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Abstract: Shadow often results in difficulties for subsequent image applications of multispectral
satellite remote sensing images, like object recognition and change detection. With continuous
improvement in both spatial and spectral resolutions of satellite remote sensing images, a more
serious impact occurs on satellite remote sensing image interpretation due to the existence of shadow.
Though various shadow detection methods have been developed, problems of both shadow omission
and nonshadow misclassification still exist for detecting shadow well in high-resolution multispectral
satellite remote sensing images. These shadow detection problems mainly include high small
shadow omission and typical nonshadow misclassification (like bluish and greenish nonshadow
misclassification, and large dark nonshadow misclassification). For further resolving these problems,
a new shadow index is developed based on the analysis of the property difference between shadow
and the corresponding nonshadow with several multispectral band components (i.e., near-infrared,
red, green and blue components) and hue and intensity components in various invariant color spaces
(i.e., HIS, HSV, CIELCh, YCbCr and YIQ), respectively. The shadow mask is further acquired by
applying an optimal threshold determined automatically on the shadow index image. The final
shadow image is further optimized with a definite morphological operation of opening and closing.
The proposed algorithm is verified with many images from WorldView-3 and WorldView-2 acquired at
different times and sites. The proposed algorithm performance is particularly evaluated by qualitative
visual sense comparison and quantitative assessment of shadow detection results in comparative
experiments with two WorldView-3 test images of Tripoli, Libya. Both the better visual sense and the
higher overall accuracy (over 92% for the test image Tripoli-1 and approximately 91% for the test
image Tripoli-2) of the experimental results together deliver the excellent performance and robustness
of the proposed shadow detection approach for shadow detection of high-resolution multispectral
satellite remote sensing images. The proposed shadow detection approach is promised to further
alleviate typical shadow detection problems of high small shadow omission and typical nonshadow
misclassification for high-resolution multispectral satellite remote sensing images.

Keywords: shadow detection; invariant color space; high-resolution multispectral satellite remote
sensing image; threshold; WorldView-3; WorldView-2

1. Introduction

More complex details of land covers (e.g., buildings, towers, vegetation, farms and roads) are
obtained easily from high spatial resolution (HSR) multispectral satellite remote sensing images which
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are captured by the recently launched HSR satellites (like IKONOS, GeoEye-1, QuickBird, WorldView-2,
WorldView-3 and Jilin-1) [1–7]. However, shadow inevitably formed by land objects and clouds affects
more seriously for these HSR image applications, such as change detection, object recognition and
image classification. Additional cues are obtained from the HSR images with the palpable shadow,
such as the general shape and structure of cast objects, the illumination direction and the position of the
sun, as well as parameters of the satellite sensor. These cues are also helpful in numerous applications,
like building detection, height estimation, 3D reconstruction, change surveillance, scene interpretation
and position estimation of the sun and satellites [4,5,8–12]. On the other hand, shadow in HSR images
may cause serious shape distortion of cast objects, false color tone and loss of feature information,
which may result in negative effects in subsequent image applications [13]. Given either the useful or
troublesome influence of shadow in HSR multispectral satellite remote sensing images, in order to
improve the utilization of HSR multispectral satellite remote sensing images, shadow detection is an
important scientific issue for HSR multispectral remote sensing images, which is usually the first step
followed by shadow compensation and image utilization [9,12,14].

Much research has been developed on shadow detection for both color aerial images and
multispectral satellite remote sensing images in recent decades. Huang et al. [15] proposed a shadow
detection method through developing an imaging model indicating the increased amount of hue
values in shadow regions compared with the corresponding nonshadow ones. A certain threshold
was employed to obtain shadow candidate in accordance with the increased hue values in shadow
regions, and two other thresholds were subsequently used with respect to blue (B) and green (G)
components to refine the shadow candidate by eliminating greenish and bluish nonshadow objects.
Huang et al. developed a useful imaging model and the deduced shadow detection algorithm was
firstly dedicated to resolving the bluish and greenish nonshadow object misclassification problem in
color aerial images, even though thresholds were selected manually. Moreover, Sarabandi et al. [16]
proposed a C3 shadow detection method by studying the shadow identification results of both
IKONOS and QuickBird multispectral images through C1, C2 and C3 components in the color space
C1C2C3, respectively. The C3-based algorithm could identify the broad outline of large shadow
regions. However, most greenish nonshadow objects were misclassified. Similarly, Arevalo et al. [17]
presented a semi-automatic shadow detection algorithm built on the C3 component of C1C2C3 color
space and a region-growing procedure for HSR pan-sharpening satellite remote sensing images.
Comparative experiments revealed that the presented shadow detection approach achieved higher
accuracies and better robustness against the RGB-based algorithm by Huang et al. [15] and the
C3-based algorithm by Sarabandi et al. [16] Considering all available bands of the multispectral
image, Besheer et al. [18] proposed a modified C3 (MC3) index through developing an improved
C1C2C3 invariant color space by employing the near-infrared (NIR) band information in addition
to visible bands (i.e., red (R), green and blue bands) in the original C1C2C3 invariant color space.
Then, the shadow was segmented with a bimodal histogram threshold. The MC3 method delivered
an improved performance by picking up the NIR component into consideration in contrast to the C3
method by Sarabandi et al. [16] and Arevalo et al. [17].

Additionally, based on the Huang’s imaging model [15] and the Phong illumination model [19],
Tsai [20] presented an automatic property-based shadow detection approach utilizing the ratio
of hue value over intensity value, called the spectral ratio index (SRI) shadow detection method.
Subsequently, the Otsu thresholding method [21] was used to determine an optimal threshold
automatically. The SRI algorithm was tested with comparative studies in various invariant color spaces
(HIS, HSV, HCV, YIQ and YCbCr) for color aerial images. The comparative results showed that the
SRI shadow detection approach drew higher shadow detection accuracies in HIS, YIQ and YCbCr
color spaces, though some greenish grass in nonshadow regions was still misclassified more or less.
Subsequently, Khekade et al. [22] further enhanced the shadow detection results of the SRI algorithm
by Tsai [20] particularly in the YIQ invariant color space by using a series of post-processing methods
(e.g., histogram equalization and box filter). Comparative experiments in color aerial images against



Appl. Sci. 2020, 10, 6467 3 of 25

the original SRI images of Tsai showed that the enhanced shadow detection method improved the
shadow omission problem in the visual aspect. On the foundation of Tsai’s efficient shadow detection
algorithm, Chung et al. [23] proposed a modified ratio map by applying an exponential function
to the SRI by Tsai, and presented a successive thresholding scheme (STS) rather than only using a
global threshold [20]. Experiments in color aerial images revealed that the proposed algorithm by
Chung et al. [23] showed an improved performance in detecting shadow in images containing low
brightness objects. Inspired by the STS procedure by Chung et al. [23]. Silva et al. [24] extended the SRI
method by Tsai [20] specifically in the CIELCh color space by applying a natural logarithm function
to the original ratio map to compress the original values, resulting in the logarithmic spectral ratio
index (LSRI) algorithm. Then, the ratio map was segmented by applying multilevel thresholding.
This modified ratio method performed better in color aerial images by accurately detecting shadow
and avoiding misclassifying dark areas compared with the original ratio method by Tsai [20] and the
STS method by Chung et al. [23]. In addition, Ma et al. [25] presented a similar shadow detection
method based on the normalized saturation-value index (NSVDI) in the HSV color space. A rough
shadow index image was formed at first with the NSVDI method. Then the rough shadow index
image was segmented to obtain the final shadow image with a certain threshold. This NSVDI method
performed well in detecting large shadow in IKONOS multispectral images despite omitting some
small shadow. Mostafa et al. [26] also presented a shadow detector index (SDI) for shadow detection in
HSR multispectral satellite remote sensing images. The SDI algorithm was developed by first analyzing
the difference between shadow and typical nonshadow, particularly for vegetation, in terms of green
and blue components, and subsequently applying the neighborhood valley-emphasis method (NVEM)
to binarize the SDI index image for obtaining the shadow image [27]. The SDI approach performed
well in classifying shadow from vegetation, and acquired high shadow detection accuracies, except for
the shortcomings of some small shadow omission and misclassification of some dull red roof.

Though an increasing number of shadow detection algorithms have been put forward for
detecting shadow in HSR multispectral satellite remote sensing images and color aerial images in
recent years, shadow detection problems still need a further settlement, mainly including high small
shadow omission and typical nonshadow misclassification (like bluish and greenish dark nonshadow
misclassification, as well as large dark nonshadow misclassification). Therefore, shadow detection is
still challenging for HSR multispectral satellite remote sensing images.

In this paper, we first construct a logarithmic shadow index (LSI) and subsequently develop
an LSI shadow detection approach for shadow detection of HSR multispectral satellite remote
sensing images, particularly for further settling problems of high small shadow omission and typical
nonshadow misclassification (like bluish and greenish dark nonshadow misclassification, as well as
large dark nonshadow misclassification). Our presented LSI shadow detection algorithm employs
special properties of shadow, namely, the dramatical decrease of NIR component, the higher hue
value and the lower intensity value, by further studying properties of shadow in terms of both
multispectral band components (mainly including visible bands and NIR band) and invariant color
components in various invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr, YIQ) compared with
the corresponding nonshadow. Based on the proposed LSI, we acquire the shadow image by firstly
segmenting the shadow index image automatically with an optimal threshold determined with the
NVEM thresholding method [27] and subsequently optimizing the initial shadow image with a
certain morphological operation. For verifying the shadow detection performance of our proposed
LSI algorithm, comparative experiments are carried out with many images from WorldView-3 and
WorldView-2 acquired at different time and sites, and shadow detection performance is particularly
assessed both qualitatively and quantitatively against several standard shadow detection algorithms
(i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) with two WorldView-3 test images of
Tripoli, Libya.

The rest proceeds as follows. The LSI shadow detection is detailly developed step by step in
Section 2. Comparative experiments and performance assessments are conducted both qualitatively
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and quantitatively in Section 3. The influential elements and sensitivity factors are separately discussed
in Section 4. Finally, conclusions are drawn in Section 5.

2. Method

In accordance with the Phong illumination model [19] and contributions in other studies [14,15,20,28],
compared with nonshadow regions, similar ground objects in shadow regions often obviously possess the
following properties:

1. Dramatic decrease in terms of NIR component compared with R, G and B components.
2. Higher hue (H) values.
3. Lower intensity (I) values.

These shadow properties above are easily found in multispectral images and several invariant
color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ). Taking these properties into consideration, NIR,
H and I components are particularly employed in our presented shadow detection approach that is
accomplished step by step from Step 1 to Step 4, as depicted in Figure 1 and stated in detail as follows.

Figure 1. The flow chart of the logarithmic shadow index (LSI) shadow detection algorithm.

2.1. Step 1: Color Space Conversion

Chromaticity and luminance are powerful descriptors for color images [28]. The appropriate
description of both chromaticity and luminance simplifies image characteristic extraction and image
interpretation [29]. Colors for image expression are often regarded as a certain combination of R,
G and B stimuli in RGB color space in accordance with the provision of the Commission Internationale
del’Eclairage (CIE) [20,29]. Several color spaces are briefly introduced in terms of the RGB color space
as follows, in which chromaticity and luminance components are usually well decoupled.

In particular, the HSV color space consists of value (V), saturation (S) and hue (H) components.
Smith described the arithmetic relation between components of the HSV color space and those of the
RGB color space as Equations (1)–(3) [20,29]:

V =
1
3
(R + G + B) (1)
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S = 1−
3

(R + G + B)
min(R, G, B) (2)

H =

{
θ, if B ≤ G
360◦ − θ, if B > G

(3)

where θ is obtained with the following equation.

θ = cos−1


1
2 [(R−G) + (R− B)]√

(R−G)2 + (R− B)(G− B)

 (4)

Similarly, the HIS color space describes the color image in terms of intensity (I), saturation (S) and
hue (H) components, in which saturation and hue components together constitute the chromaticity
term and intensity is also known as luminance [29]. The HIS color space is usually computed from the
RGB color space with Equations (5)–(7) [20]:

I
V1

V2

 =


1
3

1
3

1
3

−

√
6

6 −

√
6

6

√
6

3√
6

6 −

√
6

3 0




R
G
B

 (5)

S =
√

V2
1 + V2

2 (6)

H = tan−1
(

V2

V1

)
if V1 , 0 (7)

where H is undefined under the condition of V1 = 0.
In addition, the YCbCr color space is often employed in JPEG, MPEG and H2.63 [20,30]. Equation (8)

describes the linear relations between components in the YCbCr color space and those in the RGB
color space. 

Y
Cb
Cr

 =


0.257 0.504 0.098
−0.148 −0.291 0.439
0.439 −0.368 −0.071




R
G
B

+


16
128
128

 (8)

Besides, the YIQ color space is regarded as a regulation widely utilized in the National Television
Standards Commission (NTSC) [31]. During the color image description, Y component is in proportion
to luminance used in gamma correction, and I and Q components together represent chromaticity,
namely, saturation and hue components [20,29]. The YIQ color space is obtained with Equation (9) in
terms of the RGB color space.

Y
I
Q

 =


0.299 0.587 0.114
0.596 −0.275 −0.321
0.212 −0.523 0.311




R
G
B

 (9)

Additionally, the CIELCh color space is a polar representation of the CIELAB color space by
the CIE to imitate how human eyes perceive color information. L and h components are often taken
as luminance and hue components, respectively. For more details about the CIELCh color space,
please refer to the work by Gonzalez [29] and Silva [24]. The arithmetic relation between the CIELCh
color space and the RGB color space is described with Equations (10)–(16):

X
Y
Z

 =


0.412 0.358 0.18
0.213 0.715 0.072
0.019 0.119 0.95




R
G
B

 (10)
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L =

 116
(

Y
Yn

) 1
3
− 16 if Y

Yn
> 0.008856

903.3
(

Y
Yn

)
if Y

Yn
≤ 0.008856

(11)

f (x) =

 x
1
3 if x > 0.008856

7.787x + 16
116 if x ≤ 0.008856

(12)

a = 500
(

f
( X

Xn

)
− f

( Y
Yn

))
(13)

b = 200
(

f
( Y

Yn

)
− f

( Z
Zn

))
(14)

C =
√

a2 + b2 (15)

h =

{
atan2(b, a) + 360◦ if atan2(b, a) < 0◦

atan2(b, a) − 360◦ if atan2(b, a) ≥ 0◦
(16)

where Xn = 95.047, Yn = 100.00 and Zn = 108.883 respectively refer to reference values of XYZ,
and atan2 is used in many standard libraries well coining with the condition a = 0 [32].

2.2. Step 2: NIR, H and I Extraction

In addition to the often utilized R, G and B components of the target image, NIR information
attracts more attention ever than before along with the spectral resolution improvement of HSR remote
sensing images by recently launched optical satellites [6,28,33]. Theoretically, in accordance with the
Phong’s illumination model [19] and the Huang’s imaging model [15], the diffusion part of the incident
light maintains the difference between shadow and nonshadow. Based on the diffusion part expression
shown in Equation (17) and the electromagnetic wave theory in which the surface albedo is positively
proportional to the wavelength, namely, the NIR component obtains a bigger surface albedo value
than those of R, G and B components. The decrease values between shadow and nonshadow can be
described with Inequation (18) in terms of NIR, R, G and B components [34,35]:

Cd = md

∫
λ

fc(λ)e(λ)cd(λ)dλ (17)

where Cd is sensor response to the diffusion part of the incident light, md is a parameter only depending
on the geometry information, fc(λ) denotes the spectral sensitivity in the function of wavelength λ,
e(λ) is the quantity of incident light, and cd(λ) is the surface albedo.

NIRd > Γd (18)

where NIRd is the decreased value between shadow and nonshadow in terms of NIR component,
and Γd ∈ {Rd, Gd, Bd} are the decrease values between shadow and nonshadow in terms of R, G and B
components, respectively.

In order to effectively decouple chromaticity and luminance, input images are at first converted to
express in several typical invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) with the
usually utilized R, G and B components in the RGB color space. Chromaticity and luminance are
usually well decoupled in these invariant color spaces described above. Note that the Q component
in the YIQ color space and the Cr component in the YCbCr color space are often regarded as the
equivalent term with the H component in the HSV, HIS and CIELCh color spaces, which are together
denoted as hue-equivalent (H) component. Similarly, the V component in the HSV color space, the Y
components in both the YCbCr and YIQ color space, and the L component in the CIELCh color space
are usually regarded as equivalent representations of the I component in the HIS color space, which will
be expressed as intensity-equivalent (I) components [14,20]. H and I components are respectively
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extracted from these invariant color spaces. Additionally, Huang et al. [15] provide derivations about
hue and intensity components between shadow and nonshadow, as presented in Equations (19) and
(20) with which conclusions are drawn that bigger hue values and lower intensity values are usually
obtained for shadow compared with the nearby nonshadow shown in Inequations (21) and (22):

Hshw = tan−1


√

3(Gnshw −Gd) − (Bnshw − Bd)

[(Rnshw −Rd) − (Gnshw −Gd)] + (Rnshw −Rd) − (Bnshw − Bd)

 (19)

Ishw =
1
3
[(Rnshw −Rd) + (Gnshw −Gd) + (Bnshw − Bd)] (20)

Hshw > Hnshw (21)

Ishw < Inshw (22)

where Hshw and Ishw are hue and intensity components of shadow, Rnshw, Gnshw and Bnshw are R, G and
B components of the nearby nonshadow.

Consequently, a dramatical decrease often appears in terms of NIR component compared with
R, G and B components for surface features in shadow regions compared with the same type surface
features in the nearby nonshadow regions, as illustrated in Figure 2a with samples from typical objects
in HSR images (taking the WorldView-3 as an example). Accordingly, the NIR component of input
images is additionally extracted to further coordinate with the shadow index construction described as
follows. Accordingly, H and I of shadow possess the properties above, as illustrated in Figure 2b,c
with samples from typical objects in HSR images (taking the WorldView-3 as an example). Hence,
both H and I in these invariant color spaces are employed in the proposed shadow detection approach
presented in the following.

Figure 2. Dramatic decrease in terms of near-infrared (NIR) component, higher hue (H) component
value and lower intensity (I) component value in shadow regions with samples for typical objects
(taking the WorldView-3 as an example). (a) NIR. (b) H. (c) I.

2.3. Step 3: LSI Construction

Coupled with the NIR component and H and I components obtained with various invariant
color spaces in Step 3, we construct a logarithmic shadow index (LSI) in this step to further enhance
the difference between shadow and the corresponding nonshadow based on the shadow properties
mentioned previously.

In particular, an initial shadow index (ISI) is first constructed with NIR, H and I components
as follows:

ISI = NIR×
I −H
I + H

(23)

where NIR indicates the near-infrared component, H implies the equivalent hue component and I
refers to the equivalent intensity component.
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The developed ISI fully employs shadow properties of higher hue, lower intensity and dramatical
decrease in terms of NIR component when compared with the corresponding nearby nonshadow
containing the same type features.

Additionally, an obvious distinction appears between the linear function f (x) = x and the natural
logarithm function f (x) = ln(x + 1) in compressing the data scale, as shown in Figure 3. Thus,
the difference between the linear function and the natural logarithm function in compressing the data
scale is further considered in LSI construction.

Figure 3. Comparison between the linear function f (x) = x and the natural logarithm function
f (x) = ln(x + 1) in compressing data scale.

Subsequently, in order to further improve the distinction between shadow and the corresponding
nonshadow, a certain natural logarithmic operation is particularly applied over ISI further compressing
ISI to a narrower scale [24] at the pixel level as follows:

LSI = ln
(
NIR×

I −H
I + H

+ 1
)

(24)

where “+1” is aimed at avoiding the calculation of ln(0).
Additionally, a significant importance appears in real-time and approximate real-time image

processing (taking the shadow detection as an example) for HSR satellites [14,28]. A great attention
is attached to the timesaving shadow detection algorithm for shadow processing on HSR satellites.
Accordingly, the proposed LSI algorithm is promised to be a timesaving one, because the shadow index
of the proposed LSI algorithm is simply constructed with equivalent hue and intensity components as
well as the NIR component.

2.4. Step 4: Binarization

A shadow mask is often accomplished by binarizing the previously acquired shadow index
image with a certain threshold manually selected or automatically with a certain thresholding
algorithm [20,23,24]. Several thresholding methods are widely used in the image binarization stage,
such as the Otsu method [21], the valley-emphasis method (VEM) [36], and the (NVEM) thresholding
method [27]. The Otsu thresholding method is a typical automatic one widely used in image binarization
for images with a histogram distributed in a bimodal form [21]. However, difficulties occur when
image histogram appears in a unimodal or approximately unimodal distribution. Additionally, in order
to determine optimal threshold values for both unimodal and bimodal distributions, Ng [36] attempts
to revise the Otsu method by applying a weight to the Otsu method resulting in the VEM thresholding
method. Based on the study by Otsu and Ng [21,36], Fan et al. [27] propose the NVEM thresholding
method, in which the between-class variance is further modified with the sum of the neighborhood
gray probability with an interval of 2m + 1. According to the description in the work by Fan et al. [27],
the NVEM thresholding method is briefly introduced as follows.
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The gray probability of a certain gray value g is calculated with Equation (25), and the sum of the
neighborhood gray probability with an interval of 2m + 1 is calculated with Equation (26):

h(g) =
f (g)

n
, g = 0, 1, . . . , L− 1 (25)

h(g) =
m∑

i=−m

h(g + i) (26)

where f (g) is the pixel number of gray value g, L is the image gray level, and n is the total pixel number.
The image is initially divided into two classes (background and object, or object and background)

with a certain threshold t. The probabilities of the two classes are calculated with Equation (27).
p0(t) =

t∑
g=0

h(g)

p1(t) =
L−1∑

g=t+1
h(g)

(27)

Then, the mathematical expectations of the two classes are computed with Equation (28).
µ0(t) =

 t∑
g=0

gh(g)

/p0(t)

µ1(t) =

 L−1∑
g=t+1

gh(g)

/p1(t)

(28)

With consideration of the sum of the neighborhood gray probability in an interval of 2m + 1,
the between-class variance is modified by Fan et al. as shown in Equation (29).

ξ(t) =
(
1− h(t)

)[
p0(t)µ2

0(t) + p1(t)µ2
1(t)

]
(29)

Finally, the optimal threshold T is determined by maximizing the modified between-class variance
with t in the range of 0 to L− 1, as shown in Equation (30).

T = argmax
0<t<L−1

(ξ(t)) (30)

As described above, we particularly employ the NVEM thresholding method for its efficiency and
automation. Consequently, a shadow candidate is generated by binarizing the LSI image with the
NVEM thresholding method. Accordingly, the LSI index image is particularly segmented with the
solution of Equation (31):

A =

{
0, if LSI < T
1, otherwise

(31)

where T is the optimal threshold determined with the NVEM thresholding method for the binarization
of the LSI index image, and A is the binarized result with the acquired optimal threshold T.

Additionally, we optimize the shadow candidate by applying a series of morphological operations
over the binary shadow candidate. In particular, the morphological opening and closing operations
are mainly employed with a certain structuring element [29], as presented in Equations (32) and (33).
The morphological operation contributes to the final optimized shadow image.

Aopen = A ◦ B = (A	 B) ⊕ B (32)

Aclose = AopenUB =
(
Aopen ⊕ B

)
	 B (33)
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where B is the morphological structuring element, Aopen is the shadow result by the opening operation
with the morphological structuring element B, and Aclose is the corresponding shadow result by
applying the closing operation with the morphological structuring element B on the opening result of
the initial shadow image.

3. Experiments and Performance Assessment

3.1. Test Images

The proposed LSI shadow detection approach is developed over a DELL personal computer under
the 64-bit Windows7 operation system equipped with a 3.2 GHz CPU and 4 GB RAM. In order to
verify the shadow detection performance of the proposed LSI algorithm, comparative experiments
are carried out with many test images from WorldView-3 of Tripoli, Libya and Rio de Janeiro,
Brazil, and WorldView-2 of Washington DC, USA captured at a different time (called WV3-Tripoli,
WV3-Rio and WV2-WDC respectively), which is discussed in next section (Section 4: Discussion).
In this section, both qualitative and quantitative assessments are especially provided in the following
to evaluate the shadow detection performance of the proposed LSI method and several standard
shadow detection algorithms (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) with two
WorldView-3 test images of Tripoli, Libya [37], as shown in Figure 4a,b. Additionally, reference images
of shadow regions are also provided with the corresponding panchromatic versions of test images
in Figure 4a,b with a spatial resolution of 0.31 m, as shown in Figure 5a,b. Particularly, the test
image Tripoli-1 in Figure 4a is a 400 × 300 pixel image that covers typical ground objects, such as
shadow, various scale urban buildings, asphalt roads, bare land and grass. The test image Tripoli-2
in Figure 4b is a 260 × 195 pixel image mainly consisting of shadow, buildings, asphalt roads, grass,
playgrounds and parks.

Figure 4. Test images from WorldView-3 images of Tripoli, Libya. (a) Tripoli-1. (b) Tripoli-2.
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Figure 5. Reference images for test images of Tripoli, Libya. (a) Tripoli-1. (b) Tripoli-2.

Specific details can be further discussed through qualitative visual comparison in the subjective
evaluation way. Moreover, the shadow detection performance of a certain shadow detection algorithm
is also quantified with shadow detection accuracy measurements by employing the objective evaluation
method. Qualitative and quantitative evaluation are both carried out over the shadow detection
results by the proposed LSI approach and five other comparative methods (i.e., MC3 [18], NSVDI [25],
LSRI [24], SDI [26] and SRI [20].) in the following comparative experiments.

3.2. Qualitative Visual Sense Comparison

Figures 6 and 7 respectively present the binary shadow detection results of test images Tripoli-1
and Tripoli-2 by the proposed LSI shadow detection approach and five other comparative methods
(i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) in comparative experiments. Particularly,
Figures 6a–e and 7a–e list shadow detection results by the proposed LSI shadow detection approach in
various invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ). Figures 6f–i and 7f–i illustrate
shadow detection results by five other comparative methods (i.e., MC3 [18], NSVDI [25], LSRI [24],
SDI [26] and SRI [20]). Shadow detection results are usually intuitively evaluated through visual
comparison [14,20]. In order to evaluate the ability of different color spaces in decoupling chromaticity
and luminance, shadow detection results are first compared through the qualitative visual sense
comparison, respectively, which are processed by the proposed LSI shadow detection approach in
various invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ), as presented in Figures 6a–e
and 7a–e.

In Figure 6a–e, shadow is correctly classified to a great extent. Specifically, most ground objects
in nonshadow regions are well distinguished from shadow, such as bluish housetops (region A in
Figure 6a–e), dark asphalt roads and bare areas (regions B1 and B2 in Figure 6a–e), grass and isolated
vegetation (regions C1 and C2 in Figure 6a–e). Moreover, continuous shadow (region E in Figure 6a–e)
and shadow containing highlight ground objects (regions F1 and F2 in Figure 6a–e) are also identified
properly. Good coherence occurs among shadow detection results by the proposed LSI shadow
detection approach in these five invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ).

Similarly, shadow detection results by the LSI algorithm for the test image Tripoli-2 in Figure 7a–e
also declare a good agreement between these shadow detection results and the corresponding reference
image in Figure 5b. In Figure 7a–e, shadow is also specifically distinguished from typical ground
objects, like greenish parts in the playground (region A in Figure 7a–e), asphalt roads and dark elements
on tops of urban buildings (regions B1 and B2 in Figure 7a–e), as well as continuously distributed
grass (region C in Figure 7a–e). Moreover, highlight shadow (region F in Figure 7a–e) is also outlined.
Similar with shadow detection results for the test image Tripoli-1 in these invariant color spaces
(i.e., HIS, HSV, CIELCh, YCbCr and YIQ), shadow detection results in Figure 7a–e also show no obvious
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visual sense difference among these shadow detection results in these invariant color spaces (i.e., HIS,
HSV, CIELCh, YCbCr and YIQ).

Figure 6. Cont.
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Figure 6. Shadow detection results of various shadow detection algorithms for Tripoli-1. (a) HIS.
(b) HSV. (c) CIELCh. (d) YCbCr. (e) YIQ. (f) MC3 [18]. (g) Normalized saturation-value index
(NSVDI) [25]. (h) Logarithmic spectral ratio index (LSRI) [24]. (i) Shadow detector index (SDI) [26].
(j) Spectral ratio index (SRI) [20].

Figure 7. Cont.
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Figure 7. Shadow detection results of various shadow detection algorithms for Tripoli-2. (a) HIS.
(b) HSV. (c) CIELCh. (d) YCbCr. (e) YIQ. (f) MC3. (g) NSVDI. (h) LSRI. (i) SDI. (j) SRI.

Based on the good coherence among shadow detection results in these invariant color spaces (i.e.,
HIS, HSV, CIELCh, YCbCr and YIQ), shadow detection results by the proposed LSI approach for test
images Tripoli-1 and Tripoli-2 in the HSV color space in Figures 6b and 7b are particularly selected
for the comparison with shadow detection results by other five comparative methods (i.e., MC3 [18],
NSVDI [25], LSRI [24], SDI [26] and SRI [20]) shown in Figures 6f–i and 7f–i.

As described above, shadow is well distinguished from most typical ground objects in the shadow
detection result for the test image Tripoli-1 by the proposed LSI approach, as shown in Figure 6b.
In Figure 6f, the shadow detection result by MC3 also shows good shadow detection effect on grass and
large continuous shadow. However, many parts of bluish housetops (region A in Figure 6f) and partial
dark asphalt roads (region B1 in Figure 6f) are wrongly classified as shadow in Figure 6f. Moreover,
in Figure 6g, the shadow detection result by NSVDI show more serious misclassification of bluish
housetops and dark asphalt roads, although big shadow regions are detected. Similarly, most large
shadow regions are well detected by SDI and SRI, like building shadow, as shown in Figure 6i,j.
However, bluish housetops and dark asphalt roads are still mostly wrongly identified as shadow.
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Moreover, parts of grass and isolated vegetation are also identified as shadow by SDI and SRI (regions
C1 and C2 in Figure 6i). Different from shadow detection results in Figure 6f,g,i,j, the nonshadow
misclassification problem is mostly avoided in the shadow detection result by LSRI, as shown in
Figure 6h. However, shadow is not always detected completely (region E in Figure 6h), and highlight
parts in shadow regions are partially omitted (regions F1 and F2 in Figure 6h), which reveals that LSRI
can not deliver a excellent shadow detection performance. Compared with shadow detection results
by these five comparative algorithms (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) for
the test image Tripoli-1, the shadow detection result by the proposed LSI algorithm alleviates problems
of shadow omission and typical nonshadow misclassification to a greater extent. Accordingly, a better
visual sense is acquired by LSI.

As shown in Figure 7b, shadow is effectively distinguished from bluish parts of the artificial
playground (region A in Figure 7b), dark asphalt roads and tops of buildings (regions B1 and B2 in
Figure 7b) and continuous distributed greenish grass (region C in Figure 7b). Moreover, highlight parts
in shadow areas are also correctly identified (region F in Figure 7b). Shadow is also well separated
from grass by MC3 as shown in Figure 7f. However, there are still too many nonshadow regions
misclassified, such as most bluish parts in the playground (region A in Figure 7f) and dark asphalt
roads and tops of buildings (regions B1 and B2 in Figure 7f). Similarly, although most shadow regions
are well identified by NSVDI, SDI and SRI, the nonshadow misclassification problem is still obvious in
Figure 7g,i,j, like bluish parts of the playground (region A in Figure 7g,i,j), dark asphalt roads (region
B1 in Figure 7g,i,j) and greenish grass (region C in Figure 7g,i,j). By contrast, in Figure 7h, most shadow
regions and nonshadow regions are well separated, like bluish parts of the playground (region A in
Figure 7h), dark asphalt roads and tops of buildings (regions B1 and B2 in Figure 7h) and continuously
distributed greenish grass (region C in Figure 7h), which shows that a relatively good detection effect
is achieved by LSRI. Satisfactory overall shadow detection effect is obtained in Figure 7h, even though
parts of the highlighted shadow are still omitted. As can be observed in Figure 7b,f–h, results by LSI
and LSRI show a better visual sense.

In general, compared with shadow detection results for test images Tripoli-1 and Tripoli-2 by
other five shadow detection methods (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20].), the
proposed LSI approach effectively distinguish shadow from several typical nonshadow (like bluish
and greenish nonshadow misclassification, and large dark nonshadow misclassification), and well
detect most highlighted parts of shadow. A conclusion can be drawn that the proposed LSI algorithm
further resolves problems of shadow omission and typical nonshadow misclassification, and delivers a
better visual sense.

3.3. Quantitative Evaluation

Different from the qualitative visual sense comparison mentioned above, a quantitative assessment
is also performed by calculating the confusion matrix for shadow detection results of both test
images Tripoli-1 and Tripoli-2. Particularly, several shadow detection accuracy measurements
utilized in the objective assessment are specifically calculated with the confusion matrix [26,38–40].
These corresponding measurements are computed at the pixel level with Equations (34)–(38) [9,14,20],
including the producer’s accuracy (ρs and ρn), the user’s accuracy (µs and µn), the committed error
(ec), the omitted error (eo), and the overall accuracy (τ): ρs =

TP
TP+FN × 100%

ρn = TN
TN+FP × 100%

(34)

 µs =
TP

TP+FP × 100%

µn = TN
TN+FN × 100%

(35)

ec =
FP

TN + FP
× 100% (36)
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eo =
FN

TP + FN
× 100% (37)

τ =
TP + TN

TP + TN + FP + FN
× 100% (38)

where TP (true positive) indicates the total number of true shadow pixels correctly identified, TN (true
negative) refers to the number of true nonshadow pixels correctly classified, FP (false positive) is the
number of true nonshadow pixels wrongly identified as shadow ones, FN (false negative) reveals
the number of true shadow pixels wrongly classified as nonshadow ones, TP + FN and TN + FP
respectively denote the number of true shadow pixels and true nonshadow pixels in the original image,
TP + FP and TN + FN respectively indicate the number of shadow pixels and nonshadow pixels in the
classified resulting image, and TP + TN + FP + FN is the total number of the whole image.

Ideal shadow detection methods usually own high values of the producer’s accuracy, the user’s
accuracy and the overall accuracy, as well as low values of the committed error and the omitted
error. In particular, the overall accuracy is the most important measurement among these shadow
detection accuracy measurements described above, which states the overall shadow detection ability
of a certain shadow detection algorithm. Accordingly, these shadow detection accuracy measurements
are mainly employed for evaluating the performance of the proposed LSI shadow detection approach
in comparative experiments. Additionally, these shadow detection accuracy measurements are
respectively presented in Tables 1 and 2 for shadow detection results by the LSI algorithm in five
invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) and five comparative algorithms
(i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) in comparative experiments with test
images Tripoli-1 and Tripoli-2.

Table 1. Shadow detection accuracy measurements of various shadow detection algorithms for the test
image Tripoli-1.

Method Color Space ρs(%) ρn(%) µs(%) µn(%) τ ec(%) eo(%)

LSI

HIS 83.94 95.53 87.21 94.24 92.44 4.47 16.06
HSV 83.67 95.75 87.73 94.17 92.53 4.25 16.33

CIELCh 84.24 95.61 87.45 94.35 92.58 4.39 15.76
YCbCr 80.98 96 88.03 93.29 92 4 19.02

YIQ 83.66 95.65 87.48 94.16 92.46 4.35 16.34

MC3 [18] C1C2C3 85.52 87.47 71.26 94.33 86.96 12.53 14.48
NSVDI [25] HSV 96.41 63.67 49.08 97.99 72.39 36.33 3.59

LSRI [24] CIELCh 63.69 97.65 90.77 88.1 88.6 2.35 36.31
SDI [26] NIR-RGB 99.2 33.73 35.22 99.14 51.17 66.27 0.8
SRI [20] HIS 87.91 65.15 47.82 93.69 71.22 34.85 12.09

Table 2. Shadow detection accuracy measurements of various shadow detection algorithms for the test
image Tripoli-2.

Method Color Space ρs(%) ρn(%) µs(%) µn(%) τ ec(%) eo(%)

LSI

HIS 73.39 98.21 94.53 89.75 90.85 1.79 26.61
HSV 73.48 98.23 94.58 89.78 90.89 1.77 26.52

CIELCh 72.89 98.43 95.15 89.6 90.86 1.57 27.11
YCbCr 72.54 97.97 93.78 89.43 90.43 2.03 27.46

YIQ 72.64 98.32 94.8 89.5 90.71 1.68 27.36

MC3 C1C2C3 94.19 20.96 33.44 89.53 42.68 79.04 5.81
NSVDI HSV 92.04 65.49 52.92 95.12 73.36 34.51 7.96

LSRI CIELCh 75.06 94.84 85.99 90.02 88.98 5.16 24.94
SDI NIR-RGB 97.61 40.35 40.82 97.56 57.33 59.65 2.39
SRI HIS 79.61 65.14 49.05 88.34 69.43 34.86 20.39

As shown in Table 1, high values are achieved for shadow detection results by the LSI algorithm in
various invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) for the test image Tripoli-1 in



Appl. Sci. 2020, 10, 6467 17 of 25

terms of the nonshadow producer’s accuracy (about 95%), the nonshadow user’s accuracy (about 94%)
and the overall accuracy (over 92%). Additionally, relatively high and stable values are also obtained in
terms of the shadow producer’s accuracy and the shadow user’s accuracy, and relatively low values are
also acquired in terms of the committed error and the omitted error. Generally speaking, ideal shadow
detection accuracy measurements are achieved for shadow detection results by the LSI algorithm in
these invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) for the test image Tripoli-1,
which not only reveals the good capability of these invariant color spaces in decoupling chromaticity
and luminance, but also states the excellent performance and robustness of the LSI algorithm.

Similarly, as presented in Table 2, relatively high and consistent accuracy measurements are also
acquired for the test image Tripoli-2 for shadow detection results by the proposed LSI algorithm in
these invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ). In particular, not only very
high values are obtained in terms of the nonshadow producer’s accuracy (about 98%), the shadow
user’s accuracy (about 94%) and the overall accuracy (approximately 91%), but also relatively low
values (less than 2%) is acquired for the committed error measurement. In general, the proposed LSI
approach acquires relatively ideal and stable shadow detection accuracy measurements for the test
image Tripoli-2 in these invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ).

Accordingly, the time consumption is respectively summarized for shadow detection by the
LSI algorithm in various invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) and five
comparative algorithms (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) for test image
Tripoli-1 and Tripoli-2, as presented in Table 3. As can be observed in Table 3, time consumption
values of the LSI algorithm are relatively small for the shadow detection in these invariant color spaces
(i.e., HIS, HSV, CIELCh, YCbCr and YIQ) for test images Tripoli-1 and Tripoli-2 because of the simple
computation of these invariant color spaces except for the time consumption of shadow detection in
the CIELCh color space due to its complex calculation from the RGB color space. Particularly, the least
time is consumed for shadow detection in the HSV color space by the proposed LSI algorithm for both
test images Tripoli-1 and Tripoli-2. Hence, the proposed LSI shadow detection algorithm delivers the
most timesaving performance in the HSV color space.

Table 3. Time consumption of various shadow detection algorithms for test images Tripoli-1 and Tripoli-2.

Time Used (ms) Color Space Tripoli-1 Tripoli-2

LSI

HIS 23.22 9.90
HSV 16.72 6.32

CIELCh 90.73 54.86
YCbCr 23.13 13.41

YIQ 29.30 12.93

MC3 C1C2C3 18.24 10.94
NSVDI HSV 21.48 14.09

LSRI CIELCh 620.41 388.29
SDI NIR-RGB 18.40 9.34
SRI HIS 94.54 23.90

Considering the excellent and stable performance in these invariant color spaces (i.e., HIS, HSV,
CIELCh, YCbCr and YIQ) and the most timesaving performance of the proposed LSI algorithm in the
HSV color space, for the sake of simplicity, shadow detection performance comparison is particularly
conducted between shadow detection results by the LSI algorithm in the HSV color space and five
comparative shadow detection algorithms (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20])
for both test images Tripoli-1 and Tripoli-2.

For the test image Tripoli-1, a higher value of the overall accuracy (over 92%) is acquired for the
shadow detection result by the proposed LSI algorithm in the HSV color space, compared with the
overall accuracy of the result by other five contrast methods (i.e., MC3 [18], NSVDI [25], LSRI [24],
SDI [26] and SRI [20]). Although relatively high values of the overall accuracy are also obtained by
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MC3 and LSRI, an obvious difference (about 3%) is also found compared with that of the proposed LSI
approach, which indicates that the proposed LSI method performs better for the shadow detection of the
test image Tripoli-1. In addition, not only relatively low values of the committed error and the omitted
error but also high values of the shadow user’s accuracy are acquired by MC3, which reveals that
the MC3 method performs relatively well for shadow detection of the test image Tripoli-1. However,
even though relatively high values of the shadow producer’s accuracy and the nonshadow user’s
accuracy, as well as relatively low values of the omitted error are obtained by NSVDI, SDI and SRI,
both relatively low overall accuracy and high committed error still obstacle the effective shadow
detection performance for the test image Tripoli-1, which indicates the poor performance of NSVDI,
SDI and SRI in effectively detecting shadow of the test image Tripoli-1. Therefore, there is still further
study for NSVDI, SDI and SRI in detecting shadows of HSR satellite images. By contrast, relatively high
overall accuracy and low committed error are acquired by LSRI for the test image Tripoli-1, revealing
that the LSRI method performs well in correctly distinguishing shadow against easily-confused
nonshadow for the test image Tripoli-1. In general, the proposed LSI algorithm delivers higher values
of the nonshadow producer’s accuracy (over 95%), the nonshadow user’s accuracy (about 94%) and
the overall accuracy (over 92%), stable values of the shadow producer’s accuracy (about 83%) and
the shadow user’s accuracy (over 87%), and lower committed error (less than 5%), which reveals the
excellent shadow detection performance and robustness of the proposed LSI algorithm for the test
image Tripoli-1.

Similarly, for the test image Tripoli-2, the proposed LSI approach also achieves a higher overall
accuracy value than that of the other five contrast methods (i.e., MC3 [18], NSVDI [25], LSRI [24],
SDI [26] and SRI [20]). Additionally, relatively low values of the overall accuracy are obtained by MC3,
NSVDI and SDI, although the corresponding omitted error values are relatively low, which indicates
the poor performance of MC3, NSVDI and SDI for shadow detection of the test image Tripoli-2.
Relatively low values of the overall accuracy and the user’s accuracy are also acquired by SRI,
revealing that great room for improvement remains for SRI for shadow detection of the test image
Tripoli-2. In contrast, better performance is shown in the result by LSRI with relatively high values of
the overall accuracy (close to 89%) and the user’s accuracy as well as low omitted error (about 5%),
even though various shadow detection accuracy measurements are slightly inferior to those of the
proposed LSI approach. Consequently, the proposed LSI algorithm presents a better performance for
the test image Tripoli-2.

Through comparing shadow detection results of test images Tripoli-1 and Tripoli-2 by the proposed
LSI approach and other five methods (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20])
both qualitatively and quantitatively, a conclusion can be drawn that the proposed LSI shadow
detection approach further settles typical shadow detection problems of high shadow omission and
typical nonshadow misclassification (like bluish and greenish nonshadow misclassification, and large
dark nonshadow misclassification), and delivers a relatively excellent, robustness and timesaving
performance for shadow detection of HSR satellite images.

4. Discussion

The proposed LSI shadow detection algorithm performs well in several invariant color spaces
(i.e., HIS, HSV, CIELCh, YCbCr and YIQ) in the comparative experiments previously with test images
Tripoli-1 and Tripoli-2. Notably, the LSI algorithm performance is mainly affected by operations in the
latter two steps of the workflow (i.e., Step 3 and Step 4). In this section, corresponding discussions
are provided to analyze both the influence of the logarithmic operation and the sensitivity of the
threshold parameter m as well as the structuring element of the morphological operation. Accordingly,
additional experiments are conducted to analyze the influential factors above on shadow detection
results with test images Tripoli-1 and Tripoli-2.
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4.1. Influence Analysis of the Logarithmic Operation

As described in Step 3, the initial shadow index is additionally refined with a logarithmic operation
resulting in the logarithmic shadow index for further improving the capability of separating shadow
against nonshadow. In particular, the logarithmic operation compresses the initial shadow index
and expand the discrimination between pixel values of shadow and nonshadow [24]. In this part,
the impact of the logarithmic operation is analyzed by comparing the performance distinction between
shadow detection results respectively by the initial shadow index and the logarithmic shadow index in
several variant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) in the additional experiments
with test images Tripoli-1 and Tripoli-2. Figure 8 illustrates the overall accuracies of shadow detection
results by the initial shadow index and the logarithmic shadow index in the additional experiments
with test images Tripoli-1 and Tripoli-2, respectively.

Figure 8. Overall accuracies of shadow detection results with the initial shadow index and the
logarithmic shadow index for test images. (a) Tripoli-1. (b) Tripoli-2.

As illustrated in Figure 8a,b, it can be observed that higher overall accuracies are acquired for
shadow detection results in these invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) with
the LSI shadow index for both test image Tripoli-1 and test image Tripoli-2, when compared with the
corresponding overall accuracies for shadow detection results with the ISI shadow index. Accordingly,
relatively high overall accuracies are obtained for shadow detection results with both ISI and LSI
indices for test images in most invariant color spaces mentioned above, which delivers significant
information that the distinction between shadow and nonshadow is significantly expanded by the
employed shadow properties against the corresponding nonshadow (i.e., higher hue, lower intensity
and dramatical decrease in NIR component). Furthermore, the obvious distinction of the overall
accuracy between shadow detection results with LSI shadow index and the overall accuracy with ISI
shadow index reveals that the applied logarithmic operation further reinforce the difference between
shadow and nonshadow for LSI construction in Step 3, which contributes to a good performance of the
LSI shadow detection algorithm. Therefore, we finally accomplish the shadow detection of test images
in various invariant color spaces based on the LSI shadow index.

4.2. Sensitivity Analysis of the Neighborhood Parameter

In this study, the shadow detection result is initially acquired through binarizing the shadow
index image with a certain optimal threshold by the NVEM thresholding algorithm, as presented
in Step 4 of the workflow. However, according to the thresholding solution of Equations (26)–(30),
the optimal threshold is sensitive to the neighborhood parameter m. As noted in related studies,
uncertainties appear in the binarization of natural images while determining the optimal threshold
with different neighborhood parameter m values [27]. Hence, in order to further explore the impact of
the neighborhood parameter m on the shadow detection performance of HSR multispectral satellite
remote sensing images, we respectively run additional experiments in various invariant color spaces
(i.e., HIS, HSV, CIELCh, YCbCr and YIQ) with the neighborhood parameter m set from 1 to 40 with an
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interval of 1 for test images Tripoli-1 and Tripoli-2. Figure 9 depicts the sensitivity of the LSI algorithm
performance to the neighborhood parameter m of the NVEM thresholding method for test images
Tripoli-1 and Tripoli-2, respectively.

Figure 9. The sensitivity of the LSI algorithm to the neighborhood parameter m for test images.
(a) Tripoli-1. (b) Tripoli-2.

As illustrated in Figure 9a,b, the overall accuracies keep relatively high values and a stable trend
in various invariant color spaces with the neighborhood parameter m from 1 to 28 for Tripoli-1 and
with the neighborhood parameter m from 1 to 20 for Tripoli-2, which together states that excellent
performance and robustness are acquired with a not-very-big neighborhood parameter m for test
images in these invariant color spaces. The difference between Figure 9a,b also explains that the
neighborhood parameter m depends on the target image. Accordingly, we process Tripoli-1 with an
optimal neighborhood parameter m = 25, and Tripoli-2 with m = 2, respectively.

4.3. Sensitivity Analysis of the Morphological Operation

The shadow detection results are usually subsequently processed with a certain denoising
algorithm, such as the morphological operation [29] and the box filtering process [22]. In our study,
the final shadow detection results are achieved through optimizing shadow candidates with a certain
morphological operation. However, the structuring element is a significant influential factor for the
effective utilization of the morphological operation. Therefore, both the morphological structuring
element type and the morphological structuring element scale α should be taken into consideration.
In this part, we deliver the sensitivity analysis about the impact of the morphological structuring
element on the LSI shadow detection algorithm through carrying out additional experiments in several
invariant color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) with various structuring element
types (i.e., cube, diamond, disk, sphere and square types) and different structuring element scales α
set from 1 to 20 with an interval of 1 for test images Tripoli-1 and Tripoli-2. Figure 10 presents the
sensitivity of the LSI algorithm to the morphological structuring element for test images Tripoli-1 and
Tripoli-2, respectively.

Figure 10. Cont.
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Figure 10. The sensitivity of the LSI algorithm to the morphological structuring element in variant
color space for test images. (a) Tripoli-1 in HIS. (b) Tripoli-2 in HIS. (c) Tripoli-1 in HSV. (d) Tripoli-1 in
HSV. (e) Tripoli-1 in CIELCh. (f) Tripoli-2 in CIELCh. (g) Tripoli-1 in YCbCr. (h) Tripoli-2 in YCbCr.
(i) Tripoli-1 in YIQ. (j) Tripoli-2 in YIQ.
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As depicted in Figure 10a,c,e,g,i for Tripoli-1, the higher overall accuracies of shadow detection
results by the morphological operation with the structuring element type of both cube and square
state the better performance of the LSI algorithm optimized with the morphological operation of
the structuring element types of cube and square, and the decreasing trend of the overall accuracy
along with the increase of the structuring element scale α reveals that more effective information is
processed as noise with a bigger structuring element scale. Additionally, the similarity of the overall
accuracy in Figure 10a,c,e,g,i for Tripoli-1 proves the excellent performance and good stability of the
LSI algorithm for Tripoli-1 in these invariant color spaces. Similarly, the same phenomenon appears
for Tripoli-2, as presented in Figure 10b,d,f,h,j. In accordance with the decreasing trend of the overall
accuracy along with the increase of the structuring element scale for various structuring element types
in these invariant color spaces for test images presented in Figure 10a–j, we optimize the binary shadow
detection results by applying the morphological operation with a structuring element type of cube and
a structuring element scale α = 1, which results in the final shadow detection image.

4.4. LSI Method Generalization Analysis

As described in Section 2, many test images (i.e., WV3-Tripoli, WV3-Rio and WV2-WDC) are
employed to explore the validity of the proposed LSI method. The LSI method generalization is
particularly analyzed with the overall accuracy measurement of shadow detection results for test
images above (i.e., WV3-Tripoli, WV3-Rio and WV2-WDC), since the overall accuracy is the most
powerful evidence for the shadow detection performance. Figure 11a–c respectively depict the overall
accuracy measurements of shadow detection results of 16 test images of WV3-Tripoli, 16 test images
of WV3-Rio and 16 test images of WV-WDC by the proposed LSI method in various invariant color
spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ).

Figure 11. LSI method generalization analysis. (a) WV3-Tripoli. (b) WV3-Rio. (c) WV2-WDC.
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As can be observed in Figure 11a-c, relatively high values of the overall accuracy measurement
are acquired for most test images of WV3-Tripoli, WV3-Rio and WV2-WDC, which shows the good
shadow detection ability of the proposed LSI method for most test images of WV3-Tripoli, WV3-Rio
and WV2-WDC. Additionally, stable and high values of the overall accuracy measurement are obtained
for test images of WV3-Tripoli, WV3-Rio and WV2-WDC in HIS, HSV, CIELCh and YIQ spaces,
although the LSI method fails in detecting shadow in six test images of WV3-Rio in the YCbCr space.
Through comparing the overall accuracy measurements for shadow detection results of test images of
WV3-Tripoli, WV3-Rio and WV2-WDC, a conclusion can be drawn that the proposed LSI method is able
to further complete shadow detection tasks and delivers an excellent shadow detection performance
for HSR multispectral satellite remote sensing images. Provided this situation, two test images of
WV3-Tripoli are employed in this paper to specifically evaluate the shadow detection performance of
the proposed LSI method against other comparative shadow detection algorithms, as discussed in
Section 2 previously.

5. Conclusions

In this paper, we develop and validate a logarithmic shadow index (LSI)-based shadow detection
approach mainly employing the properties of typical invariant color components in various invariant
color spaces (i.e., HIS, HSV, CIELCh, YCbCr and YIQ) in terms of both higher hue and lower intensity
components, as well as the dramatical decrease of near-infrared component against the visible band
components (i.e., red, green and blue components). Additionally, a better visual sense and higher
overall accuracies (over 92% for the test image Tripoli-1 and approximately 91% for the test image
Tripoli-2) are acquired by the proposed LSI shadow detection approach against other comparative
algorithms (i.e., MC3 [18], NSVDI [25], LSRI [24], SDI [26] and SRI [20]) in the comparative experiments,
which reveals that the excellent performance and robustness of the proposed LSI shadow detection
approach for high-resolution satellite images. Therefore, the proposed LSI shadow detection approach
is a promising one, further settling typical shadow detection problems of high small shadow omission
and typical nonshadow misclassification for high-resolution satellite images. In the future, we will
further research the shadow detection techniques considering the interference of water, snow and
desert on the base of our current study.
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