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Abstract: In the present work we reveal the existence of the hot carrier photovoltage induced across
a p–n junction in addition to the classical carrier generation-induced and thermalization-caused
photovoltages. On the basis of the solution of the differential equation of the first-order linear
time-invariant system, we propose a model enabling to disclose the pure value of each photovoltage
component. The hot carrier photovoltage is fast since it is determined by the free carrier energy
relaxation time (which is of the order of 10−12 s), while the thermal one, being conditioned by the
junction temperature change, is relatively slow; and both of them have a sign opposite to that of the
electron-hole pair generation-induced component. Simultaneous coexistence of the components is
evidenced experimentally in GaAs p–n junction exposed to pulsed 1.06 µm laser light. The work
is remarkable in two ways: first, it shows that creation of conditions unfavorable for the rise of hot
carrier photovoltage might improve the efficiency of a single junction solar cell, and second, it should
inspire the photovoltaic society to revise the Shockley–Queisser limit by taking into account the
damaging impact of the hot carrier photovoltage.
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1. Introduction

Renewable energy such as an electric one generated by solar cells is a promising and
environmentally friendly energy. To harvest it more extensively, one needs to reduce the production
price of a solar cell and to increase its conversion efficiency. The conversion efficiency of a single p–n
junction semiconductor solar cell is fundamentally constrained by the theoretical Shockley–Queisser
limit [1]. In spite of multiple efforts (see, e.g., [2,3]) devoted to revise the limit, the theory assumes that
only photons having energy close to a semiconductor forbidden energy gap Eg are used effectively,
photons with energy below Eg are not absorbed at all (so called below Eg loss), and the residual
energy of the higher energy photons left over after the electron-pair generation is reckoned only
through the process of carrier thermalization, i.e., through the lattice heating (thermalization loss).
These two intrinsic loss processes are mainly responsible for low efficiency of a single junction solar
cell. For example, in a silicon cell, the below Eg loss amounts to 17% and the thermalization loss comes
to 41%, and in a GaAs cell these both are equal to 34% and 26%, respectively [2].

Hot carriers (HCs) in semiconductors are free carriers with energy higher than the average
one. The carriers can be heated by means of a DC electric field, microwave or optical radiation.
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The photovoltaic community keeps a lively ongoing interest in hot carrier phenomena [4–11]. For good
operation of a hot carrier solar cell, fast relaxation of carrier energy needs to be extended and the hot
carriers need to be extracted through the selective contacts before they cool down to the bandgap
edges. Despite the advances in theory and materials synthesis, practically hot carrier solar cell
remains unrealized.

One way of experimental detection of carrier heating can be implemented by laser radiation
with photons having energy lower than a semiconductor forbidden energy gap. Such intraband
light absorption initiates rise of the hot carrier photovoltage across a semiconductor potential barrier
(Figure 1a; process 2). This kind of photoresponse was investigated in Ge [12], Si [13] and GaAs [14]
l-h junctions illuminated with CO2 laser radiation (photon energy 0.12 eV). It was shown [14] that the
photovoltage consisted of two components, the slow and the fast one. The fast one was attributed
to the HC photoresponse, while the slow one was assumed to result from the semiconductor lattice
heating, i.e., from the carrier thermalization. Actually, the process of thermalization is also based on the
hot carrier phenomenon since the hot carriers supply the lattice with this extra energy while cooling
down to the bandgap edges. Low photon energy laser pulses also gave rise to HC photovoltage across
Ge [15], Si [16,17], GaAs [18–20], InSb [21] and HgCdTe [22] p–n junctions. It is worth noting that in the
case of the narrow bandgap semiconductors (InSb and HgCdTe) exposed to the CO2 laser light pulses,
the classical photovoltage induced by electron-hole pair generation was observed simultaneously with
the HC photoresponse. Additionally, both these photovoltages were observed across Si p–n junction
illuminated with 1.49 µm-long laser radiation [19] and across GaAs p–n junction exposed to 1.06 µm
wavelength light [19,20]. The polarities of these two photovoltages are opposite.
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thermalization of a hot carrier. 1—process of electron-hole pair generation, 2—free electron heating 
and 3—generation of hole and hot electron pair; (b) schematic of the sample and photovoltage 
measurement circuit. 

High-energy photons also create hot carriers as the excess energy turns the photogenerated 
carriers into the hot ones [20,23], and these show a two-sided influence on the open circuit voltage of 
a p–n junction [23]. 

This paper deals with all three effects, i.e., hot carriers, thermalization and classical 
photogeneration, simultaneously induced by a laser pulse across the GaAs p–n junction. We propose 
a method unfolding the input of each individual component into the net magnitude of the 
photoresponse and focus our interest on the hot carrier photovoltage as a possible reason for the 
practically unattainable theoretical Shockley–Queisser limit. 

2. Experimental 

Figure 1. (a) Formation of generation-induced photovoltage (blue arrows) and hot carrier photovoltage
(red arrows) across the p–n junction; stepped shape of the red arrows indicates gradual thermalization
of a hot carrier. 1—process of electron-hole pair generation, 2—free electron heating and 3—generation
of hole and hot electron pair; (b) schematic of the sample and photovoltage measurement circuit.

High-energy photons also create hot carriers as the excess energy turns the photogenerated
carriers into the hot ones [20,23], and these show a two-sided influence on the open circuit voltage of a
p–n junction [23].

This paper deals with all three effects, i.e., hot carriers, thermalization and classical photogeneration,
simultaneously induced by a laser pulse across the GaAs p–n junction. We propose a method unfolding
the input of each individual component into the net magnitude of the photoresponse and focus our
interest on the hot carrier photovoltage as a possible reason for the practically unattainable theoretical
Shockley–Queisser limit.

2. Experimental

The object of our investigation, GaAs p–n junction, was fabricated from 5 µm-thick p-type layer
(hole density 5 × 1017 cm−3) liquid phase epitaxy-grown on n-type substrate with electron density
3 × 1017 cm−3. Traditional photolithography technique and thermal evaporation of the Au-Ge-Ni alloy
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were applied to form the 2.5 × 2.5 mm2 sample with ohmic contacts. The contacts were built at the
edge of the sample to prevent them from a direct laser beam and thus to avoid photosignal formation
in the vicinity of the contacts (Figure 1b).

A laser is a useful tool to investigate the hot carrier phenomena for its unique features of
monochromatic and wide power range emission and for the possibility of generating short light pulses.
In the experiment, Nd:YAG laser with wavelength 1.06 µm, pulse duration 25 ns, repetition rate 50 Hz
and maximum pulse intensity 1.2 MW/cm2 was used. The measurement scheme is also presented in
Figure 1b. Temporal behavior of the photovoltage and laser pulse shapes was recorded by digital
storage oscilloscope Agilent Technologies DSO6102A, and the laser pulse shape was registered by high
speed optical signal reference detector 11HSP-FS1 (Standa Ltd., Vilnius, Lithuania). The calculations
were performed by means of multi-paradigm numerical computing environment MATLAB (R2019b,
The MathWorks, Natick, MA, USA, 2019).

3. Results

Figure 2a presents oscilloscope trace of the photovoltage across the GaAs p–n junction induced
by the laser pulse at 20% of its maximum intensity value. It is seen that the response consisted of
at least two components of opposite polarity. The positive one corresponded to electron-hole pair
generation and their separation by the electric field of the junction (process 1 in Figure 1a). Additionally,
the negative part obviously agreed with the carrier flow above the potential barrier (red arrows in
Figure 1a), i.e., it could be attributed to the hot carrier photovoltage.
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The laser photon energy was less than the forbidden energy gap of GaAs, hν = 1.17 eV and Eg = 
1.42 eV, respectively. Thus, the intraband light absorption could be the reason of the hot carrier 
photovoltage formation as it took place in the case of CO2 laser excitation [18]. On the other hand, 
GaAs is known for its relatively expressed two-photon absorption [24]. This feature can be assumed 
to be the reason of the carrier pair generation-caused photovoltage formation. Really, the measured 
peak value of the negative component Uneg shows linear dependence on the laser intensity (red 
circles in Figure 2b); this is an inherent feature of the heating-caused effects. While the positive 

Figure 2. (a) Experimental photovoltage signal (green) across GaAs p–n junction at the moderate
light intensity level; laser pulse (blue) is added for time-dependent comparison. (b) Dependence of
measured peak values of the negative Uneg (red circles) and positive Upos (blue squares) photovoltage
components on laser light intensity; the lines are guides for the eye of linear (red) and square law
(blue) dependence.

The laser photon energy was less than the forbidden energy gap of GaAs, hν = 1.17 eV and
Eg = 1.42 eV, respectively. Thus, the intraband light absorption could be the reason of the hot carrier
photovoltage formation as it took place in the case of CO2 laser excitation [18]. On the other hand,
GaAs is known for its relatively expressed two-photon absorption [24]. This feature can be assumed
to be the reason of the carrier pair generation-caused photovoltage formation. Really, the measured
peak value of the negative component Uneg shows linear dependence on the laser intensity (red circles
in Figure 2b); this is an inherent feature of the heating-caused effects. While the positive component
Upos followed the square law thus proving its origin to be related with the mechanism of two-photon
absorption (blue squares in Figure 2b).
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Moreover, the presence of hot carriers was unavoidably followed by their fast thermalization and
resulting rise of the junction temperature. Therefore, the total photoresponse across the GaAs p–n
junction should be composed of three components,

Utot(t) = Uhc(t) + Uth(t) + Ugen(t), (1)

where Uhc(t) is the hot carrier photovoltage, Uth(t) is the thermal component resulting from
thermalization of hot carriers and subsequent heating of the lattice and Ugen(t) is the electron-hole pair
generation-based component arising due to two-photon absorption. The polarities of Uhc(t) and Uth(t)
were the same and were opposite to the sign of Ugen(t). Our model assumed the p–n junction as a
first-order linear time-invariant (LTI) system [25], and the time-response of it in a general case was
characterized by the differential equation

τ
dU
dt

+ U = U(t), (2)

where τ represents the exponential decay constant, and U = U(t) is a photoresponse function of time.
The forcing function U(t) depends on the laser pulse and on the physical phenomenon giving rise to a
particular photoresponse component. In our case, the laser pulse can be properly approximated as

I(t) = Ip

(
t
τp

)m

exp
[
m
(
1−

t
τp

)]
, (3)

where Ip is the peak intensity, Ip = I(τp) and τp is the laser pulse rise time. The best fit with the
experimental laser pulse shape was achieved with index m = 10.

As it was mentioned earlier, generation of electron-hole pairs was caused by a nonlinear
phenomenon of two-photon absorption. Therefore, the forcing function has a square dependence on
the laser intensity:

Ugen(t) = Kgen I2(t). (4)

To solve Equation (2) in respect to Ugen(t), the time constant τgen was measured as the exponential
decay of the positive component, and the coefficient Kgen was chosen to fit the experimental photovoltage
magnitude far after the end of the laser pulse. The calculated Ugen(t) is presented in Figure 3a in
green. Additionally, the experimental trace of the total photovoltage is depicted here. As expected,
good agreement was seen only at the end of the picture.
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Figure 3. Sequence of photovoltage pulse simulation: (a) carrier generation-induced component
(green); (b) hot carrier photovoltage (red) and sum of the two components (blue) and (c) thermal lattice
heating-caused photovoltage (violet) and sum of the three components (orange). For comparison,
the experimental photovoltage trace is shown in black.
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Hot carrier energy relaxation time in GaAs is of the order of one picosecond [26]. It means that
the free carriers are hot as long as the laser pulse is present:

Uhc(t) = Khc I(t), (5)

and the time constant is τhc = τp. The value of coefficient Khc was tailored to fit Uhc(t) with the negative
peak of the experimental trace. The hot carrier component Uhc(t) and the sum of the two calculated
components, Uhc(t) + Ugen(t), are presented in Figure 3b. Obviously, to reach better congruence with
the measured photovoltage, one needs a slow negative component to be added to the calculated
binary trace.

Heating effects, no matter whether they are of the free carriers or of a semiconductor lattice,
are linear phenomena. Thus, the forcing function of the thermalization-caused component is
expressed as

Uth(t) = Kth I(t). (6)

For calculation of Uth(t), the value of τth = 160 ns was estimated by measuring the time-decay of
the transient thermoelectric (TTE) voltage [27] between two contacts on the sample’s substrate exposed
to the laser radiation. The magnitude of Kth was tailored for the best fitting of the calculated and
experimental results.

As Figure 3c shows, addition of the third, thermal, component (violet trace) improved the proposed
model and gave good agreement with the experimental data. Thus, the model is provided with an
ability to separate all the components and to evaluate the contribution of each of them to the total
photovoltage. The dependence of the peak values of all three derived components, Ugen(t), Uhc(t) and
Uth(t), on laser intensity are depicted in Figure 4. Each point was calculated by applying the above
model for each photovoltage trace experimentally fixed at the appropriate laser intensity level.
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As the laser intensity increased and the two-photon absorption started to be detected
(at approximately about 20% of the maximum intensity value), several notices should be pointed out.
First, the magnitude of the measured Ugen was lower than the modeled one (compare the values in
Figures 2b and 4). It confirms that the classical photovoltage across the p–n junction was lowered by
the opposing heating effects. Second, the dependence of the Uhc component passed into the sublinear
character, that is, its input into the total signal seemed to diminish. This must be caused by the relative
lack of light photons directly used for the carrier heating since part of them now was used for the carrier
generation. Third, the interplay between the measured and calculated Uhc component peak values
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also changed: the experimental one led at low laser intensities while it gave place to the calculated
one at the higher excitation level. Influence of the other two components was responsible for these
changes: Uth supported the experimental Uhc at low intensities (see cases b and c in Figure 3), and Ugen

cut down Uhc as it started manifesting itself. Fourth, the input of the slow lattice heating-caused
component Uth seemed to increase since it went into the superlinear shape. Actually, it was not the real
case. Part of the energy remaining from the electron-hole generation due to two-photon absorption
(2 × hν − Eg = 0.92 eV) was most probably used to generate a hot carrier, which supported formation of
the hot carrier photovoltage (Figure 1a, process 3). However, this process followed the slow temporal
behavior of the Ugen as both of them did happen at the same time and therefore could not be separated.
Therefore, the decrease of the ratio Uhc/Uth (black diamonds in Figure 4) should be treated as the relative
decrease of that HC component, which resulted only from direct intraband free carrier absorption.
Nevertheless, one should note a ten times stronger impact of the hot carriers as compared to that of the
heated lattice at low light intensity.

It is well known that bias voltage alters the potential barrier height and the depleted region of
a p–n junction. Thus, forward bias should set favorable conditions for the hot carrier flow across
the lowered potential barrier (see Figure 1a). Indeed, the experiment shows that the negative fast
photovoltage component increased with the forward bias voltage and decreased with the reverse
one (Figure 5). As process 1 in Figure 1a illustrates, a p–n junction solar cell got forwardly biased
by the electron-hole pairs generated and separated by the internal electric field what should work
for the good of the damaging impact of the hot carriers on the cell operation. However, in the case
of the reverse-biased junction, sharp drop of the magnitude of the fast component is seen in the
region of light intensity when the carrier generation-induced component met favorable conditions and
started manifesting itself (Figure 5, at above 5% of maximum intensity value); the rise of the latter was
well-seen in the inset at U < 0. This way, correlation between the hot carrier-induced photovoltage
and the generation-caused one was ambiguous, but the opposition between these two photovoltages
was obvious.
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4. Conclusions

Hot carrier photovoltage across the GaAs p–n junction was evidenced experimentally and
supported by an empirical model. In general, photovoltage across a p–n junction consisted of
three simultaneous components arising due to electron-hole pair generation, hot carrier effect and
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semiconductor lattice heating after the thermalization. The first two of them could be evaluated
experimentally at some extent, while the lattice heating-caused component could not be detected
separately. The proposed model of a p–n junction as a first-order LTI system allowed revealing the
individual input of each component. The magnitude of the net photovoltage resulted from mutual
competition between all three components. Under certain conditions, depending on light wavelength,
intensity, semiconductor bandgap and bias voltage, the hot carrier component could even exceed the
classical photovoltage. As for application, the hot carrier photovoltage might be the reason of the
still experimentally unattainable Shockley–Queisser limit, and the so called below Eg loss should be
revised by taking into account the formation of this photovoltage of opposite polarity. On the other
hand, maximum reduction of the hot carrier photovoltage contribution will boost the efficiency of a
single-junction solar cell.
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