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Abstract: There is a clinical need to develop a stent to treat obstructive and refractory Eustachian
tube dysfunction (ETD) after balloon Eustachian tuboplasty. An animal model for stent placement
in the Eustachian tube (ET) is needed to develop optimal designs and materials, as stents for ETD
have not been clinically applied. The purpose of this study was to evaluate the technical feasibility
of stent placement and histological changes in a porcine ET model. Six ETs were evaluated in three
pigs. Cobalt–chrome alloy stents with two different diameters were placed in the left and right
ET of each animal (right, 3.5 mm; left, 2.5 mm). The outcomes were assessed by endoscopic and
fluoroscopic imaging during the procedure, computed tomography after the procedure, and by
histological examinations. Stent placement was technically successful in all specimens after metallic
guiding sheaths were located in the nasopharyngeal end of the ET. The mean luminal diameters of the
proximal, middle, and distal portions of the larger stents in the right ETs were 3.48 mm, 2.54 mm, and
2.15 mm, respectively. In the left ETs using smaller stents, these values were 2.49 mm, 1.73 mm, and
1.42 mm, respectively. The diameters of the inserted stents differed by stent location and the original
diameter. Histological findings showed tissue hyperplasia with severe inflammatory cell infiltration
at 4 weeks after stent placement. In conclusion, stent placement into the porcine ET was technically
feasible, and stent-induced tissue hyperplasia was significantly evident. The luminal configuration
of the placed ET stent changed according to its non-elastic nature and anatomical features of the
porcine ET. Using this model, ET stents of various materials and designs with anti-inflammatory or
anti-proliferative drugs can be optimized for future treatments of ET dysfunction.

Keywords: Eustachian tube; stent; Eustachian tube dysfunction; tissue hyperplasia; otitis media

1. Introduction

The Eustachian tube (ET) forms the only connection between the middle ear and the
nasopharynx; thus, its normal function is important for maintaining a healthy, well-aerated
middle ear [1]. The functions of the ET include secretion transport, middle ear ventilation,
and protection against pathogens and nasopharyngeal reflux [2]. Dysfunction of the ET
can lead to the development of acute and chronic otitis media, one of the most common
disorders encountered in otolaryngology practice [3].
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Until recently, otolaryngologists’ understanding of ET dysfunction (ETD) was limited
and few treatment options were available [4–8]. Currently, the most common surgical
approach is myringotomy with or without the insertion of a ventilation tube, with a re-
ported success rate of 79% after a 4-month follow-up period [6]. However, this is only a
temporary management solution and it does not address the ET directly. Other conser-
vative management solutions for ETD also include the Valsalva maneuver for pressure
equalization and use of nasal steroids and decongestants [9]. With the introduction of
balloon Eustachian tuboplasty (BET), however, surgical management of ETD is now pos-
sible [10]. The proposed mechanisms underlying the effects of BET include microtears
in the cartilaginous part of the ET [10], decreased mucosal inflammation, and reduced
biofilm infection load [11]. Since 2010, studies have reported the use of BET to treat ETD,
with success rates ranging between 36% and 80% [8,12–14]. Although these prior studies
reported that BET is superior to conventional medical management, some patients with
ETD do not respond to this dilation treatment.

The possible options for the further management of patients with BET failure include
a repeat BET procedure or the insertion of an ET stent [15]. However, stents for ETD have
not been clinically applied. Thus, animal studies are needed to develop a stent option
for ETD and to compare histologic changes in the ET after a repeat BET or insertion of
an ET stent. The current study established a porcine model for ET stenting and validated
the feasibility of inserting commercially available stents of two different diameters using
combined endoscopic and fluoroscopic guidance. This study aimed to investigate the
technical feasibility of stent placement and histological changes after stent placement in a
porcine ET and evaluate the optimal size and luminal configuration of ET stents for the
porcine model.

2. Materials and Methods
2.1. Study Design

This study tested both ETs in three pigs weighing 33.7, 37.2, and 35.4 kg, respectively
(i.e., six total ETs). The technical feasibility of stent placement in a porcine ET was assessed
by fluoroscopic and endoscopic images obtained during the procedure and computed
tomography (CT) afterward. The stent sizes were selected according to the diameter (2.3 to
3.4 mm) and length (24.2 to 36.4 mm) of the normal ET in a porcine model [15,16]. This
study was approved by the Institutional Animal Care and Use Committee of the Asan
Institute for Life Sciences (2020-12-189) and conformed to US National Institutes of Health
guidelines for humane handling of laboratory animals.

2.2. Metallic Guiding Sheath

A newly developed metallic guiding sheath for use in the porcine ET model was
fabricated from stainless steel (Genoss Co., Ltd., Suwon, Korea; Figure 1a).

This sheath had inner and outer diameters of 2 and 2.5 mm, respectively, and was
250 mm long. The distal 20 mm of the sheath was curved into a J shape at a 30◦ angle to
the axis to enable easy access from the nose to the nasopharyngeal orifice of the ET in the
pigs. The angled distal tip of the sheath was easily located in the nasopharyngeal orifice of
the ET.

2.3. Stent Placement under Endoscopic and Fluoroscopic Guidance

Anesthesia was induced by intramuscular injection of 50 mg of ketamine under the
supervision of a veterinarian. An endotracheal tube was placed and anesthesia was main-
tained by inhalation (0.5–2% isoflurane (Ifran; Hana Pharm. Co., Seoul, Korea) with oxygen
(510 mL/kg per min) at 1:1). The pigs were then positioned in the prone position and base-
line endoscopic images of the nasopharyngeal orifice of the ET were obtained. The metallic
guiding sheath (arrowheads, Figure 1a) was then advanced through the nostril to the na-
sopharyngeal orifice (arrow, Figure 1a) of the ET under endoscopic guidance (Figure 1). A
micro-guidewire with a balloon catheter (Genoss Co., Ltd., Suwon, Korea), which had been
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crimped with a stent, was then advanced through the metallic guiding sheath (arrowheads,
Figure 1c) into the ET until its tip met resistance near the bony-cartilaginous isthmus of the
ET. This procedure was conducted under combined endoscopic (VISERA 4K UHD Rhino-
laryngoscope; Olympus, Tokyo, Japan; arrows, Figure 1e) and fluoroscopic (Ziehm Vision
RFD Hybrid Edition; Ziehm Imaging GmbH, Nuremberg, Germany) guidance. Cobalt–
chrome alloy stents of two different diameters (18 mm length and 85 µm strut thickness,
Genoss BMS, Genoss Co., Ltd., Suwon, Korea) were then placed into the left and right ETs
(right-side ET, 3.5 mm; left-side ET, 2.5 mm). The balloon catheter was fully inflated with
a contrast medium to 12 atmospheres, as determined by a pressure gauge monitor. After
maintaining the fully expanded balloon for 30 seconds, the balloon catheter was deflated
under continuous fluoroscopic monitoring. The sheath, balloon catheter, and guidewire
were removed after stent placement and the ET orifice was examined by endoscopy to
confirm the location of the proximal end of the stent and detect any mucosal injuries.
Technical success was defined as successful stent placement in the cartilaginous portion
of the porcine ET. All pigs were euthanized using an overdose of xylazine hydrochloride
(Rompun; Bayer, Seoul, Korea) at 4 weeks after stent placement. Before sacrifice, follow-up
endoscopic examinations were performed to evaluate the proximal end of the stent.
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Figure 1. (a) Photograph showing the metallic guiding sheath developed for the porcine 
Eustachian tube (ET) model. (b–h) The technical steps of stent placement in a porcine ET. (b) 
Baseline endoscopic image showing the nasopharyngeal orifice (arrow) of the right ET. (c) 

Figure 1. (a) Photograph showing the metallic guiding sheath developed for the porcine Eustachian
tube (ET) model. (b–h) The technical steps of stent placement in a porcine ET. (b) Baseline endoscopic
image showing the nasopharyngeal orifice (arrow) of the right ET. (c) Endoscopic image showing the
location of the metallic guiding sheath (arrowheads) at the ET orifice. (d) The proximal end of the
stent (arrow) protrudes from the nasopharyngeal orifice of the ET. (e) Radiograph obtained during
stent placement showing the metallic guiding sheath (arrowheads) and flexible endoscopy (arrows).
(f) A balloon catheter with a crimped stent (arrows) was inserted through the sheath (arrowheads)
into the ET. (g) The balloon catheter (arrows) was fully inflated. (h) Radiograph obtained immediately
after stent placement showing a fully expanded stent (arrows).
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2.4. Computed Tomography

Images of the temporal bones were obtained by CT (Somatom Sensation 16; Siemens,
Erlangen, Germany) performed immediately after stent placement to verify the stent
location and patency, and to measure the inner luminal diameters of the stent at the
proximal, middle, and distal portions of the ET.

2.5. Gross and Histological Examination

Surgical exploration of the ET with the placed stent was followed by gross examination
to detect tissue injuries occurring during stent placement and to observe the status of the
placed stent. For this analysis, the cadaveric porcine heads were mid-sagittally sectioned
using an electric saw. The stent was then carefully extracted for histological examination.
The ET tissue samples were fixed in 10% neutral-buffered formalin for 24 h. The fixed
tissue samples were then embedded in plastic resins and axially sectioned at the segment
with the stent. The slides were stained with hematoxylin and eosin. Histologic analysis
was performed using a digital slide scanner (Pannoramic 250 FLASH III, 3D HISTECH
Ltd., Budapest, Hungary). Measurements were obtained with a digital microscope viewer
(CaseViewer, 3D HISTECH Ltd.).

2.6. Statistical Analysis

Data are expressed as the means ± standard deviation (SD). The differences between
the two specimens were analyzed using Mann–Whitney U tests. Here, p-values < 0.05 were
considered statistically significant. Statistical analyses were performed using IBM SPSS
Statistics for Windows version 24.0 (IBM Corp., Armonk, NY, USA).

3. Results

None of the pigs showed any anatomical variations, ear injuries, or disease on pre-
procedural endoscopic examinations. The stent placements were technically successful in
all pigs, with no procedure-related complications. Although mucosal injuries with touch
bleeding were observed in two (33.3%) of the six specimens during sheath insertion, all
metallic guiding sheaths were successfully located in the nasopharyngeal orifice of the ET
under endoscopic guidance.

In the right-side ETs treated with the larger 3.5-mm-diameter stents, the proximal
ends of the stents protruded from the orifice by approximately 1–2 mm. In the left-side
ETs, two of the three smaller 2.5-mm-diameter stents were located within the cartilaginous
portion of the ET, while one stent was located in the cartilaginous portion of the ET with
the proximal tip slightly protruding into the nasopharyngeal orifice of the ET. The longest
luminal diameters at the three different stent levels and the decrease rates at each site are
presented in Table 1 and Figure 2, with representative examples shown in Figure 3.

Table 1. Mean luminal diameters and decrease rates at the proximal, middle, and distal portions of
the placed stents in a porcine Eustachian tube (ET) model.

Stent Diameter/Site Location Luminal Diameter (mm) Decrease Rate (%)

3.5 mm/Right ET

Proximal 3.48 ± 0.06 0.9 ± 0.8

Middle 2.54 ± 0.17 27.4 ± 7.6

Distal 2.15 ± 0.14 38.6 ± 4.1

2.5 mm/Left ET

Proximal 2.49 ± 0.04 0.4 ± 0.6

Middle 1.73 ± 0.21 30.8 ± 8.3

Distal 1.42 ± 0.18 43.2 ± 7.1
Note. Data are means ± standard deviation.
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Figure 3. Coronal computed tomography image showing segments of the stented ETs, where the stents were present in
the (1) proximal, (2) middle, and (3) distal portions. The axial CT images of the proximal portions of the stents show fully
expanded stents in both ETs (red circles). The axial CT images show a gradual decrease from the proximal to the distal
portion of the stented ET.
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The mean luminal diameters (±SD) of the proximal, middle, and distal portions of
the stents in the right-side ETs using larger-diameter (3.5 mm) stents were 3.48 ± 0.06,
2.54 ± 0.17, and 2.15 ± 0.14 mm, respectively. In the left-side ETs using smaller-diameter
(2.5 mm) stents, these values were 2.49 ± 0.04, 1.73 ± 0.21, and 1.42 ± 0.18 mm, respectively.
The diameters of the inserted stents differed significantly by stent location and original
diameter.

The excised specimens with the placed stent showed no mucosal injuries in the
ETs. The distal portions of the stents were severely collapsed in gross observation of the
inserted stents (Figure 4). The stents gradually collapsed from the proximal to the distal
portions. The shapes of the inserted stents were influenced by the stent sizes and anatomic
configuration of the ET.
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Figure 4. (a) Photograph showing a mid-sagittal sectioned cadaveric porcine head with the metallic
guiding sheath (arrowheads) facing the orifice of the ET (arrow). (b,c) The photographs show the
placed stent (arrows) in the ET and the extracted stent from the ET of the (d) frontal and (e) lateral
views. The stent was gradually collapsed from the proximal to the distal portion.

The histological images showed severe inflammatory cell infiltration around the stent
strut. Tissue hyperplasia with increased submucosal fibrosis progressed through the stent
strut (Figure 5a–c). Follow-up endoscopic images demonstrated that stent migration did
not occur at 4 weeks after stent placement. However, the proximal end of the stent was
filled with secretion (Figure 5d).
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Figure 5. Representative histologic (hematoxylin and eosin staining at 1.25× (a), 20× (b), and 10× (c)) and endoscopic
images at 4 weeks after stent placement. (a) Microscopic image of a histologic section. (b) Severe inflammatory cell
infiltration (arrowheads) adjacent to the stent strut (arrows). (c) Tissue hyperplasia with increased submucosal fibrosis
through the stent strut (arrows). (d) Follow-up endoscopic image obtained 4 weeks after stent placement showing the stent
(arrows) in place and the proximal end of the stent filled with secretion (arrowheads).

4. Discussion

The primary aim of our present study was to test the feasibility of stent insertion
into the ET from the nasopharynx under endoscopic guidance in a porcine model. We
inserted commercially available metallic stents with endoscopic guidance and subsequently
validated their successful placement using fluoroscopy, CT scans, and necropsy.

The introduction of BET interventions allowed the surgical management of an ob-
structive ETD. Since 2010, studies have reported the use of BET in ETD, with success
rates of 36%–80% [8,10,12,13,17]. Although these prior studies all reported that BET was
superior to conventional medical management, this dilation treatment was not successful
in some cases, necessitating a further management option. Stents are commonly used for
the treatment of obstructive disorders in many non-vascular systems, such as the digestive,
respiratory, and urinary tracts [18–20]. However, there have been no attempts to use stents
for the treatment of obstructive ETD and side effects have been reported for stent insertions
into the non-vascular luminal organs. The development of new strictures due to stent-
induced tissue hyperplasia caused by mechanical injuries remains a significant obstacle to
successful stent placement in non-vascular luminal organs [18–21]. Another cause of stent
re-obstruction is biofilm formation with infections on the stent surfaces [22–24]. Our histo-
logical results also demonstrated severe tissue hyperplasia through the stent strut in the
porcine ET at 4 weeks after stent placement. Various functional stents, such as drug-eluting
biodegradable or non-biodegradable and nano-functionalized stents using gold or silver
nanoparticles, have been investigated using various stented animal models to overcome
these problems [25–28]; however, therapeutic strategies for the treatment of obstructive
ETD that could be tested in human clinical trials have yet to be developed. Various stented
animal models have been introduced to study the mechanisms of stent-induced stricture
formation [25–30]. Herein, we introduced a well-established ET porcine model to study the
mechanisms of complications of stent insertion for ETD and developed a system to reliably
test stent materials and configurations.

We utilized cobalt–chrome alloy stents in our current analysis to test the technical
feasibility of inserting a stent into the ET. The stent materials that have been used for the
treatment of obstructive disorders in other systems include stainless steel, cobalt–chrome
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alloy, nitinol wire, and biodegradable substances [31–33]. The ideal stent material should
be biocompatible and radiopaque, relieve symptoms caused by obstructive disorders, have
low foreign body sensation, not induce susceptibility to infection, and be available at
a reasonable cost. The cobalt–chrome tested in the present study was readily available
because it is commonly used in coronary arterial disease [34]. However, this material has
some disadvantages, including a lack of MRI compatibility, poor fluoroscopic visibility, and
non-elastic force [35]. Stents made from nitinol, a shape memory alloy with super-elastic
properties, are commonly used to treat obstructive disorders in non-vascular systems, such
as those of the digestive, respiratory, and urinary systems [18–20]. The ideal material for ET
stents has not yet been determined and further studies are needed on this topic in animal
ET models.

In the present study, the diameters of the inserted stents differed significantly by
the location and original diameter of the stent (Figure 2). The distal ends of the stents
were collapsed due to the non-elastic force of the cobalt–chrome, as well as the anatomical
structure of the ET. This finding suggested that the shape of the ET stent needed to be
configured based on the anatomical structure of the cartilaginous ET. The shape of the
inserted stents may also conceivably be altered by movements surrounding the ET in a
living animal, such as swallowing and chewing. Additional long-term, post-insertion
observation studies are needed to identify an ideal configuration for ET stents.

Generally, sheep and pigs are considered good models of the human middle ear [36].
A previous study of ET stent insertion conducted in a sheep model suggested that as the
pig’s ET consists of a cartilaginous structure, the sheep ET was more anatomically similar
to the human ET. However, the stent should be placed in the cartilaginous portion of the
ET and the primary purpose of an animal model for testing an ET stent is to identify the
optimal materials and shape of the stent that results in minimal complications. We contend
that this can be readily achieved by investigating the histologic changes to the cartilaginous
ET in pigs, thus making our model useful.

This study had several limitations. First, the total number of specimens was relatively
small to perform a robust statistical analysis. Second was the lack of a control group,
namely non-treated animals, because of the limited number of animals. Additional studies
are required for comparison with an untreated control group in the porcine ET and to
evaluate the histological changes and tissue reaction after stent placement with long-term
follow-up. Furthermore, stent modification according to the length and shape of the ET
should be considered based on our findings; moreover, the application of drug-eluting
stents in the ET should be considered to prevent inflammatory reaction and stent-induced
tissue hyperplasia. Although further studies are needed, our results support the basic
concept of stent placement in a porcine ET model.

5. Conclusions

Stent placement into the porcine ET was technically feasible. The luminal configuration
of the placed ET stent in the pig changed according to the non-elastic nature of the cobalt–
chrome alloy material and the anatomical configuration of the ET. Formation of stent-
induced tissue hyperplasia was evident in the porcine ET at 4 weeks after stent placement.
Various ET stent materials and designs, as well as anti-proliferative drug-coated stents,
should be investigated in this animal model to optimize them for clinical trial testing.
The pig is a suitable large animal model for the development of an ideal ET stent, and
may also provide valuable information on long-term histopathological changes after stent
placement.
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