Assessing the Technical Specifications of Predictive Maintenance: A Case Study of Centrifugal Compressor

Helge Nordal * and Idriss El-Thalji

Abstract: Dependability analyses in the design phase are common in IEC 60300 standards to assess the reliability, risk, maintainability, and maintenance supportability of specific physical assets. Reliability and risk assessment uses well-known methods such as failure modes, effects, and criticality analysis (FMECA), fault tree analysis (FTA), and event tree analysis (ETA) to identify critical components and failure modes based on failure rate, severity, and detectability. Monitoring technology has evolved over time, and a new method of failure mode and symptom analysis (FMSA) was introduced in ISO 13379-1 to identify the critical symptoms and descriptors of failure mechanisms. FMSA is used to estimate monitoring priority, and this helps to determine the critical monitoring specifications. However, FMSA cannot determine the effectiveness of technical specifications that are essential for predictive maintenance, such as detection techniques (capability and coverage), diagnosis (fault type, location, and severity), or prognosis (precision and predictive horizon). The paper proposes a novel predictive maintenance (PdM) assessment matrix to overcome these problems, which is tested using a case study of a centrifugal compressor and validated using empirical data provided by the case study company. The paper also demonstrates the possible enhancements introduced by Industry 4.0 technologies.

Keywords: predictive maintenance; effectiveness assessment; industry 4.0; oil and gas; centrifugal compressor; technical safety; reliability analysis

1. Introduction

The centrifugal compressor is a highly complex system, given the nature of its components and transient operational behaviors. Despite its complexity, it is widely applied in the oil and gas (O&G) industry to transport natural gas through subsea pipelines. It plays a vital role in the operational availability and thereby the revenue of an O&G company, as it determines whether consumers receive natural gas. Most maintenance activities are based on recommendations provided by the equipment vendor, and this, in turn, is based on experience. Hence, the proposed maintenance schedule may be under- or over-predicted. If the maintenance activities recommended by the generic maintenance schedule do not fit the actual health of the equipment, the equipment will be maintained either more or less than necessary, preventing its full utilization and handicapping operations.

The technologies accompanying Industry 4.0 are expected to revolutionize maintenance management by introducing novel ways to analyze big data (characterized by the 5Vs: velocity, variability, veracity, volume, and value). The technologies of Industry 4.0 (cyber-physical systems (CPS), internet of things (IoT), cloud computing, big data, etc.) have been present in the Industry 3.0 environment for a long time, but their comprehensiveness and capabilities are greatly improved in the Industry 4.0 context. For example, in Industry 3.0, IoT was applied at the enterprise level, while in Industry 4.0, it is applied at the asset level and between asset and enterprise levels [1]. These improvements present new ways of analyzing big data: namely, the detection, diagnosis, and prognosis
of failure. Such analyses were traditionally based on a single parameter, but an Industry 4.0 environment combines several different sensor signals and parameters (i.e., process, health and performance indicators) with enterprise-level data (e.g., production forecasts, spare part management, and equipment information), all the way down to the component level [2]. These novel techniques for data acquisition and analysis require new algorithms that manage the analysis of multivariate sensor signals (i.e., big data) to perform accurate and reliable detection, diagnosis, and prognosis of the equipment or component of interest [3]. The use of predictive maintenance (PdM) in Industry 4.0 is expected to yield many benefits [4], but the extent of the enhancements (i.e., levels of detection, diagnosis, and prognosis) is not yet known.

Designing for maintenance and maintenance support is already guided by IEC 60706-2 [5]. In addition, several existing standards provide supportive guidelines for the implementation of different maintenance strategies. For instance, the NORSOK Z-008 standard [6] has guidelines to implement preventive maintenance, while IEC 60812 [7] demonstrates the development process of failure mode, effect, and criticality analysis (FMECA) to support the assessment of component criticality and failures for equipment that is designed-out or frequently maintained. The ISO 13379-1 [8] and ISO 17359 [9] standards stipulate the implementation of condition-based maintenance (CBM), showing how to monitor failure propagation through failure mode and symptom analysis (FMSA). However, no standards are available to design PdM-ready equipment, despite the promise of PdM in an Industry 4.0 environment [4].

Certain technical requirements and specifications must be considered to standardize guidelines to design PdM-ready equipment [10]. First, designing for PdM-ready equipment does not solely consider the process of sensor implementation and data acquisition, as in traditional CBM. However, all the equipment in the physical space (hardware) must be aligned with the cyberspace equipment (software) to perform the required detection, diagnosis, and prognosis. Second, PdM in Industry 4.0 requires combining several different sensor parameters with enterprise-level data of varying quality (i.e., value, resolution, etc.). The technical requirements include determining the specific failure symptom (tracking indicator) of the failure mechanisms associated with the system under study [10]. Then, effective feature extraction procedures and data analysis techniques must be selected to track the symptom as early as possible over the entire fault evolution process to detect, diagnose, and predict under different scenarios (e.g., fluctuating operation, change of loading, multi-faults, and fault interactions).

Technical analyses play a decisive role in reaching a detailed understanding of system criticality and risk assessment. FMECA and FMSA are well-known systematic bottom-up approaches. Although they have the same objective of providing a holistic risk picture of a system, they differ to some extent. Briefly, FMECA facilitates examining the effects and consequences of the occurrence of specific failure modes associated with the specific system under study. Meanwhile, FMSA considers the detection of the failure modes associated with the system by connecting the occurrence of failure modes to specific monitorable symptoms using sensor technology.

The concept of FMSA was first standardized by ISO-13379-1 [8]. In addition, several big O&G companies developed their own FMSA procedures. The PdM analysis matrix [10] is the most recent update of FMSA, presented in ISO 13379-1 [8]. It adds prediction through prognosis to the traditional focus on detection and diagnosis.

Although the authors of this paper consider the PdM analysis matrix [10] to be the most state-of-the-art risk analysis, it lacks some requirements from an Industry 4.0 perspective. First, it does not address the basic logic connecting sensor technology with the levels of detection, diagnosis, and prediction of specific failure modes by connecting failure mechanisms to failure symptoms. Second, it lacks a methodology that would enable assigning quantitative values to levels of detection, diagnosis (tracking), and prognosis (prediction) supported by qualitative descriptions.
The purpose of this paper is to determine these technical specifications and develop a novel PdM assessment matrix that is demonstrated through a case study—making a centrifugal compressor PdM-ready. The paper takes an inductive approach to determine the technical specifications for a PdM-ready compressor based on data extracted from two sources: (1) a detailed systematic literature review and (2) case study data.

The remainder of this paper is organized as follows. Section 2 introduces the materials and methods, including state-of-the-art centrifugal compressor monitoring and the novel PdM assessment matrix design process. Section 3 is divided into two parts. First, the novel PdM assessment matrix process is demonstrated using a case study. Then, the enhancements to detection, diagnosis, and prognosis offered by Industry 4.0 technologies are shown. Section 4 specifies some conclusions.

2. Materials and Methods

This section explains the materials and methods applied in this research. First, Section 2.1 presents a detailed literature review addressing state-of-the-art centrifugal compressor monitoring. Second, Section 2.2 outlines the development of a novel PdM assessment matrix that allows the PdM readiness of equipment to be assessed.

2.1. State-of-the-Art Centrifugal Compressor Monitoring

The four-stage process presented by Tranfield [11] is adopted in a detailed systematic literature review to highlight the information needed to fulfill the requirements of a PdM-ready centrifugal compressor.

Stage I—Define (identification of need for a literature review and development of protocol)

The literature review was intended to determine the requirements of a PdM-ready centrifugal compressor. This included highlighting the associated critical components and failure modes, the failure mechanisms and symptoms of each critical failure mode, the matching sensor that enables symptoms to be monitored, and the sensor coverage. It also included determining prioritized techniques for detection, diagnosis, and prognosis. The literature review protocol comprised data on fault type, measurement type, signal processing techniques, and diagnosis and prognosis approaches.

Stage II—Collect and select

Relevant papers were identified and collected. This process included a search for relevant keywords in the Scopus database as depicted in Table 1. As seen in the Table 1, the number of relevant hits was limited to 64 papers.

<table>
<thead>
<tr>
<th>Search Keyword (Scopus)</th>
<th>No. of Hits</th>
<th>Relevant Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL (compressor AND fault) AND (LIMIT-TO (DOCTYPE, “re”))</td>
<td>104</td>
<td>General hits; not specifically for centrifugal compressor</td>
</tr>
<tr>
<td>(ALL (compressor)) AND ((centrifugal)) AND (fault AND detection) AND (LIMIT-TO (SUBJAREA, “ENGI”))</td>
<td>323</td>
<td>64 relevant hits regarding centrifugal compressor</td>
</tr>
</tbody>
</table>

Stage III and IV—Analyze (categorization of documents and data extraction) and document results (document findings)

Relevant papers were studied and the necessary data were extracted according to the literature review protocol. The results are summarized in Table 2.
Table 2. A summary of state-of-the-art centrifugal compressor monitoring (i.e., predictive maintenance) and analyses.

<table>
<thead>
<tr>
<th>Maintainable Item</th>
<th>Failure Mechanism</th>
<th>Data Type</th>
<th>Measurement Type</th>
<th>Data Processing</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Equipment Efficiency</td>
<td>Surge</td>
<td>Machine Performance</td>
<td>Simulation</td>
<td>Rule-based, Fuzzy Logic, Pattern Recognition</td>
<td></td>
</tr>
<tr>
<td>Rotor</td>
<td>Stall</td>
<td>Fluid/Gas Performance</td>
<td>Experimental</td>
<td>Random Forest, Principal Component Analysis, Neural Network</td>
<td></td>
</tr>
<tr>
<td>Blade/Impeller</td>
<td>Clearance</td>
<td>Vibration</td>
<td>Industrial</td>
<td>Logistic Regressions, Support Vector Machines</td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>Bearing Defect</td>
<td>Acoustic Emission</td>
<td>Pre-processing</td>
<td>Data-driven</td>
<td></td>
</tr>
<tr>
<td>Seal</td>
<td>Oil Whirl</td>
<td>Strain Gauges</td>
<td>Statistical</td>
<td>Model-Based</td>
<td></td>
</tr>
<tr>
<td>Valve</td>
<td>Leakage</td>
<td>Frequency Domain</td>
<td>Time/Frequency</td>
<td>Hybrid Approach</td>
<td></td>
</tr>
<tr>
<td>Magnetic Bearing</td>
<td>Fouling</td>
<td>Pre-processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Speed Drive</td>
<td>Wear</td>
<td>Statistical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusor</td>
<td>Misalignment</td>
<td>Frequency Domain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Looseness</td>
<td>Time/Frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid Excitation</td>
<td>Rule-based, Fuzzy Logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unbalance</td>
<td>Pattern Recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Blockage</td>
<td>Random Forest, Principal Component Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crack</td>
<td>Neural Network</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24-27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]
<table>
<thead>
<tr>
<th>Maintainable Item</th>
<th>Failure Mechanism</th>
<th>Data Type</th>
<th>Measurement Type</th>
<th>Data Processing</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Equipment Efficiency</td>
<td>Surge</td>
<td>Overall</td>
<td>Experimental</td>
<td>Machine Performance</td>
<td>[49]</td>
</tr>
<tr>
<td>Rotor</td>
<td>Stall</td>
<td>Overall</td>
<td>Experimental</td>
<td>Machine Performance</td>
<td>[50]</td>
</tr>
<tr>
<td>Blade/Impeller</td>
<td>Clearance</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[51]</td>
</tr>
<tr>
<td>Bearing</td>
<td>Bearing Defect</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[52]</td>
</tr>
<tr>
<td>Seal</td>
<td>Oil Whirl</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[53,54]</td>
</tr>
<tr>
<td>Valve</td>
<td>Leakage</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[55]</td>
</tr>
<tr>
<td>Magnetic Bearing</td>
<td>Fouling</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[56,57]</td>
</tr>
<tr>
<td>Variable Speed Drive</td>
<td>Wear</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[58]</td>
</tr>
<tr>
<td>Diffusor</td>
<td>Misalignment</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[59]</td>
</tr>
<tr>
<td>Sensor</td>
<td>Looseness</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[60]</td>
</tr>
<tr>
<td></td>
<td>Fluid Excitation</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>Unbalance</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[62]</td>
</tr>
<tr>
<td></td>
<td>Internal Blockage</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[63,64]</td>
</tr>
<tr>
<td></td>
<td>Crack</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[65,66]</td>
</tr>
<tr>
<td></td>
<td>Simulation</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[67]</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td>Industrial</td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[70]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall</td>
<td>Industrial</td>
<td>Pre-Processing</td>
<td>[71]</td>
</tr>
</tbody>
</table>
To summarize, most of the literature examines the maintainable item in terms of the overall equipment efficiency of the centrifugal compressor. The failure mechanisms are surge, fouling, and wear. The literature also demonstrates the usefulness of the application of various types of measurement, such as the process parameters of pressure and temperature, the performance indicator of flow, and health monitoring using vibration. The literature review indicates that the maintainable items and the failure modes, mechanisms, and symptoms are defined interchangeably.

The database of Offshore and Onshore Reliability Data (OREDA) [72] provides solid and transparent definitions of the critical failure modes, maintainable items, and failure mechanism of centrifugal compressors operated at the Norwegian continental shelf. Therefore, as the case study is a centrifugal compressor operating in the O&G industry, the study adopts the definitions used in the well-known and widely adopted OREDA database. The categorizations of failure severity levels are critical, degraded, and incipient failures. Importantly, the failure mechanisms in the OREDA data are interchangeable with those in the literature review (Table 2). However, there are some differences, as the failure mechanisms in the literature are presented by different researchers with proliferating definitions. Clearly, researchers do not follow a common standardized definition of failure modes, failure mechanisms, etc.

The literature review shows several techniques enable the condition monitoring of failures on centrifugal compressors. But there is no guarantee that all techniques are equally effective in their detection, diagnosis, and prognosis. Thus, an effectiveness assessment method [73] for detection, diagnosis, and prediction is needed to determine the associated priority indexes and a final PdM level.

2.2. PdM Assessment Matrix for Centrifugal Compressor

In general, PdM comprises the activities of detection, diagnosis, and prognosis. To be more specific, the first concerns the detection of the presence of a failure, and the second is about diagnosing the associated symptoms and pinpointing the failure mechanism of the degraded component. Prognosis aims to estimate the future evolution of this specific failure mechanism by estimating the component or the equipment's remaining useful life (RUL). When they are combined, these activities provide valuable information that supports opportunistic maintenance.

The requirements of PdM are situation-based, and symptoms of failures may be categorized as incipient, degraded, and critical [10]. These stages illustrate a qualitative measure of the symptom propagation that reflects the time until system failure, thus indicating the opportunity to perform opportunistic maintenance actions and the relative maintenance intervention required. Hence, the requirements of detection include earliness (incipient, degraded, or critical) and detectability (coverage), while diagnosis requires the ability to diagnose a faulty maintainable item along with its associated failure mechanism, cause, severity, and overall level of damage. The prediction requirements concern the predictive horizon and the precision of the deterioration prognosis and RUL estimate. Therefore, the associated requirements of detection, diagnosis, and prognosis for asset failures with negligible consequences are clearly different from those for failures with unacceptable consequences (i.e., excessive cost, operational unavailability, or health, safety, and environmental (HSE) dangers). Consider two scenarios. Failure of redundant equipment incurs little cost because one piece of equipment can be replaced by another. In contrast, failure in a normally unmanned offshore installation is accompanied by significant consequences and high cost (i.e., planning and resources).

To summarize, PdM requires a transparent connection between the failure modes, mechanisms, symptoms, and sensors to enable detection, diagnosis, and prognosis. Effective PdM has four requirements: (1) the symptoms identified must be clear and easy to track; (2) the diagnosis technique must involve reliable and accurate algorithms that enable detection of the failure mechanism at the preferred stage (incipient, degraded, or critical); (3) the prognosis technique must facilitate reliable and accurate RUL estimation; (4) these
aforementioned requirements must be able to manage transient operational characteristics (e.g., fluctuation, change of loading), multiple failures, and failure interactions.

To assess the levels of PdM readiness, the PdM assessment matrix process comprises seven steps:

Step 1: Determine the system boundary, interfaces, use case scenarios, and architecture.
Step 2: Determine the critical components and failure modes.
Step 3: Determine failure mechanisms and related symptoms.
Step 4: Determine sensors and coverage index.
Step 5: Determine detection techniques and priority index.
Step 6: Determine diagnosis techniques and priority index.
Step 7: Determine prediction techniques and priority index.

3. Results and Discussion

3.1. PdM Assessment of Case Study

3.1.1. Step 1: System Boundary, Interfaces, Use Case Scenarios, and Architecture

In the context of the O&G industry, centrifugal compressors are used to enable the transportation of natural gas through subsea pipelines. An electric motor drives the centrifugal compressor by rotating the rotor. During operation, the gas is fed to the rotor and its rotating impellers. When the gas hits the rotating impellers, this accelerates the velocity of the gas and increases its kinetic energy. Next, the high-velocity gas is discharged into the diffusor (gas path with increasing radius), reducing its velocity and converting the recently introduced kinetic energy into static pressure.

3.1.2. Step 2: Critical Components and Failure Modes

The empirical case study data for failures experienced during operation show the maintainable items of rotor and bearings are two of the most critical components with associated failure modes of looseness (LOO) and vibration (VIB), respectively.

3.1.3. Step 3: Failure Mechanisms and Related Symptoms

After critical failure modes are identified, the associated symptoms that enable detection, tracking, and prediction of the underlying failure mechanisms (that if allowed to develop, result in the failure mode) must be determined. This includes identifying the relevant descriptors measuring the related symptom [75]. Such descriptors can be unprocessed raw data or processed data in terms of the mean or (exponential) moving average, etc. [9]. ISO 13379-1 [8] highlights the importance of selecting a good descriptor for detection purposes.

To give an example, this means the looseness (failure mode) of a rotor caused by a mechanical failure (failure mechanism) that increases the system’s vibration (measurable symptom) can be visualized through the average vibration level in the time domain (descriptor).

3.1.4. Step 4: Sensor and Coverage Index

In this step, the sensors and their coverage index must be identified. The sensor coverage index highlights the connection between sensor parameters and the failure modes and mechanisms. It expresses the relative value a specific parameter can detect in terms of failure mechanisms connected to a certain failure mode. It is estimated by dividing the sum of failure mechanisms detected by the sensor under study by the total number of failure mechanisms associated with the specific failure mode.
The centrifugal compressor under study has sensors monitoring health indicators (i.e., vibration and bearing temperature), process indicators (i.e., pressure, temperature, gas composition), and performance indicators (i.e., speed and polytrophic efficiency).

3.1.5. Step 5: Detection Techniques and Priority Index

The assessment of the detection effectiveness of each monitoring technique is supported by two measures, detectability percentage and detection earliness, as shown in the priority index in Table 3. These refer to how many cases were detected compared to all the cases and their earliness of detection, respectively. The ranking is based on the detection failure stage (incipient, degraded, or critical) and how easily the specific failure mode is detected. The detection level is a product of both earliness and detectability.

Table 3. Detection priority index.

<table>
<thead>
<tr>
<th>Detectability</th>
<th>Earliness</th>
<th>Low (1)</th>
<th>Medium (2.5)</th>
<th>High (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (1)</td>
<td>(Not covered)</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Medium (2)</td>
<td>(Partially covered)</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>High (3)</td>
<td>(Full cover)</td>
<td>3</td>
<td>7.5</td>
<td>15</td>
</tr>
</tbody>
</table>

3.1.6. Step 6: Diagnosis Techniques and Priority Index

The priority index depicted in Table 4 allows the abilities of specific diagnosis techniques to be quantified. This supports identification of the most suitable approach to detect and diagnose specific failure modes of the system under study. As shown, the priority index proposes quantifying the diagnosis by the following two attributes: (1) informativeness of failure mechanism(s) and cause(s) diagnosed, and (2) ability to diagnose the maintainable item(s) supported by individual qualitative descriptions. Respectively, these quantities involve ranking the relevant information about the failure mechanism, severity, and overall level of damage offered by the diagnosis, and the ability to diagnose the maintainable item(s), whether this concerns normal or abnormal behavior, only damaged components, or deterioration levels for all components. The diagnosis level for the specific technique under study is estimated as the product of these two quantities.

Table 4. Diagnosis priority index.

<table>
<thead>
<tr>
<th>Ability to Diagnose the Maintainable Item(s)</th>
<th>Informativeness of Failure Mechanism(s) and Cause(s) Diagnosed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low (1)</td>
</tr>
<tr>
<td>Low (1)</td>
<td>(Abnormal)</td>
</tr>
<tr>
<td>Medium (2)</td>
<td>2</td>
</tr>
<tr>
<td>High (3)</td>
<td>3</td>
</tr>
</tbody>
</table>

3.1.7. Step 7: Prediction Techniques and Priority Index

The last step of the PdM assessment matrix is to determine the most suitable prediction technique using the priority index. First, prognosis is all about predicting the future behavior of the component under study by estimating its RUL [75]. To determine the best out of several possible prediction techniques, we propose using the priority index shown in Table 5. As seen, the table scores each specific prediction technique in two categories:
predictive horizon and precision of deterioration prognosis and RUL prediction. More specifically, these refer to the time horizon within which the specific prognosis technique is able to predict the RUL (week, month, or months ahead), and the associated precision and accuracy of this prognosis and RUL estimate (variation in months, month, or week), respectively. The specific prognosis level is estimated by multiplying the quantitative rankings of the predictive horizon by the precision of deterioration prognosis and RUL prediction.

Table 5. Prognosis priority index.

<table>
<thead>
<tr>
<th>Precision of Deterioration Prognosis and RUL Prediction</th>
<th>Predictive Horizon</th>
<th>Low (1)</th>
<th>Medium (2.5)</th>
<th>High (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (1)</td>
<td>1</td>
<td>2.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Medium (2)</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>High (3)</td>
<td>3</td>
<td>7.5</td>
<td>(Full accuracy and predictive horizon)</td>
<td></td>
</tr>
</tbody>
</table>

The PdM index at the component level can be estimated as the product of the coverage and levels of detection, diagnosis, and prognosis. Furthermore, underlining the most suitable condition parameters and analyses enables detection, diagnosis, and prognosis.

The final PdM assessment matrix covering the entire seven-step process is presented in Figure 1. In this case, the assigned values of the sensor coverage and the levels of detection, diagnosis, and prognosis are based on the literature review (Section 2.1) and the empirical case study data.

The final PdM assessment matrix for the case study clearly shows the connection between the coverage indexes of different failure symptoms associated with failure mechanisms and failure modes. It also shows the opportunities and limitations associated with the trending of one monitoring parameter at a time to detect, diagnose, and predict the equipment’s state. Finally, the PdM index level demonstrates that the trending of the vibration signal has the ability to enable the detection, diagnosis, and prediction of the failure modes studied: rotor looseness and bearing vibration.

The PdM assessment matrix process above is generalized in the following six steps:

Step 1: Fill the first matrix that includes failure mechanism and failure symptoms. Then, determine the potential symptoms for each failure mechanism. In this case, 1 is assigned if the symptom is valid for the failure mechanism, and 0 is given if the symptom is not valid.

Step 2: Estimate the coverage index for each failure symptom (sensor) by dividing the sum of failure mechanisms detected by the specific symptom under study by the total number of failure mechanisms associated with the specific failure mode. For example, the symptom of vibration can detect 11 out of 13 failure mechanisms associated with looseness (failure mode) of rotor (component), which offers a coverage index of 92% (12/13 = 0.92).

Step 3: Estimate the effectiveness of the detection technique, which covers detectability (how accurate) and detection earliness (how early). In this step, the detection priority index in Table 3 is used to assign the relevant category based on technician experience and sensor manufacturer. For example, vibration sensor provides medium detectability (score 2.5) and medium earliness (score 2), which results in a total detection level of 5 (2.5 × 2 = 5).

Step 4: Estimate the effectiveness of the diagnosis technique, which covers the diagnostic ability and diagnostic informativeness. In this step, the diagnosis priority index in Table 4 is used to assign the relevant category based on technician experience and diagnosis solution providers. For example, the studied compressor is monitored by a vibration sensor that is tracked over time to identify deviations in sensor output. Thus, this diagnosis technique is assigned to offer a medium level of diagnosis
ability (score 2.5) and a medium level of diagnostic informativeness (score 2), which results in a total diagnosis level of 5 (2.5 \times 2 = 5).

Step 5: Estimate the effectiveness of the prognosis technique, which covers the prediction precision and predictive horizon. In this step, the prognosis priority index in Table 5 is used to assign the relevant category based on technician experience and prognosis solution providers. For example, the studied compressor is monitored by a vibration sensor, and two prognosis methods are used (regression and expert knowledge). Thus, this prognosis technique combination is assigned to offer a low level of prediction precision (score 1) and a medium level of predictive horizon (score 2), which results in a total prediction level of 2 (1 \times 2 = 2).

Step 6: Estimate the overall predictive maintenance effectiveness index by multiplying the coverage index (i.e., relative value) with the detection level (0–15), diagnosis level (0–15), and prognosis level (0–15). For example, the designed PdM specifications for the studied compressor scores 46 (0.92 \times 5 \times 5 \times 2 = 46) out of 3375 (1 \times 15 \times 15 \times 15 = 3375). Therefore, the PdM effectiveness percentage for the studied case is assigned a value of 1.37% (46/3375 = 0.0137).

3.2. PdM Assessment of Centrifugal Compressor in Industry 4.0

The expected enhancements in terms of detection, diagnosis, and prognosis offered by Industry 4.0 and its emerging technologies (CPS, IoT, big data, cloud computing) are already highlighted in this paper. Nevertheless, since the case study examines a single parameter, these possible enhancements have not been demonstrated. Therefore, a final PdM assessment matrix for centrifugal compressors in Industry 4.0, based on the detailed literature review in Section 2.1, is depicted in Figure 2.

As the Figure 2 shows, the final PdM assessment matrix for centrifugal compressors in Industry 4.0 highlights the connection between combining several sensor signals (i.e., multivariate analysis) and the ability to detect, diagnose, and predict the future evolution of failures. It also addresses the different levels of diagnosis and prognosis offered by specific applicable data analysis techniques. Finally, it demonstrates that the symptom combination of pressure, speed, flow, and vibration modelled using a model-based approach is the best approach to detect, diagnose, and predict rotor looseness, while the combination of symptoms for speed and vibration analyzed using a model-based approach is most suitable to detect, diagnose, and predict bearing vibration.
Figure 1. Snapshot of final PdM assessment matrix based on the case study.
Figure 2. Snapshot of PdM assessment matrix for centrifugal compressors in Industry 4.0.
4. Conclusions

PdM needs to be incorporated with opportunistic maintenance to avoid shutdowns due to failures, unintended maintenance events, and high levels of service (repair or replacement due to damage spread from the faulty unit to the entire system). Knowing the failure symptoms, measuring techniques, and diagnostic analytics is not sufficient to determine the required technical specifications, even though monitoring technology has evolved over time, and a new method of FMSA was introduced by ISO 13379-1 [8] to identify both the critical symptoms and descriptors of failure mechanisms. FMSA is used to estimate the monitoring priority, and this helps to determine the critical monitoring specification. However, current FMSA cannot determine the effectiveness of technical specifications that are essential for predictive maintenance such as detection techniques (capability and coverage), diagnosis (fault type, location, and severity), or prognosis (precision and predictive horizon).

This paper proposes a novel PdM assessment matrix to cover these gaps. This includes priority indexes that enable the efficiency of detection, diagnosis, and prognosis techniques to be compared using qualitative descriptions with quantitative values. The PdM assessment matrix enables (1) identification of the most suitable PdM solution for the generic system under study, (2) assessment of the levels of the existing monitoring solution, and (3) determination of how an existing monitoring solution can achieve higher levels of PdM.

The proposed PdM assessment matrix is demonstrated in the case study of a centrifugal compressor and validated using empirical data provided by the case study company. The example highlights the entire process from the identification of critical components and failure modes to the incorporation of PdM to detect, diagnose, and predict the failure modes under study. It also highlights gaps in sensor coverage, potential superfluous sensors, and the optimal monitoring solution (i.e., sensor combinations and techniques for detection, diagnosis, and prognosis). The results clearly demonstrate the limitations of simple data analysis and the trending of single parameters, especially considering the levels of detection, diagnosis, and prognosis of failure mechanisms and failure modes.

As a supplement, the paper develops a PdM assessment matrix based on the literature and considering Industry 4.0 technologies. It reinforces industrial expectations about the potential to improve current levels of detection, diagnosis, and prognosis and shows improvements may occur with the application of multivariate analysis.

Several advanced diagnosis and prognosis techniques are not yet utilized in this industrial case, which shows a gap between what is available in literature and what is applied in industry, specifically, in this case study. Therefore, more case studies shall be conducted to study if the gap is case-specific or exists at the sector level. However, the proposed PdM assessment matrix can clearly help maintenance engineers at the design phase to determine and assess their selected technical solutions (combination of sensors, detection, and diagnosis and prognosis techniques).

The developed PdM assessment matrix is generalizable due to several considerations: (1) standardized and industrially well-known definitions are used, e.g., failure modes, mechanisms, and symptoms, (2) it adopts the maintenance data definitions of ISO 14224, (3) it involves well-known stakeholders and their opinion in deciding about monitoring technique effectiveness, and (4) it includes well-known techniques presented in literature. However, it is important to highlight that since humans are involved in the PdM assessment matrix process (e.g., the categorization matrices in Tables 3–5), the assigned values are somewhat subjective, case-specific, and based on human experience. Therefore, it is recommended that testing and validation be conducted for all these advance diagnosis and prognosis techniques to determine their diagnostic and prognosis probabilities based on an objective experimental approach.
Author Contributions: Conceptualization, H.N. and I.E.-T.; Data curation, H.N.; Formal analysis, H.N.; Funding acquisition, I.E.-T.; Investigation, H.N.; Methodology, H.N. and I.E.-T.; Project administration, H.N.; Resources, I.E.-T.; Supervision, I.E.-T.; Validation, H.N.; Writing—original draft, H.N. and I.E.-T.; Writing—review & editing, H.N. and I.E.-T. All authors have read and agreed to the published version of the manuscript.

Funding: The authors want to thank the University of Stavanger for financial support [Grant Number IN-11626]. They also wish to thank the case study company for providing interesting case study data.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

35. Li, H.; Zhang, X.; Xu, F. Experimental investigation on centrifugal compressor blade crack classification using the squared envelope spectrum. Sensors 2013, 13, 12548–12563. [CrossRef]

56. Golmoradi, M.; Ebrahimi, E.; Javidan, M. Compressor fault diagnosis based on SVM and GA. Vibroengineering Procedia 2017, 12, 49–53. [CrossRef]

57. Golmoradi, M.; Ebrahimi, E.; Javidan, M. Fault diagnosis of compressor based on decision tree and fuzzy inference system. Vibroengineering Procedia 2017, 12, 54–60. [CrossRef]

62. He, C.; Li, H.; Zhao, X. Weak characteristic determination for blade crack of centrifugal compressors based on underdetermined blind source separation. Measurement 2018, 128, 545–557. [CrossRef]

