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Abstract: The major advantage of information-centric networking (ICN) lies in in-network caching.
Ubiquitous cache nodes reduce the user’s download latency of content and the drain of network
bandwidth, which enables efficient content distribution. Due to the huge cost of updating an entire
network infrastructure, it is realistic for ICN to be integrated into an IP network, which poses new
challenges to design a cache system and corresponding content router. In this paper, we firstly
observed that the behavior pattern of data requests based on a name resolution system (NRS) makes
an ICN cache system implicitly form a hierarchical and nested structure. We propose a complete
design and an analytical model to characterize an uncooperative hierarchical ICN caching system
compatible with IP. Secondly, to facilitate the incremental deployment of an ICN cache system in
an IP network, we designed and implemented a cache-supported router with multi-terabyte cache
capabilities. Finally, the simulation and measurement results show the accuracy of proposed analytical
model, the significant gains on hit ratio, and the access latency of the hierarchical ICN cache system
compared with a flat cache system based on naming routing, as well as the high performance of the
implemented ICN router.
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1. Introduction

Due to the advantages of multicasting, mobility, security, and caching, information-centric
networking (ICN) is considered an effective way to improve the existing network from network
architecture level [1]. Compared with a traditional IP network, ICN cares more about content itself
than the location of content. Following this principle, ICN decouples content addressing from routing
by separating the identifier (name) and the locator of content. Nevertheless, many researchers believe
that the benefits advocated by ICN require magnificent upgrades to entire network infrastructures [2],
the huge costs of which make it impractical for clean-state ICN to be deployed.

In order to smoothly evolve, many studies have shown interest in incremental deployment of ICN
(and correlative cache system) without changing today’s IP infrastructure as much as possible [2–7].
Some ICN paradigms are implemented as an overlay top of the current internet, and these effectively
utilize existing IP facilities and routing schemes, such as MobilityFirst (MF) [3] and the network of
information (NetInf) [4]. The former focuses on supporting the seamless handover of terminals in
mobility scenarios, and the latter was funded by the 4WARD project and aims to improve large-scale
content distribution. Meanwhile, an ICN router should be able to forward and process both IP and
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ICN flows at an Layer 3 (L3) network layer [5]. Another aspect of the deployment scheme is that of
ICN over IP [6,7] based on the gateway isolation, where the first link from the user’s device to network
uses existing IP-based protocols, such as HyperText Transfer Protocol (HTTP), Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP). As an entry/out point of ICN, the gateway converts
chosen protocol to ICN. However, the improvement of ICN over IP depends on the limited scope of
the gateway, which makes it difficult to implement new services and applications in an entire network.

There are two typical content discovery mechanisms in ICN. One is routing-by-name,
which couples name resolution with content routing in a data plane. For instance, the content-centric
network (CCN) [8,9], the most widely studied ICN paradigm whose routers forward user’s requests to
the right port computed by content name, adopts a routing-by-name mechanism. The shortcomings of
this mechanism are as follows. First of all, routers lack the capacity to save routing information for
considerable amount of content. In addition, it is easy to cause large-scale routing updating when
the state of each duplicate changes. The second content discovery mechanism is lookup-by-name,
which accomplishes content discovery by retrieving the network addresses (NAs) of the named data
object (NDO) from a dedicated device named the name resolution system (NRS). The lookup-by-name
mechanism makes routers concentrate on routing and caching at the cost of signaling overhead from
the NRS, which alleviates the computing pressure of routers.

With the assist of resolution nodes (RNs) distributed around the network, deploying an NRS is
an effective method to encourage ICN to coexist with the current IP network with high scalability [10].
A hierarchical NRS reduces the inter domain traffic and the latency of naming resolution by keeping
the name information of content as close to the user as possible. Communication between the RNs of
different levels can be realized by deploying a multi-level distributed hash table (MDHT) [11] in each
RN. For example, the data-oriented network architecture (DONA) [12] deploys more than one logical
resolution handler (RH) in every autonomous system (AS). In a hierarchical NRS, we have observed
that the request packet of content name resolution is sent to a higher-level RN if the request cannot be
satisfied in a lower-level RN. In other words, in this behavior pattern, the request of the NDO is sent to
a higher-level cache node if it cannot be hit in a lower-level one. Hence, the mechanism of content
addressing based on a hierarchical NRS makes an uncooperative ICN cache system implicitly form
a hierarchical structure.

As another crucial component of a caching system, an ICN router is supposed to be designed
with multiple factors including IP compatibility, a communication interface with an NRS, a transparent
caching function based on the chunk level rather than the packet level [13], and an ICN transport
protocol stack to ensure reliable service for users. However, few studies have comprehensively
considered these aspects when designing ICN routers.

In summary, the contribution of our work is as follows:

• We designed a simple uncooperative IP-compatible-ICN cache system based on an NRS that
implicitly forms a hierarchical and nested structure because of the behavior pattern of data
requests. Furthermore, we propose a modeling approach to analysis this hierarchical cache system,
which considers the correlation of arriving requests between adjacent cache nodes under different
caching strategies.

• We designed a cache-supported ICN router with a spilt architecture as a complete service unit
in our cache system, which comprehensively takes both forwarding and caching service into
consideration. Furthermore, we proposed an implementation scheme of a high performance ICN
router with multi-terabyte cache capabilities in a multi-core environment of a general ×86 server.

• We conducted extensive experiments to verify the accuracy of our analysis model for the cache hit
ratio at different levels and performed a thorough evaluation of hierarchical cache system (HCS)
performance. Experimental results demonstrated the significant gains of the hit ratio and access
latency of HCS in comparison to other kinds of cache systems under different caching strategies.
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The rest of this paper is organized as follows. Section 2 provides related research to our work.
The design and model analysis of the HCS is presented in Section 3. Section 4 presents the design and
implementation details of cache-supported router. Our experimental results are shown in Section 5.
Finally, we conclude the paper and describe our future work in Section 6.

2. Related Work

2.1. Cache System

The research of ICN cache systems has mostly focused on the design and implementation of caching
strategy, such as leave copy down (LCD) [14], leave copy everywhere (LCE), leave copy with probability
(LCP) [15], cache less for more (CL4M) [16], which are lightweight, uncooperative strategies with low
computational complexity. There are also some strategies that are implemented with a high memory
overhead. For instance, Saino L. proposed hash caching [17], which makes cache decisions according
to the caching state of content itself and the follow-up cache nodes. For popularity-based caching
strategies, Naeem M. A. proposed a time-based mathematical function to select the caching content,
which is the most frequently requested content in the given time interval [18]. For centrality-based
caching strategies, Meng Y. proposed an efficient hybrid strategy to reduce multiple replications of the
same content at the data dissemination path according to the judgement of an improved betweenness
centrality of router [19].

The modeling technology of traditional cache systems and related theoretical research has been
widely studied. Che et al. [20] proposed a modeling method to deduce the cache performance of
different level cache nodes based on individual document requests following arbitrary access frequency
distribution, and they found out the fundamental design principles for hierarchical web caching.
Lev B et al. [21] presented an optimized model of a hierarchical cache system for unbalanced traffic in
a content delivery network (CDN). The aim of his model is to deduce how much memory must be
allocated for cache node to achieve maximum cost-effectiveness.

Compared with traditional caching systems (such as Web, CDN, Peer to Peer (P2P)) that only
support a single traffic type, an ICN caching system has new features. Specifically, ICN supports
a transparent and universal caching service for multiple upper-layer applications. The basic unit of
ICN caching is no longer a file or a variable segment of a file; instead, it is a smaller data chunk with
a global unique content identifier. As a counterexample, although the web cache system adopts the
open HTTP protocol, the same object cannot be consistently identified between different domains.

Due to the change of traffic characteristics from the object-level to the chunk level, it is difficult to
directly apply the modeling and analysis method of a traditional cache system to ICN. Only a few
studies have extended the modeling method of an ICN cache system. Christine et al. [22] proved
that the Che approximate approach we introduced above is suitable for estimating the performance
of a single cache node in ICN through mathematical demonstration. Taking the effects of temporal
locality into account, Martina et al. [23] extended the Che approximate to model any cache node in
a network with general (mesh) topology, but they only proposed a unified methodology under the
LCE strategy. Additionally, Psaras et al. [24] developed a mathematical model for a single router based
on continuous time Markov-chains that provided a new idea for modeling ICN.

2.2. Cache-Supported ICN Router

Improving the performance of forwarding and caching are two major research directions for ICN
routers. Perino et al. [25] firstly designed a content router under the routing-by-name mechanism
based on the longest-prefix matching algorithm, and then they implemented a high-speed forwarding
module in a multi-core environment. ICN is strict with routers in forwarding capacity for line speed,
but a slow-speed block Input/Output (I/O) operation in a forward path would be a burden. To eliminate
the adverse effects of the forwarding process brought by the block device, Ding firstly proposed a split
architecture [26] that decouples the router into two independent processes: storage end and switch
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end. Moreover, Ding designed a switch end and a storage end communication protocol (SSCP) to solve
the packet dependency problem caused by the split architecture. However, the protocol conversion
between the SSCP and IP also brings performance problems.

Furthermore, researchers have hoped to extend cache size to Terabytes (TBs) through SSDs
(solid state disks) or HDDs (hard disk drives). L. Saino firstly proposed the complete design of
a hierarchical cache module with Dynamic Random Access Memory (DRAM) or SSD and conducted
a detailed performance evaluation [27], but he did not take the process of forwarding into account.
Rossini argued that the bottleneck of the hierarchical cache architecture is the high access latency of the
block device [28]. Therefore, according to the characteristics of video traffic, he proposed a proactive
prefetch mechanism that prefetched subsequent chunks of recently requested chunks from the L2 (SSD)
to the L1 cache (DRAM) that took advantage of the correlation between chunks based on hierarchical
naming. Despite the prefetch mechanism transforming the bottleneck from the access latency of
the SSD to external data rate, we believe it has obvious defects because it ignores the existence of
considerably long tail loads in the network. Frequent invalid prefetch operations occupy a large
amount of memory space. If the size of each I/O operation is less than a page, which is the basic
unit of read and write operations in SSDs, the utilized I/O bandwidth will suffer. The authors of [29]
leveraged the Linux vector I/O to gather chunks scattered across threads, and then they combined
these chunks into a segment whose size was equal to one page. This solved the problem caused by I/O
operations with small size. Additionally, since the end property has been attached to ICN router in
a new approach, many recent studies have tried to solve the problems caused by congestion. A typical
example can be found in [30], where Zafar H. proposed a fairness-based active queue management
algorithm to ensure the fair allocation of resources by interest rate shaping.

3. System Design

In this chapter, we firstly outline the design of a hierarchical ICN caching system that is compatible
with IP. Secondly, we detail a complete caching mechanism based on a hierarchical NRS. Finally,
we model the hierarchical cache system and analyze the hit probability of each level under different
cache strategies.

3.1. System Overview

Figure 1 shows a simple hierarchical cache system based on a hierarchical NRS with 3 layers.
There are two crucial components in a cache system—NRS and cache-supported router. An NRS
provides a basic service of name resolution and divides a network into plenty of hierarchical nested
areas (HEAs) where at least one dedicated RN is deployed. Content sources (including cache-supported
routers and content publisher) in network register the mapping of its NA and content name in the
NRS. When users request the NDO, it firstly asks RN that belongs to the lowest HEA for the NA where
the content located. The query does not stop forwarding to the upper level RN until it is satisfied in
some RN. This name resolution process can be seen as a request of the NDO to travel from routers in
given lower level HEAs towards routers in the upper level HEAs until the requested NDO is found,
which makes an ICN cache system implicitly form a hierarchical structure. To make an ICN cache
system compatible with IP, we implemented ICN by overlaying it onto IP and identifying IP (IPv4
or IPv6) addresses as content locators, i.e., NA. A 160-bit flat entity ID (EID) was employed as the
content name due to its characteristic of self-verification. ICN routers need to be able to process both IP
and ICN flows (including routing and caching the NDO), as well as to make caching decisions locally.
Due to the substantial overhead brought from small-sized chunks [31], we set the size of the chunk
transmitted in network to up to a few MBs.
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Figure 1. Overview of a hierarchical cache system.

3.2. Cache Mechanism Based Hierarchical NRS

Then, to showed how the hierarchical IP-compatible-ICN cache system works, we designed
a specific caching mechanism (As shown in Figure 2) based on an enhanced name resolution system
(ENRS) [10,32] with a hierarchical structure, mainly to provide low-latency resolution services for certain
delay-sensitive applications, such as 5th generation mobile networks (5G) or mobility support [33].
An ENRS divides an HEA into finer grains by quantifying the transmission latency constraints from the
user to the resolution node, which means that the same level HEAs have the same resolution latency
and the higher the level of HEAs, the longer the latency is.
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To advertise new content, content providers register the EID of the content to a global name
resolution service (GNRS) so that users in the network can discover it (steps P1 and P2). A GNRS
provides a name resolution service for all network elements in a whole network, which can be regarded
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as the Level 3 RN. To request content, like with mobile terminals, they must firstly attempt to resolve
the content name (EID) in the ENRS agent deployed in the point of attachment (POA) of the edge of
the internet. To further reduce the resolution latency, the ENRS agent saves the mapping of some
popular content EID. If the lookup fails, the NAs of the nearest RN of each level are returned (step 1).
As for fixed network users, the Dynamic Host Configuration Protocol (DHCP) is a valuable method to
automatically configure the NAs of RHs.

Afterwards, the user resolves the content name with the latency parameter [10] according to
the application requirements to the RN (step 2). If there is no needed name information in the RN
corresponding to the latency parameter, the request of resolution is resent to an upper level RN.
Multiple NAs where the content is cached in this HEA are returned to the user when the resolution is
successfully completed (step 3). Subsequently, the user sends a request to an optimal NA selected by
a source selection mechanism (SSM) (step 4). After receiving the request, the content source splits the
requested NDO into ICN packets encapsulated with IP headers according to the network maximum
transmission unit (MTU), and then it transmits them on the network (step 5). Along the chunk
transmission path, ICN routers collect and assemble ICN packets into a complete chunk. If chunks
have been assembled completely and the EID has been successfully verified, ICN routers decide to
cache it and register the mapping of the chunk EID and the NA of router to the RNs of the located
HEAs of every level (step 6).

Source Selection Mechanism

We propose two simple designs of SSMs. The first approach to select preferable content source
is to select the nearest copy. This method firstly judges the distance of each source by a traditional
topology-based routing scheme based on shortest path algorithms. However, selecting the nearest
source raises communication costs, which increase at an extremely high rate with the growth of the
number of the alternative sources.

The second alternative to investigate is the random selection of the source, which is a simple
method to save the latency of judging distance between nodes. Due to strict requirements of the
algorithm that divides the network into HEAs with different levels in the ENRS, there cannot be many
cache nodes located in the lower HEA that is closest to user. Hence, we inferred that random selection
may have a similar performance to that of nearest selection.

3.3. System Model

Considering a three-layer hierarchical cache system shown in Figure 1, we attempted to model it
and analyze the cache-hit probability of the HEAs at all levels. Che approximation, which our model
builds upon, is a simple and efficient method to estimate the hit probability of a cache node using the
least recently used (LRU) replacement strategy [22]. Firstly, we briefly introduce the Che approximation.

3.3.1. The Che Approximation

Suppose that there is a cache node k in a network with cache capacity M (count by chunks).
Users request NDO c from a set C (1 < c < C) with a large, fixed-size catalog. The requests of c
arrive k with rate λc according to a homogeneous Poisson process. The request sequence follows
the Independent Reference Model (IRM), which means the request probability for c is fixed and is
independent of past requests. In other word, the popularity of content with a Zipf-like law does not
change with time. In the real world, it seems unreasonable that there is no correlation between the
request probability and the content itself. However, the correlation can be ignored when the content
catalog C is large enough [22].

The time average cache-hit probability that the c can be found in k can be expressed as:

Phit(c) = Pin(c) = 1− e−λcTM (1)
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where TM, which is a constant independent of c, is a characteristic time that receiving M different
requests (excluding c) in k.TM represents the living time duration for c in k. The average hit probability
of cache node k is:

Pk
hit =

∑
C

λc

Λ
Phit(c) (2)

where Λ =
∑

C λc is the total arrival rate of all content requests. In the above equation, the only
unknown value is characteristic time TM, which can be easily obtained with arbitrary precision by
a fixed point procedure.

3.3.2. Optimal Che Approximation

The Che approximation only considers a simple situation of a single cache node while it ignores
the correlation of requests between adjacent nodes. The key to applying Che approximation to a general
network node i is to analyze all possible events that happened in the duration of

[
t− Ti

M, t
]

for NDO
c in node i at time t [23]. The correlation of requests between adjacent nodes differs under different
cache strategies that affect possible events that happened in a different way. We optimized the Che
approximation by analyzing LCP, LCE, and LCD one by one, as these are the most widely used on-path
caching strategies in ICN.

Suppose the cache node j belongs to set J and is adjacent to node i. This implies that j is located
behind i in a content transmission path so that j forwards the miss request flow of c to i. Our inference
was based on a hypothesis: Ti

M > T j
M, otherwise Pi

hit = 0 because the request of c will hit the cache
node j. Therefore, the average arrival rate of requests for c at cache node i is equal to:

λc(i) =
∑
j∈J

λc( j)
(
1− P j

hit(c)
)

(3)

We first analyzed the optimal Che approximation in LCP, because LCE is only a special case of
LCP when p = 1.

Leave-Copy-Probability

As for LCP, each node along a transmission path caches content with a fixed probability p,
which can be adjusted according to the cache condition in network. Suppose that a request of c hits
node i at time t, which means that NDO c is stored in i rather than j.

Hence, the previous request of c arrives i at time duration
[
t− Ti

M, t
]
, and this may bring about

two possibilities: One is that node i has a hit, and the other is that node j caches c with probability
p when the request missed in i. We estimated time average probability Pi

in(c) by the standard Che
approximation of request rate λc(i) without considering the variation of Ti

M because the Ti
M for single

node is hard to change when the content catalog C is large enough.
We obtained:

Pi
in(c) ≈

[
Pi

hit(c) + p
(
1− Pi

hit(c)
)](

1 − e−λc(i)Ti
M

)
(4)

Pi
hit(c) cannot be simply estimate like Pi

in(c) because it is changeable and is influenced by the
correlation between nodes. Additionally, to ensure that there is no copy of c cached in node j at time t,
there are 3 possible events that could have happened in the duration of

[
t− Ti

M, t
]
. The last request of c

either arrives i from given j at the time duration of
[
t− Ti

M, t− T j
M

]
, it arrives at

[
t− T j

M, t
]

while failing
to trigger cache action for c with probability 1− p, or it arrives i from any node k(k ∈ J) different from j
at

[
t− Ti

M, t− T j
M

]
.
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The latter two possible events can be regarded as standard Poisson flow, but the first is not because
it depends on the cache state of NDO c at node j. Thus, we write the hit conditional probability of
node i from the given node j as:

Pi
hit(c

∣∣∣ j) = [
Pi

hit(c) + p
(
1− Pi

hit(c)
)](

1− e−Ai, j
)

(5)

where

Ai, j = λc( j)
(
1− P j

in(c)
)(

Ti
M − T j

M

)
+ (1− p)λc( j)

(
1− P j

in(c)
)
Ti

M +

k, j∑
k∈J

λc(k)
(
1− Pk

in(c)
)
Ti

M

Note that Equation (5) can be simplified to the following equation for deducing LCE when p = 1:

Pi
hit(c

∣∣∣ j) = (
1− e−Ai, j

)
(6)

where

Ai, j = λc( j)
(
1− P j

in(c)
)(

Ti
M − T j

M

)
+

k, j∑
k∈J

λc(k)
(
1− Pk

in(c)
)
Ti

M

Equation (6), which we deduced for LCE, was same as the conclusion from [23]. The final result
of Pi

hit(c) could be obtained by de-conditioning the form iteration of each node j in J.

Leave-Copy-Down

For LCD, the content is cached only in the next node of the hit node for each time, which avoids
the existence of multiple copies of the same content in the transmission path. Assume that

Pi
in(c) ≈

(
1− e−λc(i)Ti

M

)
. There is a known strong assumption that NDO c can be inserted in j only if c

has cached in i already. Hence, the two possible conditions to make NDC c cache in node j at time t are
the previous request either hit at i forwarded from j or hit in the j at the time duration of

[
t− T j

M, t
]
.

We deduce:
PJ

in(c) ≈
[(

1− PJ
in(c)

)
Pi

hit + PJ
in(c)

](
1 − e−λc( j)T j

M

)
Moreover, to ensure that the request of c forwards to i at time t, there are 3 possible events that

could have happened in the duration of
[
t− Ti

M, t
]
. The last request of c either arrives i from given j at

the time duration of
[
t− Ti

M, t− T j
M

]
(provided that Ti

M > T j
M) when NDO c is known not to be cached

in node j before, it arrives i at
[
t− T j

M, t
]

because c stores in neither i nor in j, or it arrives i from any
node k(k ∈ J) different from j. Thus, we write:

Pi
hit(c

∣∣∣ j) = (
1− e−λc(i)(1−PJ

in(c))(T
i
M−T j

M)
)
e−λc(i)T

j
M +

(
1− e−Ai, j

)
(7)

where

Ai, j = λc( j)
(
1− P j

in(c)
)
Ti

M +

k, j∑
k∈J

λc(k)
(
1− Pk

in(c)
)
Ti

M

We needed to combine de-conditioning and a multi-variable fixed-point approach [34] to solve
the entire conditional probability equation.

3.4. Hit Probability of HEAs in Hierarchical Cache System

We attempted to apply the optimal Che approximation to analyze the hit probability of HEAs in
the three layer cache system depicted in Figure 1. We mainly analyzed the L1 and L2 HEAs, while the
hit ratio in the L3 HEA was equal to 1. We assumed that the set J( j1, j2, · · · , jn) represents all the
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L2 HEAs in the network and there was an L1 HEA jkk( jkk ∈ Jk( jk1, jk2, · · · , jkn)) located in L2 HEA Jk.
Hence, PL1

hit(m, jkk) is the hit probability of L1 HEA jkk, which can be written rapidly as:

PL1
hit( jkk) =

∑
i∈Ikk

∑
C

λc(i)
Λ

Pi
hit(c) (8)

At the same time, the hit probability of L2 HEA Jk is:

PL2
hit(m, Jk) =

b, jkk∑
b∈Jk

∑
i∈Ikk

∑
C

λc(i)
Λ

Pi
hit(c) (9)

The value of Pi
hit(c) is related to the different caching strategies and source selection mechanisms

we discussed earlier. There is no correlation of requests between adjacent nodes when the user randomly
selects a source. This implies that the hit rate can be estimated by common Che approximation because
the request flows arriving to any cache node in each HEA can be modeled as a standard Poisson flow.
Hence, we easily replaced the Pi

hit(c) with Equation (1). As for the mechanism of selecting the nearest
source, the optimal Che approximation can work because requests between cache nodes are relevant.
Therefore, we replaced the Pi

hit(c) with results deduced from Equations (5) and (7) under different
caching strategies.

4. Cache-Supported ICN Router

In this part, we firstly propose the design of a cache-supported ICN router that is compatible
with IP and works in our cache system. After that, we provide complete high-performance
implementation details.

4.1. Architecture Design

Software-defined networking (SDN) [35] is widely used in designing ICN routers because it is
able to support new network protocols without upgrading the network equipment. Recent research
has proposed some new SDN technologies, such as protocol oblivious forwarding (POF) [36] and
programming protocol-independent packet processors (P4) [37]. POF technology adopts the matching
method of <offset, length>, which can support almost any new protocol including those customized
by developers themselves. Hence, we selected POF to develop the forwarding function in our router.

Figure 3 depicts the software architecture comprised by various function modules such as
packet routing, cache service, cache management, and ICN transport protocol stack.

The cache service module consists of two submodules, chunk assemble and request service,
which are the two aspects of read and write of chunk operation.

Chunk assemble submodule: Due to the limitations of network MTUs, a chunk is segmented into
packets of different sizes for transmission. The problem then is that incoming packets belonging to
same chunk may be lost or out of order when routers collect ICN packets in a complex real network.
Therefore, the chunk assemble submodule assembles packets with same name into a complete chunk,
and then it verifies the chunk’s integrity and the validity of the name. The process of chunk assembling
brings inevitable delays, which makes it impossible to complete the cache operation while guaranteeing
wire-speed forwarding. We adopted a split structure [26] to decouple low-speed block device I/O
operations from the forwarding path. Consequently, a cache-supported router is decomposed into
two separate processes: a forwarding element (FE) and a cache element (CE), between which both
messages and chunks pass via inter-process communication.

Request service submodule: When a router receives a data request packet, the request service
submodule fetches the requested chunk from the disk by sending a message to the CE. The chunk is
put into an ICN transmission protocol stack for specific sending.
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Packet routing module: The packet routing module in an FE includes two submodules:
The IP routing submodule and the ICN routing submodule, which forward the ICN and IP flows
according to the flow rules issued by the controller. In addition, the ICN routing submodule makes
caching decisions for passing packets based on certain caching strategy.

ICN transport protocol stack: The ICN transport protocol stack provides reliable and low latency
transmission based on chunks. Appropriate transport protocols containing retransmission and
congestion control guarantee the quality of service (QOS) of ICN. For example, the router shapes the
interest rate when it detects occurring congestion via an active queue management algorithm [30].
We do not expand on the relevant design details since they are not the focus of this paper.

Cache management module: The cache management module mainly manages chunks cached in
the CE, which includes three submodules. The cache replacement submodule replaces the unpopular
chunks following the LRU policies when the disk space is insufficient. The cache index submodule is
a hash table used to store the mapping of content name and store address. To speed up the lookup,
we set the size of each bucket in hash table to the size of the Central Processing Unit (CPU) cache
line. The register/logout module is responsible for communicating with the NRS. When a chunk is
successfully written into disk or deleted, this submodule needs to register/logout the mapping of the
content EID and NA of router in the NRS.
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4.2. Implementation

Figure 4 shows a complete implementation architecture of the ICN router in a multi-core
environment of commercial servers. Caching and forwarding modules are decoupled into two
independent processes. The communication between two processes is completed through shared
hugepage memory. The CE that is designed to achieve the cache capacity up to TBs employs the
hierarchical framework described in [26]. In order to reduce the overhead of synchronization between
threads, each function module is deployed on a dedicated core (thread) that has its own exclusive data
structure so that it can perform read/write operations alone.
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4.2.1. Packet Processing Flows

Firstly, we briefly summarize the packet processing flows in our implemented ICN router.
When a data packet arrives, the Forward core looks up the counting bloom filter (CBF) to see whether
the corresponding chunk has been cached. If not, the packet is sent to the CE by putting it on the
virtual queue while being forwarded according to its flow rules in flow table. To achieve the load
balance of flows among threads, the Distribute core in the CE distributes packets to assemble cores
for chunk assembling afterwards. After the chunk has been assembled and stored in the disk, the CE
notifies the TX core to send a register message to the NRS. Similarly, if a chunk is deleted due to the
cache replacement policy, the TX core also needs to send a logout message.

When a request packet is received, if the destination address points to the IP address of the router,
the requested chunk must be cached in the router. Therefore, the packet is directly sent to the CE;
otherwise, it is forwarded according to the flow table. If the request hits the L1(DRAM)/L2(SSD) level
caching, the assemble cores or SSD I/O cores place the chunk on the I/O buffer queue via direct memory
access (DMA). Finally, the TX core sends the chunk encapsulated with the ICN and IP header out from
the port that the request packet comes from.

4.2.2. Forward Element

The FE is mainly responsible for routing and forwarding the received IP and ICN packets.
We deployed an open source POF software switch on the forward core to implement the packet routing
module. We did not need to add CCN-like data structures like Pending Interest Table (PIT) and
(Forwarding Information Base) FIB [9] in the POF, and, as consequence of that, the NRS decouples
content addressing from data forwarding. We could code the customized routing strategy according to
our needs, and then the controller becomes able to issue the corresponding flow table to the router.

We extended POF switch from following three aspects:

1. In order to save precious memory resources, the router should not send ICN packets to the CE
when the corresponding chunk has been cached. Therefore, we maintained an index table (IT) for
name of cached chunks in POF. Considering the advantage of the CBF that the time of inserting
and searching is independent of the number of entries in the table, we implemented the IT via
the CBF.

2. We added the new POF instruction outmulti (port, queue) in a data plane based on the instruction
outport (port,) which forwards packets out from port. If the FE decides to cache the ICN packet,
outmulti (port, queue) puts a copy of the packet on the virtual queue between processes while
forwarding the packet to the port. This instruction also can be used for the realization of the
multicast function of ICN.

3. POF cannot maintain line speed forwarding under a data-intensive environment because many
CPU cycles are consumed in switching between the kernel and user modes of the Linux
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network protocol stack. We optimized the forwarding performance of POF through Data Plane
Development Kit (DPDK) technology [38], which accelerates network packet processing by
exposing the handling memory area of packet to user-space for DMA with zero-copy.

Moreover, to reduce memory copies and avoid the delay caused by reliable transmission,
we implemented the request response submodule in the TX core. The TX core polls I/O buffers. If any
chunk is placed on the queue, the TX core sends it to the ICN transport protocol stack.

4.2.3. Cache Element

In the cache element, we employed a small but fast DRAM (Layer 1) combined with multiple
large but slow SSDs (Layer 2) to construct a hierarchical cache structure that has been proven to be
an effective method to extend the cache capacity of an ICN router to the terabyte scale [27].

Dual Queue Management of DRAM

We implemented a chunk assemble submodule in the assemble core. In addition to assembling
chunks, it also serves as the L1 cache of the router and manages the L1 and L2 cache indexes.
Considering the inevitable delay of assembling chunk, we employed dual queues of first input first
output (FIFO) and LRU to manage chunks for leveraging the L1 cache space and efficiently assembling
space (as shown in Figure 1). The FIFO queue manages the chunks being assembled, and the LRU queue
manages the chunks that have assembled and evicted from the FIFO queue. When the FIFO queue
is full, the chunk that started assembling first are deleted, no matter whether they were successfully
assembled or not, because we believe that the time an incomplete chunk lives in FIFO is sufficient
for assembling.

Optimal Chunk Assembling

The same chunk may be simultaneously transmitted by multiple sources on same path in the
network. Hence, packets of the same chunk may reach the router out of order, and the length of each
payload packet is not uniform due to the different MTU size settings. To reduce the delay of chunk
assembling, we built an optimal scheme in which packets with the same name are put into the same
memory area for chunk assembling. In other word, the same chunk from different sources can be
assembled at the same time.

To settle the performance problem caused by the frequent dynamic memory allocation, we allocated
a large amount of assembling space that is equal to the chunk size in advance. The Assemble cores
decapsulate the payload from the primitive packet and put it in assembling space based on payload
size and start-offset field in the ICN header, which is a necessary field we should add in ICN header.
This process is managed by a double linked list. When a linked list is created, an initial node that
records the starting and ending addresses of the assembling memory space is created. A new node
is created when the payload of the received packet is filled into the assembling space. Immediately,
both nodes are updated to record the starting and ending addresses of two memory spaces separated
by payload.

Figure 5 shows four situations that will be encountered during assembling in a pre-malloc memory
space. The shaded portion indicates that this space has been filled with data.
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Situation 1: Some part of this space that the payload should fill is occupied.
Situation 2: The space that the payload should fill has already been occupied completely.
Situation 3: Both the space that the payload should fill and the adjacent space are free.
Situation 4: The space that the payload should fill is after an ending, before the starting of occupied

data, or in the middle exactly.
Algorithm 1 shows the details how an optimal algorithm of the chunk assembling works. Only if

there is only one node left in the linked list and the starting and ending addresses of this node are
equal to the addresses of the assembling memory space, a chunk has been assembled completely.
This method can improve router memory utilization and the success probability of chunk assembling,
especially for popular contents.

Algorithm 1. Chunk Assembling by Packet

1. Offset← ReturnPacketOffset(Packet)
2. Len← ReturnPayloadLen(Packet)
3. EID← ReturnChunkEID(Packet)
4. if EID not in the IT then
5. Create Double linked list
6. Copy packet payload from Offset to Offset + Len
7. Node_count← 1
8. end if
9. if EID in the IT then
10. if ChunkAssemblingDone(EID) then
11. Drop Packet
12. else
13. for i = 0 to Node_count do
14. if situation 1 then
15. Copy packet payload from EndingAddress(Node[i]) to Offset + Len
16. UpdateNode(Node[i],Offset + Len)
17. end if
18. if situation 2 then
19. Drop Packet
20. end if
21. if situation 3 then
22. Copy packet payload from Offset to Offset + Len
23. CreateNode(i, Offset, Len)
24. end if
25. if situation 4 then
26. Copy packet payload from Offset to Offset + Len
27. UpdateNode(Node[i],Offset + Len)
28. if ChunkIsAssembled(Node[i]) then
29. Return Chunk
30. end if
31. end if
32. end for
33. end if
34. end if

Performance Optimization of L2 Cache

SSD I/O cores are responsible for the actual read and write operations in SSDs. The access latency
of an SSD up to O(10 us) [28] becomes the performance bottleneck of the CE. However, we argue
that a reasonable chunk size in a cache system is up to a few MBs, which is much larger than the size
of one SSD page (4–32 KB). Therefore, we paid more attention to improving the throughput of the
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sequential read and write operations of the SSD. An effective way to avoid a bottleneck is parallel
optimization [29]. Therefore, we bound an independent SSD for each SSD I/O core. Multiple SSDs read
and write without locking at the same time, which allows for load balance and breaks the throughput
limit of a single SSD.

To further improve the IO bandwidth and reduce the access latency of the SSD, we replaced the
traditional kernel device driver with a user mode driver named the Storage Performance Development
Kit (SPDK) [39]. The SPDK, recently created by Intel, provides a user mode driver for non-volatile
memory express (NVMe) SSD device, which avoids kernel context switching and interruption.
The non-interrupted polling method saves a large amount of CPU overhead and allows for more
instruction cycles to focus on data storage. In addition, the reason we chose an SSD as the L2 cache was
because the performance of SSDs has been greatly improved with the emergence of NVMe technology.
For example, the read bandwidth has increased from 500 to 3200 MB/s, and the write bandwidth has
increased from 400 to about 1200 MB/s. Moreover, the price of SSDs has fallen dramatically from 0.68
to 0.15 $/GB in recent years [40].

5. Performance Evaluation

5.1. Performance Evaluation of ICN Hierarchical Cache System

5.1.1. Simulation Setup

We implemented an ICN HCS based on a hierarchical NRS on a simulation platform named
Icarus [41], which is a lightweight simulator that allows users to easily test customized caching and
routing policies. Table 1 shows the fundamental parameters we tested in our experiment. A simple
binary tree topology was chosen to verify the accuracy of our modeling of the HCS we discussed
in Section III. TISCALI, an ISP-like topology depicting the realistic internet environment of Europe,
was used to evaluate the performance of HCS under different caching strategies. Each cache node
(indexing content in chunk level) deployed LRU as the default replacement policy. We divided the
topology into a hierarchical nested structure through a graph-partitioning-based algorithm named
latency-aware hierarchical partitioning (LHP) [32]. In order to facilitate the gathering of statistics of
signaling overhead in the HCS, we created some new nodes to deploy distributed RNs and bound
them to specific attachment nodes chosen by the above algorithm. Both stationary and YouTube Video
traffic in real world were used as the tested traffic workload. The stationary workload extracted from
a catalog of N = 1× 106 content objects followed the Zipf distribution (α = 0.8). The requests of this
workload were designed up to 2× 106 with the IRM model. The YouTube Video traffic records total
3.8× 106 of requests [42] for 1.76× 106 of videos, coming from 31,124 distinct IP addresses. Half of the
total requests were used to warm up cache system, and the remaining were used to gather statistics.
Each experiment in same scenario was independently run ten times, and we analyzed the results with
a 95% confidence interval.

Table 1. Simulator environment. LRU: least recently used.

Parameter Value

Traffic Workload Stationary/YouTube Video traffic
catalogue size 1× 106/1.76× 106

Topology Tree, TISCALI
Cache size Uniform

Replacement LRU
Request number 2× 106/1.76× 106

Request distribution/rate Possion/10req/s
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5.1.2. Verifying the Accuracy of Analysis Model of ICN Hieratical Cache System

To verify the accuracy of the model of the HCS under different caching strategies (LCD, LCE,
and LCP with p = 0.2), we implemented three simple ICN hieratical cache systems in a full binary tree
(depth = 4). We deployed L3 RN, i.e., the GNRS, at the root node to manage the location information of
all content in the topology. The L2/L1 RN, which served for the L2/L1 HEA containing the attachment
nodes and the subtrees owned by the child nodes, was deployed at the second/third layer nodes of the
tree. In the case of tree-like networks, the cache hit ratio of some upper level nodes could be evaluated
step-by-step starting from the leaves and going up to this node through previous Equations (2) and
(5)–(7). Then, the cache hit average ratio of the L1/L2 HEA could be calculated by simple summation
from the hit ratio of a single node.

Figure 6 reports the average hit ratio of the L1/L2 HEA in different caching strategies, under the
two considered approximations, against simulation results. We observed that with the increase of
nodes in HEA and cache size, the standard Che approximation tended to overestimate the average hit
probability, essentially as a consequence of a large overestimate of the hit probability on every single
node. Our optimal Che approximation considered the prediction of request behavior, which brought
the analytical prediction of the average cache-hit probability very close to the simulation results.
Furthermore, we could obtain a minimum error against simulation results in LCD since the optimized
Che approximation we created for LCD was based on a strong assumption that excluded many unknown
possibilities. We noted that the biggest gap between the approximation results of the standard Che
approach and the simulation results happened in LCE. This was because LCE cached multiple same
copies in the same HEA, which resulted in an increase of the number of the overestimated nodes.
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5.1.3. Performance Comparison in Real-World ISP Topology

The TISCALI topology has 240 nodes and 810 edges, including 36 content sources,
160 cache-supported routing nodes, and 44 receivers. Three kinds of cache systems were evaluated in
different caching strategies (LCE, LCD, CL4M, and LCP with p = 0.2). In detail, the first is a HCS based
on a hierarchical NRS; the second is a flat cache system (FCS) with a single resolution node (which is
a special case of a hierarchical caching system with the single level); and the last is a CCN-like [23]
cache system based on routing requests by name.

Figure 7 reports the access latency comparison of different cache systems with different source
selection mechanisms (nearest and random) under the workload of YouTube traces from the campus
network. With the increase of the routers’ cache size, selecting the nearest content copy in the HCS
(HCS-N) significantly reduced the download latency among all the caching strategies by up to 18.6%
compared with the cache system based on routing requests by name. This proves that, while routing
requests by name avoids resolution latency, it is difficult to find an optimal content duplicate. Moreover,
the HCS performed better than the FCS because the HCS took advantage of the characteristic of
hierarchical content addressing, in which the distance information between users and content is hidden
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in the hierarchical structure. In other words, the HCS achieved a more efficient content discovery at
the cost of a tolerable resolution latency.
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Randomly selecting the content copy in the HCS (HCS-R) achieved the second best performance of
access latency, similar to the HCS-N under LCE and LCP. This was because both caching strategies only
needed single request to fetch the cache content in the L1 HEA that was closest to user. Contrary to the
above strategies, LCD and CL4M only cached one or a few content copies on the transmission path each
time, which means that users could not retrieve content in the L1 HEA the first time. This conclusion
also confirms our analysis regarding the source selection mechanism in Section 3.2.

As for the cache hit ratio, Figure 8 illustrates that the mechanism of choosing the nearest content
copy achieved the highest cache hit rate, which was irrelevant to the structure of a cache system and
caching strategies. The HCS-R still achieved a suboptimal performance because of the aforementioned
analysis. The performance of the cache systems of routing requests by name in LCD outperformed
the other strategies since it was an implicit cooperative caching strategy. It should be noted that
LCP achieved a significantly better performance than other strategies because it better avoided the
simultaneous placement of the content in all routers.
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5.1.4. Control Overhead

The extra control overhead in a cache system brought from the mechanism of content addressing
based on the NRS includes the signaling overhead of resolution, register, and logout. We estimated the
impact of control overhead in terms of link load, which is the average number of packets transmitted
on a link per second. Figure 9 reports a comparison of average link load in an overall network between
three caching systems and different caching strategies. We observed that the hierarchical cache system
saved more network bandwidth than the others did, because it helped users find content copies faster.
However, LCE was a special case whose control overhead was much higher than the other strategies
due to each node in the network actively participating in caching at the same time.
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As shown in Figure 10, we estimated the average access load of each level RN in different cache
systems (HCS and FCS). We noted that the RN under the LCE strategy faced 243% more service
traffic than the other strategies, while the difference between the loads of other strategies was small.
This result showed that we should avoid caching a large amount of copies in one transport process.
Moreover, the HCS lessened the service pressure of the L3 RN by directing the service traffic to different
level RNs.
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5.2. Performance Measurement for Cache-Supported Router

The performance measurement of a router mainly focuses on forwarding and caching. A simple
testbed was built from two general-purpose servers, each equipped with two gigabit Ethernet network
interface cards (NICs). One server ran an ICN traffic generator [43] and a data sink. The other ran our
implemented cache-supported ICN router. The details of the hardware architecture are reported in
Table 2. Flow rules were configured and installed on the forward core of the router in advance.
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Table 2. Hardware configuration for experimental server. NICs: network interface cards; SSD: solid state disc.

CPUs 2 Intel(R) Xeon(R) CU E5-2620 v3 @ 2.40 GHz

NICs 4*Intel 82599 (10 Gbps)

SSD Intel Series 750 480 GB*3

To measure forwarding performance, traffic was originated at the traffic generator and transmitted
to the router. After the router finished its forwarding operations, packets were sent back to the
generator. Figure 11 reports the experimental results. The throughput of the original POF switch was
no more than 1 Gbps when the size of test packet was set to 1500 Bytes, which means that it could not
meet the requirement of high throughput up to O (10 Gbps) of routers in future networks. However,
with the growth of packet size, we could achieve a 10 Gbps throughput on the POF optimized by
DPDK in the FE, i.e., forwarding on a 10 GbE network card with a line speed. Furthermore, we did not
need to worry about the impact of small size packets on forwarding because the chunk size in ICN
would not be smaller than MTU, such as 4K in CCNx.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 21 
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As for caching performance, we only concentrated on the performance improvement brought
from user mode drive rather than the process of assembling because it was affected by too many factors,
such as packet loss rate and chunk transmission rate. In addition, due to the distribute core distribute
packets according to the hash of content name, the irregular flows could have led to the unbalanced
loads in some assemble cores, which could have also had a negative impact on performance.

Two kinds of cache-supported routers were implemented by applying different device drives:
the SPDK of the user mode and Vector Input/Output (VIO) [29] of the kernel mode. We measured the
throughput of a single SSD over 10 runs of 100,000 data chunks with different sizes while the queue
depth of the SSD was set to 4. Figure 12 reports the result as a function of read/write mix under two
implementation schemes. We noted that the throughput of the SSD based on the SPDK of the user
mode drive was much better than that based on the kernel model drive of Linux. With the increase of
the chunk size, the performance rapidly improved because the IO operation pattern changed from
random to sequential. We argue that reasonable chunk sizes can be up to few MBs since the IO capacity
of a single SSD is sufficient to cover 10 Gbps of traffic. We then conclude that an NVMe SSD promises
to be the main medium in the storage of cache-supported ICN routers, as it removes the IO throughput
bottleneck of multi-Gbps ICN routers.
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6. Conclusions

In this paper, we discussed the ICN cache system based on a hierarchical NRS as an HCS according
to the summary of the behavior pattern of request. We firstly designed a simple three-layer HCS
compatible with IP. The standard Che approximation for modeling a single cache node could not be
extended to the network because it ignored the correlation of requests from adjacent nodes. We then
proposed an optimal approach to overcome the weakness of Che approximation, and we applied it to
model and analyze the hit ratio of different levels of the HCS. Secondly, to achieve the incremental
deployment of the HCS in an IP network, we proposed a complete design of a cache-supported
ICN router. Considering the influence of MTU on chunk assembling, an optimal chunk assemble
algorithm was designed to mitigate this problem. We then implemented it with a high performance in
a parallel environment.

Experimental results showed the accuracy of our analysis in the modeling of the ICN cache
system under different caching strategies. The HCS could reduce the service pressure of the server and
download delay more than a flat cache system that forwarded packets based on name. The hierarchical
structure attached potential location attributes to content addressing, which indicated that the content
addressing achieved by name resolution was more efficient than by discovering in the routing process;
meanwhile, both had similar traffic overheads in the network. The measurements of our implemented
router demonstrated that the performance of the forwarding and IO operations of caching can be
improved by some dedicated acceleration frameworks (DPDK and SPDK) working in the user mode,
which makes it possible for an ICN router to satisfy the requirement of a high line rate. Moreover,
the bottleneck of a router moves from SSD access time to the latency of the assemble process when the
size of the chunk is set to large. We hope that this paper can provide ideas for more research on the
modeling, design, and implementation of ICN cache systems in the future.
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