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Abstract: In recent years, the method of deep learning has been widely used in the field of fault
diagnosis of mechanical equipment due to its strong feature extraction and other advantages such as
high efficiency, portability, and so on. However, at present, most kinds of intelligent fault diagnosis
algorithms mainly focus on the diagnosis of a single fault component, and few intelligent diagnosis
models can simultaneously carry out comprehensive fault diagnosis for a rotating system composed
of a shaft, bearing, gear, and so on. In order to solve this problem, a novel stacked auto encoders
sparse filter rotating component comprehensive diagnosis network (SAFC) was proposed to extract
domain invariant features of various health conditions at different speeds. The model clusters domain
invariant features at different speeds through the self-coding network, and then classifies fault types
of various parts through sparse filtering. The SAFC model was validated by the vibration data
collected, and the results show that this model has higher diagnostic performance than other models.

Keywords: deep learning; stacked auto encoders; sparse filtering; domain invariant feature;
multiple components

1. Introduction

With the coming of the IoT (Internet of Things) era, the reliability of mechanical equipment is
more and more demanding [1]. The rotating components of mechanical equipment such as shafts,
bearings, and gears are prone to shaft cracks, bearing wear, and gear breakage, which have great safety
hazards [2]. In order to ensure the safe and reliable operation of equipment, accurate and efficient fault
diagnosis technology is particularly important. As a powerful tool for processing big data, the deep
learning [3,4] model has been successfully applied to mechanical intelligent fault diagnosis.

In the field of intelligent fault diagnosis of rotating parts, many scholars have studied related
diagnosis by using various deep learning methods. Deng et al. [5] used the features extracted
from the time domain, frequency domain, and time–frequency domain of vibration signals as deep
Boltzmann machine (DBM) inputs to realize the accurate classification of seven different bearing faults.
Ding et al. [6] adopted the wavelet packet energy map as the input signal and designed the depth
convolutional neural networks (CNN) for bearing fault diagnosis. Meanwhile, in order to better
display the multi-layer representation of the neural network, a multi-scale layer was added behind
the final convolutional layer as the connection between the output of the final convolutional layer
and the previous pooling layer. Li et al. [7] first implemented wavelet packet transform (WPT) on the
original vibration signal, and then input the extracted statistical characteristics into a two-layer DBM
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to realize the fault diagnosis of the gear box, and the classification rate of 11 operating modes reached
97.68%. Liu et al. [8] proposed a method based on variational mode decomposition (VMD) and CNN
for feature extraction and fault diagnosis of planetary gear for local weak feature information, and
realized the identification and classification of planetary gear weak fault state, where VMD based
partition extraction method was better than EEMD, which could achieve 100% total CNN recognition
rate with less training time (14 times). Chen et al. [9] not only adopted the statistical features in the time
domain and frequency domain, but also added the test values of load and speed to form a set of feature
vectors as the input of the deep belief network (DBN), realizing the fault diagnosis of the gear box.

Even more exciting, stacked auto encoders (SAE) [10], as a widely used deep learning algorithm,
has attracted attention in the field of fault diagnosis. Feng Jia et al. [11] established a five-layer SAE and
used frequency domain signals as input to diagnose the rotating bearing faults under different loads and
speeds, with the diagnosis accuracy reaching almost 100%. Ngiam et al. [12] proposed an unsupervised
feature learning method: sparse filtering (SF). This algorithm only focuses on optimizing the sparse
performance of learning features while ignoring the distribution of learning data. Ya Guo Lei et al. [13]
introduced sparse filtering into mechanical intelligent fault diagnosis. First, sparse filtering was used
to extract unsupervised features of the time-domain signals of bearings, and then softmax was used as
a classifier to realize fault diagnosis and good results were obtained.

For various fault diagnosis components, the main intelligent diagnosis algorithm was to detect
the fault of the bearing and gear, respectively. Chen et al. [14] selected the method of adding Gaussian
noise to the training data for data enhancement, and then input it into SAE for bearing fault diagnosis.
Li Heng et al. [15] obtained spectrum samples by short-time Fourier transform (STFT) operation of the
bearing vibration signals, and then input them into CNN for network training. The results showed that
this method had high identification accuracy for different bearing fault types and could improve the
robustness of this method by increasing the type and number of fault samples. Wang Weifeng et al. [16]
proposed a fault diagnosis method based on Bi LSTM (binary long short term memory) network in
order to solve problems such as large amounts of data and difficulty in extracting features in gear fault
diagnosis. The results showed that the Bi LSTM network method for gear fault diagnosis was better
than the CNN and LSTM network.

From what has been discussed above, it can be seen that the method of deep learning has been
widely used in the field of fault diagnosis of mechanical equipment due to its strong feature extraction
and other advantages such as its high efficiency, portability, and so on [17]. However, at present,
all kinds of intelligent fault diagnosis algorithms mainly focus on the diagnosis of a single fault
component, and few intelligent diagnosis models can simultaneously carry out comprehensive fault
diagnosis for a rotating system composed of a shaft, bearing, gear, and so on. In order to solve this
problem, a novel stacked auto encoders sparse filter rotating component comprehensive diagnosis
model (SAFC) was proposed to extract domain invariant features of various health conditions at
different speeds and classify them.

The proposed model can be used to extract domain invariant features of various health conditions
at different speeds. Using the spectrum of fault signal as input, the deep neural network (DNN) was
established through SAE, and the back propagation (BP) algorithm was used to fine-adjust the network.
Meanwhile, the batch standardization (BN) algorithm was introduced into DNN to realize the rapid
training of intelligent fault diagnosis model of rotating parts. After the clustering and dimension
reduction of the data, the data was input into the sparse filtering model, and the unsupervised feature
extraction of the input signal was carried out by using the sparse filtering. Finally, softmax was used as
the classifier to realize fault diagnosis. The SAFC model was validated by the vibration data collected,
and the results show that the proposed model has high diagnostic performance.

The main innovations are as follows:

(1) A novel SAFC model that can extract and classify fault signal domain invariant features is proposed.
(2) The proposed method is able to process multiple rotating parts at the same time and has the

ability to process large amounts of data.
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(3) The domain invariant features of the same fault at different speeds can be extracted and clustered.

The organizational structure of the rest of this paper is as follows. Section 2 briefly introduces
the SAE and SF theories, respectively; Section 3 introduces the architecture and training methods of
SAFC model; Section 4 verifies the superiority of the SAFC model through two groups of experiments;
Section 5 is the conclusion.

2. Introduction to Theory

2.1. Stacked Auto Encoders

The basic component unit of a SAE is an automatic encoder (AE) structure, and an AE is a
symmetrical three-layer neural network consisting of an input layer, hidden layer, and output layer.
The structure is shown in Figure 1. The learning process includes encoding and decoding: encoding is
used to map input signals into hidden layer expression, while decoding is a reconstruction of hidden
layer expression [18]. In the process of reconstruction, a reconstruction error is set to minimize the
reconstruction error through iterative training to obtain the best hidden layer data expression.
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Figure 1. The automatic encoder AE architecture.

To build an AE, three things need to be done: building an encoder, building a decoder, and setting
up a loss function measuring the information lost due to compression. The process of encoding and
decoding usually adopts a parametric equation, and the parameter optimization process can be realized
by minimizing the loss function.

If the input is a tableless dataset {xn}
N
n=1, in which xn ∈ Rm×l, hn is the hidden layer encoding

vectors, and x̂n is the output layer decoding vector. Therefore, the encoding process is as follows:

hn = f (Wxn + b1) (1)

where f (·) is the coded activation function [19]; W is the coded weight matrix; and b1 is the offset vector.
The decoding process is:

x̂n = g(WThn + b2) (2)

where g(·) is the coded activation function; WT is the coded weight matrix; and b2 is the offset vector.
The network parameter set is optimized by minimizing the reconstruction error:

O(Θ) = argmin
1
n

n∑
i=1

L(xi, x̂i) (3)

where L is loss function: L(xi, x̂i) = ‖xi − x̂i‖
2.

AE was superimposed layer by layer, that is, the first hidden layer was the second input, thus
forming the DNN model structure based on SAE, as shown in Figure 2. The constituted DNN first
carries out the layer by layer training of the forward propagation realization network, and realizes the
network weight updating and parameter fine-tuning by the BP algorithm. When given an input signal,
the input layer and the first hidden layer of DNN are regarded as the coding network of the first AE.
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The parameters obtained after the first AE training are then used to initialize the second hidden layer
of DNN. The calculation process of the first coding vector of the input signal is as follows:

h1
n = f (xn) (4)
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Then, the encoding vector was used as input data to train the second AE, that is, the first hidden
layer and the second hidden layer of the DNN were used as the encoding network of the second AE.
Accordingly, the second hidden layer of DNN is initialized by the second AE, step by step until the last
AE completes the training:

hM
n = f (hM−1

n ) (5)

After pre-training the superimposed AE, the softmax classification layer containing sample tags
was used as the DNN output layer, followed by SAE, and then the BP algorithm was used to reverse
fine-tune the DNN parameters layer by layer. Therefore, the DNN output calculated from the input
signal was:

yn = f (hM
n ) (6)

2.2. Batch Normalization

The batch normalization can reparameterize almost all DNN in an elegant way. The process
can be applied to each activation layer without parameter adjustment. It can be standardized in an
independent way for each row of a matrix with zero mean and unit variance. Suppose an n-dimensional
input x = (x1 . . . xn) in order to improve training and reduce the internal covariant transfer problem,
the batch standardization algorithm adopts two necessary simplification steps:

First, normalize each unit:

x̂i =
xi − E[xi]√

Var[xi]
(7)

where E[xi] is the mean value of each unit and
√

Var[xi] is the standard deviation. Then, translate and
scale the normalized value:

fi = γix̂i + βi (8)

where γi represents the scaling parameter and βi represents the translation parameter.
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Second, assume that there are m values in xi, namely the minimum batch is φ = {x1...m}, x̂1...m
represents the normalized value, and the corresponding linear transformation is y1...m. Therefore, the
batch standardization transformation is BNγ,β : x1...m → y1...m , namely:

E[xφ] =
1
m

m∑
j=1

x j (9)

Var[xφ] =
1
m

m∑
j=1

(x j − E[xφ])
2 (10)

x̂ j =
x j − E[xφ]√
Var[xφ] + ε

(11)

ŷ j = γx̂ j + β (12)

where ε is an imposed constant to avoid undefined gradient problems of
√

s when s = 0.
Furthermore, gradient loss ` is back propagated in batch standardized training:

∂`
∂x̂ j

=
∂`
∂y j

γ (13)

∂`

∂Var[xφ]
=

∑m

j=1

∂`
∂x̂ j

(x j − E[xφ]) · [−
1
2
(Var[xφ] + ε)−

3
2 ] (14)

∂`

∂E[xφ]
=

∑m

j=1

∂`
∂x̂ j

−1√
Var[xφ] + ε

(15)

∂`
∂x j

=
∂`
∂x̂ j

−1√
Var[xφ] + ε

+
∂`

∂Var[xφ]
·

2(x j − E[xφ])

m
+

∂`

∂E[xφ]
·

1
m

(16)

∂`
∂γ

=
∑m

j=1

∂`
∂y j
· x̂ j (17)

∂`
∂β

=
∑m

j=1

∂`
∂y j

(18)

Batch normalized transformation introduces standardized activation into each layer of the network
to ensure that all layers of the network can continuously learn the input distribution to reduce the
problem of internal covariate transfer, so an easy initial environment can be established at the beginning
of network training to speed up network training.

Applying the batch normalization to each activation layer of the SAE. Batch normalization
transformations are applied to normalization Wxn + b1 in Equation (1). The bias is considered to be
subtracted in the subsequent mean subtraction process, so the bias was not used here. Therefore,
Equation (1) can be changed to:

hn = f (BN(Wxn)) (19)

In addition, the saturation problem can lead to the disappearance of the gradient by using linear
rectifier unit function (rectified linear units, ReLU) to solve.

ReLU(x) = max(x, 0) (20)

The ReLU function can make it easier for the network to learn optimization during training.
Compared with the traditional sigmoid and tanh functions, its advantages are as follows:
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(1) Due to the nonlinear characteristics of sigmoid and tanh functions, both of them carry out
exponential operations, leading to an increase in the calculation amount when taking the
derivative of back propagation, while the ReLU function can save a lot of calculation time.

(2) When sigmoid and tanh functions carry out back propagation in deep network, it is very easy
to generate a gradient disappearance problem, that is, when approaching the saturation zone,
the derivative approaches 0, transformation slows down, and information is easily lost. Therefore,
deep network training cannot be realized.

(3) The ReLU function can set part of the output to 0, making the model more sparse, thus reducing the
dependency relationship between network parameters and reducing the overfitting phenomenon.

2.3. Sparse Filtering

As a simple and effective unsupervised feature learning algorithm, the sparse filtering algorithm
only needs one parameter adjustment, namely the number of features to be learned [20]. Its working
principle is mainly to bypass the estimation of data distribution and optimize only a simple cost
function, the L2 norm, to directly analyze the distribution of optimized features.

The structure of sparse filtering is a two-layer neural network including input layer, output layer,
and weight matrix. The input is the collected signal and the output is the learned feature. The collected

signals are divided into many identical samples to form a training set
{
xi
}M

i=1
, where xi = <N×1 is

a sample containing N data points and M is the number of samples. The sample is mapped to the
eigenvector fi

∈ <
L×1 by the usual-value matrix W ∈ RN×L, and f i

j was used to represent the jth
eigenvalue of the ith sample of the eigenmatrix. The features learned are linear:

f i
j = WT

j xi (21)

First, all row vectors of the eigenmatrix are normalized, then all column vectors of the eigenmatrix
are normalized, and finally the sum of the absolute values of all elements of the matrix is obtained.
The details are as follows:

First, each feature is normalized to an equal activation value, that is, the L2 norm of each feature
divided by all the samples in which it is located:

f̃ j = f j/
∥∥∥ f j

∥∥∥
2 (22)

Then, the characteristics of each sample are normalized, so that the characteristics of all samples
fall on the unit sphere of L2 norm:

f̂ i = f̃ i/
∥∥∥∥ f̃ i

∥∥∥∥
2

(23)

Finally, the L1 norm penalty is used to carry out the sparsity constraint to realize all the normalized
features before optimization. Assuming that a dataset has M samples, the objective function of sparse
filtering is:

minimize
W

M∑
i=1

∥∥∥ f̂ i
∥∥∥

1 =
M∑

i=1

∥∥∥∥∥∥∥∥∥
f̃ i∥∥∥∥ f̃ i
∥∥∥∥

2

∥∥∥∥∥∥∥∥∥ (24)

3. Proposed Smart Diagnosis Method

The SAFC model is composed of SAE and SF, where SAE has five layers of network and SF has
two layers of network, as shown in Figure 3. The specific steps of the extracting features are as follows:

(1) All the collected time domain signals are converted into frequency domain signal through FFT.
According to different health conditions, the spectrum samples of vibration signals at different

speeds are composed into a training set
{
Xi, li

}M

i=1
, where M is the number of samples, X j

∈ <
N×1

means that the ith sample contains N Fourier coefficients, and li is the health label of the ith sample.
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(2) The no label training set
{
Xi

}M

i=1
was used to pre-train the SAE layer by layer. The pre-training

process was to superimpose N AE into N hidden layers, and the characteristics learned in the
previous layer were used as the input of the next layer.

(3) BP algorithm combined with label data
{
Xi, li

}M

i=1
was used to realize weight updating and

parameter fine-tuning of SAE, and back propagation training was carried out by minimizing the
error between extracting features and health labels.

(4) BN was applied to each activation layer of SAE, and the characteristic difference at different
speeds was reduced by its translation and scaling.

(5) The features initially extracted after dimension reduction through two-layer SAE were taken

as new training samples and a new training sample set
{
xi, li

}m

i=1
was formed. m is the number

of samples [21], x j
∈ RNin×1 means the ith sample contains Nin data points and li is the label of

the sample.
(6) The sample set was formed into a matrix form T ∈ RNin×M, and then input into the sparse filtering

model for training. The weight matrix W is obtained through the minimization formula (24).
(7) The learning feature f i

∈ RNout×1 can be calculated by W and xi. ReLU was used as the activation
function here to extend the sparse filtering to nonlinear mapping. Therefore, Equation (20) is
extended to:

f i
j = ReLU(WT

j xi) (25)

(8) When the learning feature set
{

f i
}M

i=1
is obtained, it is combined with the tag set {li}M

i=1 and input
into the softmax regression classifier for training. Then, the remaining samples are used as test
samples to test the accuracy of the proposed method [22].

The testing process is as follows. First, each test sample is converted into spectrum after FFT
transformation, and all spectrum samples are combined into matrix form as input; second dimension
reduction and preliminary feature extraction are carried out in superposition self-coding to cluster
the same type of signals with different speeds. Then, the trained sparse filter model is used to study
the characteristics of the test samples. Finally, the learned features are combined with the real fault
type label, and then input to the softmax regression model that has been trained for classification, thus
obtaining the test accuracy rate.
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4. Experimental Verification

To verify the feasibility of the proposed method, a rotating parts fault diagnosis bench was
designed based on two groups of tests. The first group classified the test data according to different
parts, while the second group classified the test data on the basis of different fault locations.

4.1. Case Study I: Depending on Different Fault Components

4.1.1. Test Equipment and Data Introduction

As shown in Figure 4, the designed experimental equipment mainly included the motor, coupling,
planetary gear box, bearing seat, rotor, and so on. Aside from the normal fault-free vibration signal,
six different fault types were set respectively for different fault positions of the shaft, bearing, and
gear. Depending on the location and depth of the shaft crack, the six fault types were three cracks
on the left side of the larger rotor (1.2 mm, 2.4 mm, and 3.6 mm) and three cracks on the right side of
the smaller rotor (1.2 mm, 2.4 mm, and 3.6 mm), as shown in Figure 5. The six faults were referred
simply to as L1, L2, L3, R1, R2, and R3, where L represents left, and R represents right. According to
the location and depth of the bearing fault, the six fault types were three inner ring faults (0.2 mm, 0.6
mm, and 1.2 mm) and three outer ring faults (0.2 mm, 0.6 mm, and 1.2 mm), as shown in Figure 6.
These six faults were also simply referred to as I1, I2, I3, O1, O2, and O3, where I represents inner, and
O represents outer. On the basis of the location and depth of the gear failure, the six fault types were
three kinds of sun wheel failures and three kinds of planetary wheel failures: crack, pitting, and wear,
as is shown in Figure 7. In the same way, these six faults were simply referred to as P1, P2, P3, S1,
S2, and S3, where P represents planetary, and S represents sun. Therefore, there were three groups of
seven health conditions each, and a total of 21 sets of test data needed to be processed. However, the
21 sets of test data to be processed actually only represent 19 health conditions since the failure-free
data in the three sets was the same.
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Table 1. Description of datasets.

Group Number 1 2 3 4 5 6 7

Shaft
Fault location Normal Crack on left side of the larger rotor Crack on right side of the smaller rotor
abbreviation N L1 L2 L3 R1 R2 R3
Depth (mm) 0 1.2 2.4 3.6 1.2 2.4 3.6

Bearing
Fault location Normal Failure of bearing inner ring Failure of bearing outer ring
abbreviation N I1 I2 I3 O1 O2 O3
Depth (mm) 0 0.2 0.6 1.2 0.2 0.6 1.2

Gear
Fault location Normal Failure of planetary wheel Failure of sun wheel
abbreviation N P1 P2 P3 S1 S2 S3

Fault type none crack pitting wear crack pitting wear

The 2400 data points of each sample were processed by FFT to obtain 1200 Fourier coefficients.
The reason why frequency spectrum was chosen was due to the time shifting characteristics of the
time-domain samples. It is difficult to ensure the consistent position of the fault feature points in
different samples of the same fault, which produces great difficulty in feature extraction. Additionally,
the length of each signal input to the classifier will affect the accuracy rate. The spectrum information
can not only easily obtain richer information of different health conditions from the test signal by
FFT, but its more regular characteristic distribution also overcomes the time-shift characteristic of the
time-domain signal. Taking the bearing data, for example, the corresponding signal wave-forms in
the time domain and frequency domain are shown in Figure 8. It can be seen that it is difficult to
distinguish the different fault types from both the time domain and frequency domain.
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4.1.2. Parameter Selection

The number of neurons in the input layer of the SAFC model was the same as the sample dimension,
which was 200, the dimension of the sample spectrum. In the three hidden layers, the number of
neurons was set as 600, 200, and 100. The number of neurons in the output layer was the same as
the total number of health conditions. There was a total number of 20 training iterations for each
layer. The learning rate was determined to be 1 E-4, while batch size was determined by parameter
selection. After the data was output through the SAE network, the second hidden layer of SAE was
used as the input layer of SF. The number of neurons in the input layer was also the same as the sample
dimension. The number of neurons in the output layer was determined by parameter selection [23].
The test accuracy of the SAE part was taken as clustering accuracy, and the test accuracy of SF part as
classification accuracy.

First of all, the proportion of training samples in the SAE part was selected for research. Gear data
was selected for testing, and the training batch size was tentatively set at 10. Meanwhile, the percentage
of training samples in SF was set at 10%, and the output dimension was set at 200. In order to eliminate
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the effect of randomness, each group of tests were carried out 20 times. The diagnostic accuracy is
shown in Figure 9. The results show that with the increase in the training sample size, the diagnostic
accuracy increased continuously, and the time spent increased almost linearly. When the percentage
of SAE training samples increased to 20%, the clustering accuracy reached 99.98% ± 0.03%, and the
classification accuracy reached 99.22 ± 0.11%, after which both the two accuracy rates remained almost
unchanged. Therefore, after weighing the accuracy of classification against the time spent, 20% was
used as a percentage of the training sample in the following experiment.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 21 
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Figure 9. SAE parameter selection.

Then, after considering the selection of SAE training batch size, the diagnostic results of different
batch sizes are as shown in Figure 10. It can be seen that when the batch size was reduced, the clustering
accuracy and classification accuracy were slightly improved, but the average training time increased
sharply with the decrease in batch size. When the batch size was 5, the training time was up to 153.27 s,
which processed only one-third of the data that needed to be processed. When the batch size was 40,
the time taken was 28.74 s, which was far less than 82.01 s when the batch size was 10, but the accuracy
and variance were almost the same. Therefore, 40 was selected as the batch size.
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Figure 10. SF parameter selection.

The parameters of the SF part were also taken into consideration after confirming the parameters
of the SAE part. In order to study the effect of output dimension, 10% samples were still selected for
testing. The diagnostic accuracy is shown in the figure. The results show that with the increase in output
dimension, the diagnostic accuracy increases and the corresponding standard deviation decreases.
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The results show that with the increase of the output dimension, the diagnostic accuracy increases and
the corresponding standard deviation decreases, while the average training time increases. Therefore,
a trade-off was made between classification accuracy and time spent. Considering that the increase in
accuracy was no longer significant after the output dimension reached 200, 200 was selected as the
number of neurons in the output layer.

The diagnostic results with different proportions of training samples in the SF part are shown
in Figure 10. It can be seen that with the increase in sample percentage, the diagnostic accuracy was
constantly improved and the standard deviation was reduced. When the sample percentage was 10%,
the classification accuracy reached 99.13% ± 0.15%. However, as the percentage of training samples
increased further, the diagnostic accuracy hardly improved, and the diagnostic time fluctuated only
within a small range. Therefore, 10% was chosen as the proportion of training sample.

4.1.3. The Results of the Diagnosis

The first 20% of the sample was selected in the SAE section, and after the dimension reduction,
the first 10% of the sample was selected in the SF section. Using the same training dataset to train the
three models, the diagnostic accuracy of the data of the three parts is shown in Figure 11. It can be seen
that SAFC, which contained both methods, was more accurate and stable than SAE or SF alone. In the
process of diagnosis, the diagnostic accuracy of the three methods for gear fault was the lowest among
the three parts, so took gear as an example. The average accuracy and time of the three methods were
calculated, the results of which showed that the SAFC accuracy was above 99.13%, and the standard
deviation was no more than 0.11 while the mean accuracy rate of SAE and SF was only 86.37% and
93.80%, and the standard deviation exceeded 3.10 and 1.05. This shows that the proposed method had
higher accuracy and stability. The average training time of the sample was also calculated, and the
specific calculation results are shown in Table 2. It can be seen that the proposed method SAFC is not
only more accurate than SF, but also faster in diagnosis, which benefits from the rapid speed of SAE in
training data and its dimension reduction of the data. It can also be seen that although SAFC is not
as fast as SAE in diagnostic speed, its accuracy is far better than SAE, which is due to the powerful
feature extraction capability of SF.
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SAFC SAE SF
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Shaft 99.61 ± 0.06 28.85 ± 0.65 89.86 ± 1.33 17.63 ± 0.29 95.03 ± 0.24 42.27 ± 1.05
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In order to prove the classification effect of the proposed method better, the three methods were
used to extract features from the data of three parts, and the t-SNE dimension reduction algorithm was
used to transform the obtained feature vectors into two-dimensional views.

The results of feature mapping of the three methods are respectively shown in Figures 12–14 [24].
It can be seen that in the proposed method, characteristic samples of the same health status were
clustered in the corresponding clusters, and test samples of different health status were well separated.
Only one sample of Sun 3 was divided into the cluster of planet 2 in gear failure. However, in SAE,
not only in the bearing data, a sample of inner ring 2 was not well aggregated, but also in the shaft data,
three groups of crack characteristics on the left side of the larger rotor were not very well separated.
In addition, in the process of gear fault diagnosis, four groups of characteristics were staggered,
while in the SF, although the characteristics of different health conditions were generally separated,
uniform health conditions at different speeds were also separated, which obviously did not meet the
classification requirements.
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Figures 15–17 show the visualization of the feature distribution of the three components under
the three methods. It can be seen that in SAFC, the characteristics of different fault types were different
with obvious differences, while in SAE, the difference was relatively fuzzy. In SF, subdivision occurred
in each of the same characteristics, that is, the same health condition showed different characteristics,
which was consistent with the results in t-SNE. In conclusion, the proposed method can well extract
domain invariant features and classify them.
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4.2. Case Study II: According to Different Fault Location

4.2.1. Data Introduction

To further prove the effectiveness of the proposed method in distinguishing different fault parts,
the previously measured test data were regrouped according to the different fault locations. The general
idea is that different degrees of failure of one of the two fault locations of each part at different speeds
were combined with normal trouble-free data, which resulted in two datasets (Table 3) with 10 health
conditions each. For example, we can make a group of three sets of crack data on the right side of the
smaller rotor, three sets of fault data of the inner ring of the bearing, and three sets of fault data of
the planet wheel and normal fault-free data. The remaining three sets of crack data on the left side
of the larger rotor, three sets of failure data of the bearing outer ring, three sets of failure data of the
sun wheel and normal trouble-free data are made into the other group. Again, the normal failure-free
data is Shared by both sets of data, so there are still 19 different health conditions. The selection of
parameters is the same as before.

Table 3. Description of datasets.

Group Number 1 2 3 4 5 6 7 8 9 10

Group 1 location Normal Right side of the smaller rotor Bearing inner race planet gear
acronym N R1 R2 R3 I1 I2 I3 P1 P2 P3

Group 2 location Normal Left side of the larger rotor Bearing outer race sun gear
acronym N L1 L2 L3 O1 O2 O3 S1 S2 S3

4.2.2. The Result of the Diagnosis

The diagnostic accuracy of the three methods for the two sets of data is shown in Figure 18. It can be
seen that SAFC is more accurate and stable than SAE an SF. The specific calculation results are shown in
the Table 4. In the diagnosis of the two sets of data, the diagnostic accuracy is generally higher than the
diagnosis of each component, which is because the characteristics of different components have more
difference than the characteristics of different positions of the same component. Similarly as before,
the diagnostic time of SAFC is between SAE and SF, but SAFC still has the highest diagnostic accuracy.
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Table 4. Time and accuracy of diagnosis.

SAFC SAE SF

Accuracy (%) Time (s) Accuracy (%) Time (s) Accuracy (%) Time (s)

Group 1 99.91 ± 0.04 43.35 ± 1.46 96.84 ± 0.49 25.16 ± 0.76 98.32 ± 0.12 62.37 ± 2.57
Group 2 99.62 ± 0.08 43.64 ± 1.81 92.03 ± 0.66 25.84 ± 0.89 97.27 ± 0.60 62.49 ± 2.67

Again, these three methods were used to extract features from the two sets of data, and t-SNE
dimension reduction was used to obtain a two-dimensional view. The feature mapping results of the
three methods are shown in Figures 19 and 20. It can be seen that in the proposed method, characteristic
samples of the same health status are clustered in the corresponding clusters, and test samples of
different health status are well separated. However, in SAE, not only in the group 1, some samples of
planet wheel 3 were not well aggregated, but also in the group 2, some groups of characteristics were
not very well separated. While in the SF, although the characteristics of different health conditions
were generally separated, uniform health conditions at different speeds were also separated, which
obviously did not meet the classification requirements.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 21 
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Figure 20. Signal feature dimension reduction for group 2 using the three methods.

Figures 21 and 22 show the visualization of the feature distribution of the two groups under the
three methods. It can be seen that in SAFC, the characteristics of different fault types were different
with obvious differences, while in SAE, the difference was relatively fuzzy. In SF, subdivision occurred
in each of the same characteristics, that is, the same health condition showed different characteristics,
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which was consistent with the results in t-SNE. In conclusion, the proposed method can well extract
domain invariant features and classify them.
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4.3. A Comparison with the Other Two Methods

In the literature [25,26], the deep learning methods of BNAE and L1/2-SF are provided respectively,
which also have the function of feature extraction. With the previous dataset in Section 4.2, the three
models were tested separately, and the proposed method was compared with the two methods,
as shown in Figure 23. It can be seen that the proposed SAFC is superior to the compared method in
feature extraction and classification, which is also presented in the obfuscation matrix, as shown in
Figure 24, which again proves the feasibility of the proposed method.
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5. Conclusions

A SAFC architecture was proposed to solve the problem of fault diagnosis. This model has a
strong feature extraction capability in which SAE is used to reduce and cluster the data, while SF
is used to extract and classify the features. A good diagnostic performance is demonstrated under
different workloads.

The results in Section 4 show that SAFC can not only extract domain invariant features at different
speeds, but can also well classify the extracted features according to different parts and fault locations.
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SAFC had a higher diagnostic accuracy and stability than SAE or SF alone. When dealing with large
data volumes, SAFC is able to extract domain invariant features quickly thanks to the rapid training
data capability of SAE. When classifying extracted features, SAFC has a high diagnostic accuracy as a
benefit of the strong feature extraction capability of SF.

In future work, we will further study the classification of different parts and consider the diagnostic
impact of sample imbalance.
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