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Abstract: We propose using derivative features for sound event detection based on deep neural
networks. As input to the networks, we used log-mel-filterbank and its first and second derivative
features for each frame of the audio signal. Two deep neural networks were used to evaluate the
effectiveness of these derivative features. Specifically, a convolutional recurrent neural network
(CRNN) was constructed by combining a convolutional neural network and a recurrent neural
networks (RNN) followed by a feed-forward neural network (FNN) acting as a classification layer.
In addition, a mean-teacher model based on an attention CRNN was used. Both models had an
average pooling layer at the output so that weakly labeled and unlabeled audio data may be used
during model training. Under the various training conditions, depending on the neural network
architecture and training set, the use of derivative features resulted in a consistent performance
improvement by using the derivative features. Experiments on audio data from the Detection and
Classification of Acoustic Scenes and Events 2018 and 2019 challenges indicated that a maximum
relative improvement of 16.9% was obtained in terms of the F-score.

Keywords: sound event detection; convolutional recurrent neural network; derivative features;
mean-teacher model; attention model

1. Introduction

Humans can obtain information about their surroundings from nearby sounds. Accordingly, sound
signal analysis, whereby information may be automatically extracted from audio data, has attracted
considerable attention. The Detection and Classification of Acoustic Scenes and Events (DCASE)
2013–2020 challenges have greatly contributed to increasing the interest in this area, and several
competition tasks have been defined. Among these tasks, sound event detection (SED) is aimed at
identifying both the existence and occurrence times of the various sounds in our daily lives [1]. It has
several applications, such as surveillance [2,3], urban sound analysis [4], information retrieval from
multimedia content [5], health care monitoring [6], and bird call detection [7].

Recently, deep neural networks (DNNs) have demonstrated superior performance to that
of conventional machine learning techniques in image classification [8], speech recognition [9],
and machine translation [10]. In [11–13], it was demonstrated that the feedforward neural networks
(FNNs) outperformed the traditional Gaussian mixture model and support vector machines in SED.
Therefore, current studies on SED primarily focus on DNN-based approaches.

Owing to their fixed interlayer connections, FNNs (which are the basic architecture of DNNs)
cannot effectively handle signal distortions in image classification. The same phenomenon may occur
in SED, which generally uses a two-dimensional time-frequency spectrogram as input to the FNN.
Moreover, FNNs have limitations in modeling the long-term time-correlation of the sound signal
samples. Accordingly, FNNs are not widely used in SED.
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Convolutional neural networks (CNNs) have exhibited superior performance to that of FNNs
in various recognition tasks, including SED [11]. By using two-dimensional filters, the parameters
of which are shared along the time and frequency shift, CNNs can efficiently handle audio signal
distortions in the time-frequency domain [12]. However, CNNs are not suitable for modeling the time
correlations of audio signals.

Recurrent neural networks (RNNs), such as gated recurrent neural networks (GRUs) and long
short-term memory, have been successfully used in speech recognition [14]. They can efficiently model
the long-term time-correlations in time-series signals, and thus they are expected to facilitate SED.

The recently proposed convolutional recurrent neural networks (CRNNs), which combine CNNs
and RNNs, have exhibited satisfactory classification performance in SED [11]. They are currently
recognized as a highly effective deep neural network architecture in SED and have been widely used
in the DCASE challenge since 2018.

As SED becomes more demanding, larger amounts of training data are required. However,
owing to the high cost of gathering strongly labeled data, weakly labeled data are widely used instead.
In recent DCASE challenges, weakly labeled and unlabeled data were provided as the training data for
CRNNs. Although CRNNs perform quite well in SED, they generally assume strongly labeled training
data and are not robust against weakly labeled and unlabeled training data.

Recently, attention-based neural networks have been widely used in speech recognition,
vision classification and machine translation [15–18]. In some studies, improved sound classification
results have been obtained by using an attention mechanism in the deep neural network. In [19],
an attention scheme was incorporated into a deep CRNN, and improved performance was exhibited
on a weakly labeled SED task. The attention method was effective in identifying sound events from
audio recordings, including noisy sounds.

Owing to their availability, unlabeled data are critical for improved SED. In [20], for efficient use
of unlabeled training data, a mean-teacher model based on an attention-based CRNN was proposed
for SED and it showed the best performance in DCASE challenge 2018. The architecture and training
method of this model is designed to be suitable for unlabeled training data [21]. In the recent DCASE
2019 and 2020 challenges, a CRNN architecture based on the mean-teacher model was chosen as the
baseline classification model for SED.

As mentioned previously, deep neural networks for SED have evolved from simple FNNs to
recent CRNNs, where an attention-based architecture as well as mean-teacher model-based training
and evaluation are used. In the aforementioned studies on SED, the log-mel filterbank was calculated
for each frame of the signal and was subsequently used input to the deep neural network. However,
it is known that derivative features are frequently used in addition to the static features for improved
performances in speech recognition [22]. Considering the characteristic similarity between speech and
audio signals, we can expect that SED may be improved by using derivative features. Accordingly,
the first and second delta features of the log-mel filterbank were extracted and two-dimensional feature
maps were constructed using these features in the time-frequency spectrogram domain. Three feature
maps, (corresponding to the first and second delta, and static features) were input to the CRNN for
improved SED. The effectiveness of this technique was evaluated using a state-of-the-art CRNN.

The remainder of this paper is organized as follows. In Section 2, we introduce the feature
extraction method. The architecture of the CRNN used in this study is explained in Section 3.
In Section 4, we introduce the databases and present the experiments. Section 5 concludes the paper.

2. Feature Extraction

2.1. Preprocessing

For the training and testing of the CRNN, the log-mel filterbank (LMFB) was extracted to provide
acoustic features to the network, as shown in Figure 1. The audio signal was sampled at 16 kHz,
and the short-time Fourier transform (STFT) was computed using a hamming window of length 1024
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(64 ms) with an overlap of 360 (41.5 ms) [19]. Sixty-four bands of the mel-scale filterbank outputs
from 0 to 16 kHz were obtained using the STFT and then were log-transformed to produce the same
dimensional LMFB for each 41.5 ms frame. The feature extraction process generated 240 frames with
64 dimensions for the 10 s clips used for training and testing. After the LMFB was computed, it was
normalized by subtracting its mean and dividing by its standard deviation over the entire training
data. Subsequently, it was used as input to the CRNN.
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2.2. Derivative Features

In speech recognition, which is similar to SED in that time-series signals are involved, the first
and second derivative features are calculated from the static feature. In this study, we consider the
LMFB extracted in Figure 1 as the static feature and compute the derivative features of the LMFB to
use them for training the CRNN. The computation of the derivative features is done as follows:

dt =

∑K
k=1 k(ot+k − ot−k)

2
∑K

k=1 k2
(1)

where dt is the derivative feature at time t, and ot is the static feature. K is the number of frames
preceding and following the t-th frame. When computing the second derivative feature, the computed
first derivative feature is considered as the static feature in (1).

3. Network Architecture

We used two types of deep neural networks to evaluate the effectiveness of the derivative features
in SED: a basic CRNN and a mean teacher model using an attention-based CRNN. As these are
considered representative deep neural networks for SED, they may be used to confirm the usefulness
of the derivative features.

3.1. Basic CRNN

The architecture of the basic CRNN is shown in Figure 2. It is similar to other CRNNs commonly
used for SED [11], but the output of the network is fed to a global average pooling (GAP) layer
for training using weakly labeled and unlabeled data. The GAP is used to compute the clip-level
output for each class by time-averaging the frame-level sigmoid output of the classification layer.
Three convolution blocks (ConvBlocks) consisting of two-dimensional CNNs, one bidirectional GRU
layer, and one classification layer implemented as an FNN are cascaded in series. The GAP layer
averages the frame-level output of the classification layer for the 240 frames corresponding to the 10 s
audio clip. The GPA layer is not used for strongly labeled data.

The 64-dimensional log-mel filterbank and its first and second derivative values are used as
input to the basic CRNN. They are independently constructed as (240× 64)-dimensional feature maps.
Although the number of weights increases with the additional feature maps due to the first and second
derivative features at the input layer of CRNN, this increase is relatively small compared with the total
number of weights of the basic CRNN. The number of weights of the proposed model is about 127,000
compared to 126,000 without derivative features at the input layer.

In ConvBlock, a 3× 3 convolutional filter is applied to the context window of the input feature
map, and batch normalization is used to normalize the filter output to zero mean and unit variance.
A rectified linear unit (ReLU) activation function is applied after batch normalization. Non-overlapping
1× 4 max pooling is applied only in the frequency domain to reduce the dimensionality of the data and
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to improve frequency invariance. We preserve the time dimension to make use of the time-correlation
information of the sound signal, which will be exploited in the following GRU layer. Dropout is used
after max pooling to reduce overfitting in the training.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 11 
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The output of the last ConvBlock is used as an input to the bidirectional GRU, which has 64 units
in each direction and feeds its output into the classification layer, which has 10 units corresponding to
the sound classes. These units have a sigmoid activation function, the output of which denotes the
posterior probability of the classes for each frame of the sound signal.

3.2. Mean-Teacher Model

The mean-teacher model in this study is similar to that used as the baseline recognizer for SED in
the DCASE 2019 challenge [1]. The architecture of the mean-teacher model is shown in Figure 3.
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It consists of two CRNNs, the student model on the left, and the teacher model on the right.
The student model updates the model parameters by calculating the classification and the consistency
cost and by back-propagating the errors using gradient descent. The classification cost is calculated by
comparing the output of the student model with the ground truth table using the weakly labeled and
strongly labeled audio data, as shown in Figure 3. The consistency cost is calculated by comparing the
output of the student model with that of the teacher model by using unlabeled, weakly, and strongly
labeled data. The teacher model does not update its parameters by back propagation, but uses the
ensemble moving average weights of the student model [21]. For the test, the teacher model generally
produces more correct output and is used for prediction.

An attention-based CRNN is used for the mean-teacher model. The mechanism is similar to that
in [19]. A gated linear unit (GLU) is used in ConvBlock, and an attention layer at the output. The GLU
is shown in more detail in Figure 4; it contains a screening module that passes input signals if related
to the sound event of interest, and blocks all other the signals.
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The attention layer with the softmax activation function is used to compute the weighted average
for the output of the classification layer in the 10 s clip. It emphasizes the dominant class at each time
step in the computation of the average score of the posterior probability from the classification layer.
The weighted average score Oc for the class C is computed by multiplying the attention layer output
Oatt

c (t) and the classification layer output Ocla
c (t) as follows.

oc(t) =
∑T

t=1 oatt
c (t) × ocla

c (t)∑T
t=1 oatt

c (t)
(2)

where T is the total number of time frames in the 10 s audio clip.

4. Experimental Results

4.1. Database

In this study, we used the training and test data of the DCASE 2018 and 2019 challenges.
The training set is a combination of the training data from both challenges and consists of weakly
labeled, strongly labeled, and unlabeled data. It is presented in Table 1. The weak label provides sound
event information at the clip level without timing information at the frame level. Unlabeled data do
not have any label information, but we can obtain label information at the clip level by prediction from
the CRNN trained using weakly labeled data. The length of each clip is 10 s, and the number of clips
for the weakly, strongly and unlabeled data is 1578, 2045 and 14,412, respectively. There are 10 different
sound types, usually domestic or household.
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Table 1. Training data.

Label Type Weak Label Strong Label Unlabeled

No. of clips 1578 2045 14,412

Properties Clip-level Frame-level None

Clip length 10 s

Classes (10) Speech, Dog, Cat, Alarm bell ring, Dishes, Frying, Blender, Running
water, Vacuum cleaner, Electric shaver toothbrush

The details of the testing data are shown in Table 2. The data are divided into the DCASE 2018 and
DCASE 2019 test set, which contain 208 and 1168 clips, respectively. The test data contain frame-level
label information for the evaluation.

Table 2. Test data.

DCASE 2018 Test Set DCASE 2019 Test Set

No. of clips 288 1168
Properties Frame-level
Clip length 10 s

Classes Same as training data

4.2. Evaluation Metrics

The CRNN computes the posterior probability for each class in every time frame and identifies a
sound event when this probability exceeds 0.5. To improve reliability, a median filtering is applied to
the probabilities across the frames before the final decision.

The performance of the CRNN is measured by the F-score and error rate (ER) using an event-based
analysis [23], which compares the output of the CRNN with the ground truth table when the output
indicates that an event has occurred. The initial decision comprises three different types: true positive
(TP), false positive (FP), and false negative (FN). A TP indicates that the period of a detected sound
event overlaps with that from the ground truth table. In the decision, a 200 ms onset collar and a 200 ms
or 20% of the event length offset collar are allowed. An FP implies that there is no corresponding
overlap period in the ground truth table, although the CRNN output indicates an event. An FN
implies that there is an event period in the ground truth table, but the CRNN does not produce the
corresponding output.

The F-score (F) is computed based on the initial three decisions and is the harmonic average of the
precision (P) and recall (R). They are computed as follows.

P =
TP

TP + FP
, R =

TP
TP + FN

, F =
2PR

P + R
(3)

The error rate is computes as

Error rate =
S + D + I

N
(4)

where N is the total number of sound events active in the ground truth table. Sound events with correct
temporal positions but incorrect class labels are counted as substitutions (S), whereas insertions (I) are
sound events present in the system output but not in the reference, and deletions (D) are the sound
events present in the reference but not in the output [23].

4.3. Experimental Results

To train the basic CRNN, various combinations of weakly and strongly labeled and unlabeled
data were considered. Specifically, four combinations, [weakly + unlabeled], [weakly + unlabeled +

strongly], [strongly] and [weakly + strongly] were chosen.
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Binary cross-entropy was used as the loss function, and the Adam optimizer with a learning rate
of 0.001 was used to train the basic CRNN. We applied early stopping with a minimum of five epochs
and a patience of 15 epochs. These hyper parameters in this study are based on the baseline systems
announced at the DCASE 2018 and 2019 challenges. The classification results on the DCASE 2018 test
set are shown in Table 3, where “Single channel” implies that only the static log-mel filterbank was
used as the input of the basic CRNN, and “Three channels” implies that derivative features (first and
second) were also used as the input.

Table 3. Sound event detection (SED) results for the basic CRNN using derivative features (DCASE
2018 test set).

DCASE 2018 Test Set

Single Channel Three Channels

F-Score (%) ER F-Score (%) ER

[weakly + unlabeled]
(DCASE 2018 baseline)

12.79
(14.06)

1.44
(1.54)

14.48
-

1.42
-

[weakly + unlabeled + strongly] 17.57 2.42 18.85 2.41

[strongly] 14.99 2.41 16.62 2.51

[weakly + strongly] 15.25 2.42 17.83 2.37

Average 15.15 2.17 16.95 2.18

Average relative improvement - - 11.6% 0.5%

It can be seen that [weakly + unlabeled + strongly] yields the best performance because it has
the largest amount of training data. However, the performance is not satisfactory considering that
the unlabeled training data constitute 80% of all the training data. This implies that the basic CRNN
cannot efficiently use the unlabeled data to update its parameters.

Furthermore, using derivative features in all combinations of the training data results in a consistent
performance improvement in terms of the F-score. In the [weakly + unlabeled + strongly] combination,
which yields the best results, a relative improvement of 7.2% in the F-score is observed. The average
relative improvement of all combinations is 11.6%. However, the performance improvement is not
sufficiently large to manifest itself in the ER.

We compared the performance of our system with the DCASE 2018 baseline system [24] which
uses the same training and test data as the [weakly + unlabeled] combination in Table 3. We could find
that, although the baseline system employs similar CRNN architecture as ours, it showed 14.06% in
F-score and 1.54 in ER. It has a better F-score and worse ER than the [weakly + unlabeled] combination.
Slightly different hyper parameters and differences in the learning process may be the main reasons.
However, by using the derivative features, we could obtain better results than the baseline system in
both F-score and ER, as shown in the first row of the table.

In Table 4, the classification results using the DCACSE 2019 test set are shown. A similar trend
as in Table 3 is shown. The performance improvement by using the derivative features is rather
diminished in the DCASE 2019 test set. On average, a 5.3% relative improvement in the F-score is
attained, and [weakly + unlabeled + strongly] yields a 6% improvement.

The F-score learning curve during the training of the basic CRNN when only the weakly labeled
data are used is shown in Figure 5. Twenty percent of the weakly labeled data were used as validation
data. At epoch 45, the optimal performance is attained by early stopping. Further training only
increases the F-score of the training data, possibly resulting in overfitting.
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Table 4. SED results for the basic CRNN using derivative features (DCASE 2019 test set).

DCASE 2019 Test Set

Single Channel Three Channels

F-Score (%) ER F-Score (%) ER

[weakly + unlabeled] 11.28 1.55 11.93 1.54

[weakly + unlabeled+ strongly] 13.80 2.99 14.63 2.92

[strongly] 12.85 3.07 13.11 3.09

[weakly + strongly] 13.39 2.98 14.41 2.91

Average 12.83 2.65 13.52 2.62

Average relative improvement - - 5.3% 1.1%
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For the training of the mean-teacher model, we only used the [weakly + unlabeled + strongly]
combination because it yielded the best performance in the basic CRNN. Instead of early stopping, the
model was trained for 100 and 200 epochs (max epoch = 100 and max epoch = 200 in Tables 5 and 6,
respectively), and the best model on the validation data was accordingly selected for the evaluation of
the test data. The Adam optimizer was used for training with a learning rate of 0.0001 and a median
filtering of length 5 was applied to the output of the classification layer.

The SED results of the mean-teacher model are shown in Table 5. It can be seen that significant
performance improvement is obtained by the mean-teacher model (cf. Table 3). Furthermore,
the addition of a derivative to the static feature resulted in a 3% relative improvement in the F-score
in the DCASE 2018 test set. In the DCASE 2019 test set, a 4.4% relative improvement was attained.
In addition, a 2.5% relative improvement was observed when the strongly labeled training data set
was used as the test data to demonstrate the effect of the derivative features in case the difference
between the testing data and training data is small. It can be concluded that a consistent performance
improvement was attained by using the derivative features in the mean-teacher model regardless of
the test set: however, the improvement was rather diminished compared with the basic CRNN.

We also compared the performance of our system with the baseline system of the DCASE 2019 [1].
Although the baseline system uses the same audio data and similar mean-teacher model, it showed
an F-score of 23.7%, which is worse than our single channel result of 25.95%. As mentioned in the
comparison with the baseline of DCASE 2018 in Table 3, the performance difference seems to come
from some details in the implementation. However, by using the derivative features, we could further
increase the F-score of our system to 27.36%, which is better than the result of the DCASE 2019 baseline
system as expected.

The SED results when the training epochs increased to 200 are shown in Table 6. For the DCASE
2018 test set, a 5% relative improvement was attained by using the derivative features. The results for
the DCASE 2019 test set indicate a 7.5% improvement. When strongly labeled training data were used
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as test data, a 2.9% relative improvement was attained. It can be concluded that an increase in the
number of training epochs resulted in an increase in the relative improvement by the derivative features.

Table 5. SED results of the mean-teacher model using derivative features (max epoch =100).

Max Epoch = 100

Single Channel Three Channels

F-Score (%) ER F-Score (%) ER

DCASE 2018 test set 30.88 1.35 31.82 1.35
Relative Improvement - - 3% 0%
DCASE 2019 test set
(DCASE 2019 baseline)

25.95
23.70

1.52
-

27.09
-

1.53
-

Relative Improvement - - 4.4% 0%
Strongly labeled training set 68.53 0.58 70.28 0.54
Relative Improvement - - 2.5% 6.8%

Table 6. SED results of the mean-teacher model using derivative features (max epoch = 200).

Max Epoch = 200

Single Channel Three Channels

F-Score (%) ER F-Score (%) ER

DCASE 2018 test set 31.12 1.32 32.68 1.27
Relative Improvement - - 5% 3.8%
DCASE 2019 test set 25.45 1.51 27.36 1.46
Relative Improvement - - 7.5% 3.3%
Strongly labeled training set 73.08 0.49 75.17 0.45
Relative Improvement - - 2.9% 8.1%

5. Conclusions

Recently, among the approaches for SED, CRNNs have been widely used and have exhibited
better performance than other neural networks. In this study, we proposed the use of the first and
second delta features of the log-mel filterbank to improve the performance of state-of-the-art CRNNs.
We used two types of CRNNs, a basic CRNN and a mean-teacher model based on an attention-based
CRNN. We also used various combinations of weakly, strongly labeled, and unlabeled data to train
the CRNNs to confirm the effect of the derivative features on SED. Regarding the basic CRNN,
a performance improvement was always attained by using the derivative features in the various
combinations of the training data. On the DCASE 2018 test set, an 11.6% average relative improvement
in the F-score was obtained, and a 5.3% improvement was obtained on the DCASE 2019 test set.
Regarding the mean-teacher model, consistent performance improvement was observed as we changed
the number of epochs and test set type were changed. When 200 epochs were used for training, a 5%
relative improvement in the DCASE 2018 test set and a 7.5% improvement in the DCASE 2019 test set
were observed.

In this study, we used the derivative features of the log-mel filterbank to improve SED. In the
experiments using various combinations of training and test data, we observed a consistent performance
improvement in state-of-the-art CRNNs, which, however, was not as significant as in speech recognition.
Nevertheless, the results appear to be sufficient to indicate the importance of the derivative features
in SED.
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