinct advantage over MRI probes in the sense that a significantly lower concentration of
probe is required to achieve the required threshold for detection. This lowers the developmental
cost of probes and accelerates human trials as expensive and time-consuming toxicity studies in
humans can often be extenuated due to micromolar dosing. However, MRI retains the advantage of
superior spatial resolution, intrinsic tissue characterisation and lack of ionising radiation. Furthermore,
once the initial hurdle of probe safety and efficacy has been overcome, long-term production, storage
and maintenance of MRI probes is cheaper and more scalable compared to nuclear imaging probes,
for instance no requirement for cyclotrons in close proximity to scanners, longer and safer storage once
manufactured. Furthermore, access to MRI scanners is relatively cheaper compared to PET. Hybrid
scanners (e.g., PET/MR) have been developed to take advantage of the higher sensitivity of PET whilst
at the same time enjoying the benefits of MRI (e.g., higher spatial resolution). However, they are very
expensive, limited to a select group of centres and ionising radiation remains a persistent drawback.
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One area that is attracting interest is the idea of using ECM probes with PET in clinical proof of
concept studies by taking advantage of the significantly lower dose that is required as a pragmatic
bridge to full MRI only probe development. Once a clear proof of concept in man is established,
resources and focus can shift towards toxicity and safety studies for MRI only probes. This strategy
can streamline the pathway and significantly increase the likelihood of successful probe development.

5. Future Directions

Understanding the biosynthesis and biochemical composition of ECM components enables the
design and development of targeted imaging probes for molecular imaging using modalities, such as
MRI and PET. This information is of importance not only to the field of molecular imaging but also in
for tissue engineering and regenerative medicine to produce biomaterials to mimic the properties of
ECM proteins. Existing probes in research still require further development and clinical validation in
clinical trials. Despite the considerable advantages of MRI; including high spatial resolution images
and radiation free imaging; clinical translation of MRI probes is impeded because of concerns with
toxicity and financial viability. There is therefore need for future studies into methods that can improve
the safety of these MRI probes to bridge the gap that currently exists between probe development and
clinical translation. The limitations of the use of gadolinium-based contrast agents are well documented
for instance in patients with renal impairment. There is therefore a renewed interest in manganese,
a biogenic compound, as a non-gadolinium MR imaging contrast which displays similar physical
properties of gadolinium, however, differs by means of clearance as it is excreted via the hepatobiliary
system. Targeted iron oxide nanoparticles are currently been explored as contrast agents and have
shown great potential. Prospective development of MRI agents is likely to involve multi-modal
approaches, integrating systems and new theranostic applications combining diagnosis and therapy in
a single exam.

6. Conclusions

The ECM plays vital roles in multiple cardiovascular diseases and maintaining ECM homeostasis
is a key target of effective treatment and prevention. Different CVDs share changes in common ECM
proteins, e.g., fibrin, collagen and elastin and ECM-related enzymes, e.g., MMPs, LOX that have
become interesting imaging and therapeutic targets. Understanding the biochemistry of the major
ECM proteins is essential for the development of drugs that specifically modulate the ECM and novel
imaging approaches for assessing changes in the composition of ECM proteins in disease conditions.
In the past decade there have been major advancements in both non-contrast imaging of the ECM and
also protein- and cell-specific imaging probe development for imaging the biology of ECM proteins.
These imaging technologies could be used to improve diagnosis and guide personalised treatments
for improving patient outcomes. Future studies should focus on further refinement of the imaging
probes to enable safe and efficient imaging and to ultimately translate and evaluate their use in the
clinical setting.
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